indexing.cpp 19.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/**
 * \file src/opr/impl/indexing.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/indexing.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/utility.h"
#include "megbrain/graph/grad_impl.h"

#include "./internal/megdnn_opr_wrapper.inl"

using namespace mgb;
using namespace opr;

namespace {
    void check_index_dtype(std::initializer_list<SymbolVar*> &inputs) {
        mgb_assert(inputs.size() >= 2);
        auto iter = inputs.begin();
        ++ iter;
        SymbolVar &index = **iter;
        if (index.dtype() != dtype::Int32()) {
            mgb_log_warn("dtype of index in IndexingOneHot must be Int32, "
                    "got %s for variable %s; convert to Int32 implicitly",
                    index.dtype().name(), index.node()->cname());
            index = opr::TypeCvt::make(index, dtype::Int32());
        }
    }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

    enum IndexingModifyType {
        SET, INCR
    };

    template<typename Opr>
    struct IndexingModifyTypeGetter {};

#define REG(op, type) \
    template<> \
    struct IndexingModifyTypeGetter<megdnn::op> { \
        static constexpr IndexingModifyType value = IndexingModifyType::type; \
    };
REG(IndexingIncrMultiAxisVec, INCR)
REG(IncrMeshIndexing, INCR)
REG(BatchedIncrMeshIndexing, INCR)
REG(IndexingSetMultiAxisVec, SET)
REG(SetMeshIndexing, SET)
REG(BatchedSetMeshIndexing, SET)
#undef REG

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
}

namespace mgb {
namespace opr {
namespace intl {

    template<>
    struct MegDNNOprInitInputsModifier<IndexingOneHot> {
        static void apply(const IndexingOneHot::Param &param,
                std::initializer_list<SymbolVar*> inputs) {
            MGB_MARK_USED_VAR(param);
            check_index_dtype(inputs);
        }
    };

    template<>
    struct MegDNNOprInitInputsModifier<IndexingSetOneHot>:
    public MegDNNOprInitInputsModifier<IndexingOneHot> {};
}
}
}

/* ==================== IndexingOneHot ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingOneHot);
MEGDNN_OPR_INIT2(IndexingOneHot, "indexing_one_hot")

void IndexingOneHot::init_output_dtype() {
    output(0)->dtype(input(0)->dtype());
}

MGB_IMPL_OPR_GRAD(IndexingOneHot) {
    if (wrt_idx == 0) {
        return IndexingSetOneHot::make(
                SymbolVar{opr.input(0)}.fill_retain_dtype(0),
                opr.input(1), out_grad[0], opr.param()).node();
    }
    return InvalidGrad::make(opr, wrt_idx);
}

/* ==================== IndexingSetOneHot ==================== */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingSetOneHot);
MEGDNN_OPR_INIT3(IndexingSetOneHot, "indexing_set_one_hot")

void IndexingSetOneHot::init_output_dtype() {
    output(0)->dtype(input(0)->dtype());
}

void IndexingSetOneHot::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void IndexingSetOneHot::mem_plan_fwd_in2out_writable() {
    cg::request_fwd_in2out_writable_if_no_mem_ovelap(this, 0, 0);
}

void IndexingSetOneHot::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto &&mgr = owner_graph()->static_infer_manager();
    mgr.register_shape_infer(output(0),
            ShapeInferDesc::make_identity(input(0)));
    init_output_static_infer_desc_workspace(false);
}

void IndexingSetOneHot::scn_do_execute() {
    auto &&idata = input(0)->dev_tensor(), &&index = input(1)->dev_tensor(),
         &&odata = output(0)->dev_tensor();

    if (idata.raw_ptr() != odata.raw_ptr()) {
        odata.copy_from_fixlayout(idata);
    } else {
        mgb_assert(odata.layout().eq_layout(idata.layout()));
    }
    mgb_assert(odata.layout().is_contiguous());

    megdnn_opr()->exec(odata.as_megdnn(), index.as_megdnn(),
            input(2)->dev_tensor().as_megdnn(),
            intl::get_megdnn_workspace_from_var(output(1)));
}

MGB_IMPL_OPR_GRAD(IndexingSetOneHot) {
    SymbolVar index{opr.input(1)}, sub{opr.input(2)}, og{out_grad.at(0)};
    if (wrt_idx == 0) {
        return IndexingSetOneHot::make(og, index, sub.fill_retain_dtype(0),
                opr.param()).node();
    }
    if (wrt_idx == 2) {
        return IndexingOneHot::make(og, index, opr.param()).node();
    }
    return InvalidGrad::make(opr, wrt_idx);
}

size_t IndexingSetOneHot::get_workspace_size_bytes(
        const TensorShapeArray &input_shapes,
        const TensorShapeArray &output_shapes) const {
    return megdnn_opr()->get_workspace_in_bytes(
            {input_shapes[0], input(0)->dtype()},
            {input_shapes[1], input(1)->dtype()},
            {input_shapes[2], input(2)->dtype()}
            );
}

/* ==================== IndexingRemap ==================== */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingRemap);
MEGDNN_OPR_INIT2(IndexingRemap, "indexing_remap")

void IndexingRemap::init_output_dtype() {
    mgb_throw_if(input(1)->dtype() != dtype::Int32(), GraphError,
            "IndexingRemap requires map input to be int32");
    output(0)->dtype(input(0)->dtype());
}

MGB_IMPL_OPR_GRAD(IndexingRemap) {
    if (wrt_idx == 1)
        return InvalidGrad::make(opr, wrt_idx);
    mgb_assert(wrt_idx == 0 && out_grad[0]);
    return IndexingRemapBackward::make(
            out_grad[0], opr.input(1), opr.input(0), opr.param()).node();
}

MGB_DYN_TYPE_OBJ_FINAL_IMPL(IndexingRemapBackward);
MEGDNN_OPR_INIT3(IndexingRemapBackward, "indexing_remap_bwd", 2, false);

/* ================= IndexingMultiAxisVecMegDNNOprHolder ================= */
template<class Opr>
Opr& mixin::IndexingMultiAxisVecMegDNNOprHolder<Opr>::megdnn_opr(
        cg::SingleCNOperatorNodeBase& self) {
    auto comp_node = self.comp_node();
    if (!m_megdnn_opr || m_megdnn_opr.comp_node() != comp_node) {
        m_megdnn_opr = intl::create_megdnn_opr<Opr>(comp_node);
        m_megdnn_opr->set_error_tracker(
                static_cast<cg::OperatorNodeBase*>(&self));
    }
    return *m_megdnn_opr;
}

template<class Opr>
void mixin::IndexingMultiAxisVecMegDNNOprHolder<Opr>::register_workspace_infer(
        const indexing::IndexDesc &index_desc,
        cg::SingleCNOperatorNodeBase &opr, VarNode *data, VarNode *value) {
    using namespace cg::static_infer;
    auto infer_shape = [this, &index_desc, &opr](
            TensorShape &dest, const InpVal &inp) {
        size_t axes[TensorShape::MAX_NDIM], nr_axes = 0;
        auto ndim = inp.val[0].shape().ndim;
        for (auto &&i: reverse_adaptor(index_desc)) {
            if (i.idx.node()) {
                axes[nr_axes ++] = i.axis.get(ndim);
            }
        }
        if (!nr_axes) {
            dest = {0};
        } else {
            dest = {megdnn_opr(opr).get_workspace_in_bytes(
                    inp.val[1].shape(), axes, nr_axes)};
        }
        return true;
    };
    opr.owner_graph()->static_infer_manager().register_shape_infer(
            opr.output(1),
            {SourceType::DEP,
            {{data, DepType::SHAPE}, {value, DepType::SHAPE}},
            infer_shape});
}

template <class Opr>
void mixin::IndexingMultiAxisVecMegDNNOprHolder<Opr>::record_megdnn_opr(
        mgb::cg::GraphExecutable::ExecDependencyArray& deps) {
    deps.emplace_back(
            std::make_unique<intl::MegDNNGraphDep>(std::move(m_megdnn_opr)));
}

/* ==================== MultiAxisVecFancyIndexingHelper ==================== */
229
std::pair<const megdnn::IndexingMultiAxisVec::IndexDesc&, bool>
230 231 232 233 234
intl::MultiAxisVecFancyIndexingHelper::make_megdnn_index_desc(
        size_t inp_ndim, bool warn_all_scalar) {

    auto &&index = m_megdnn_index_cache;
    index.clear();
235
    bool is_empty_shape = false;
236 237 238 239 240
    for (auto i: reverse_adaptor(m_input2idxonly_axis_indexer)) {
        if (i) {
            index.push_back({
                    i->axis.get(inp_ndim),
                    i->idx.node()->dev_tensor().as_megdnn()});
241
            is_empty_shape |= index.back().vec.layout.is_empty();
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        }
    }

    if (!m_scalar_idx_warn_printed && warn_all_scalar) {
        bool all_scalar = true;
        for (auto &&i: index) {
            if (!i.vec.layout.is_scalar()) {
                all_scalar = false;
                break;
            }
        }
        if (all_scalar) {
            mgb_log_warn("%s{%s}: no vector indexer; consider using Subtensor "
                    "family for better performance; you can set "
                    "MGB_THROW_ON_SCALAR_IDX to throw an exception to help "
                    "tracking the related operator",
                    cname(), dyn_typeinfo()->name);
            mgb_throw_if(MGB_GETENV("MGB_THROW_ON_SCALAR_IDX"),
                    MegBrainError, "vector-indexing operator used with all "
                    "scalar indices");
        }

        // always set m_scalar_idx_warn_printed to be true, so we do not print
        // this warning in the future
        m_scalar_idx_warn_printed = true;
    }

269
    return {index, is_empty_shape};
270 271 272 273 274 275 276
}

/* ==================== IndexingMultiAxisVecBase ==================== */
template<class Opr>
cg::OperatorNodeBase::NodeProp*
IndexingMultiAxisVecBase<Opr>::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
277 278
    // TODO: should also allow input shape is empty if any
    // indexer's shape is empty
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
    for (auto i: m_input2idxonly_axis_indexer) {
        if (i) {
            prop->add_dep_type_existing_var(
                    i->idx.node(), NodeProp::DepType::VALUE_ALLOW_EMPTY);
        }
    }
    return prop;
}

template <class Opr>
void IndexingMultiAxisVecBase<Opr>::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    DepVal deps;

    // shape inference only needs slices
    deps.push_back({input(0), DepType::SHAPE});
    // loop in reverse order because megdnn opr needs ascending axes
    for (size_t i = m_input2idxonly_axis_indexer.size() - 1; i; -- i) {
        if (m_input2idxonly_axis_indexer[i]) {
            deps.push_back({input(i), DepType::SHAPE});
        }
    }
    size_t inp_interval_start = deps.size();
    for (size_t i = 1; i < m_input2idxonly_axis_indexer.size(); ++ i) {
        if (!m_input2idxonly_axis_indexer[i]) {
            deps.push_back({input(i), DepType::VALUE});
        }
    }
    auto infer_shape = [this, inp_interval_start](
            TensorShape &dest, const InpVal &inp) {
        auto &&ishp = inp.val[0].shape();
        auto subspec = fancy_indexing_make_sub_spec(
                {ishp, input(0)->dtype()}, inp, inp_interval_start);
        dest = subspec.layout();
        typename Opr::IndexDescLayoutOnly index_layout;
        size_t indexer_pos = 1;
        for (auto i: reverse_adaptor(m_input2idxonly_axis_indexer)) {
            if (i) {
                index_layout.push_back({i->axis.get(dest.ndim),
                        {inp.val.at(indexer_pos ++).shape(), dtype::Int32()}});
            }
        }
        mgb_assert(indexer_pos == inp_interval_start);
        if (!index_layout.empty()) {
            // index_layout is empty if all indices are intervals
            TensorLayout tmp;
            Opr::deduce_layout(
                    {dest, input(0)->dtype()}, index_layout, tmp);
            dest = tmp;
        }
        return true;
    };
    owner_graph()->static_infer_manager().register_shape_infer(
            output(0), {SourceType::DEP, deps, infer_shape});

    this->register_workspace_infer(index_desc(), *this, input(0), output(0));
}

template <class Opr>
void IndexingMultiAxisVecBase<Opr>::record_execute_deps(
        mgb::cg::GraphExecutable::ExecDependencyArray& deps) {
    this->record_megdnn_opr(deps);
}

namespace {
template <class Opr>
struct ShouldWarnOnScalarIndexer {
    static constexpr bool val = false;
};

#define WARN(opr)                                   \
    template <>                                     \
    struct ShouldWarnOnScalarIndexer<megdnn::opr> { \
        static constexpr bool val = true;           \
    }
WARN(IndexingMultiAxisVec);
WARN(IndexingSetMultiAxisVec);
WARN(IndexingIncrMultiAxisVec);
#undef WARN
}  // anonymous namespace

template <class Opr>
void IndexingMultiAxisVecBase<Opr>::scn_do_execute() {
    auto inp = input(0)->dev_tensor();
    inp = inp.sub(fancy_indexing_make_sub_spec(inp.layout()));
    auto &&index_desc = make_megdnn_index_desc(
            inp.layout().ndim, ShouldWarnOnScalarIndexer<Opr>::val);
    auto &&odev = output(0)->dev_tensor();
367
    if (index_desc.first.empty()) {
368 369
        odev.copy_from_fixlayout(inp);
    } else {
370
        if (!index_desc.second) {
371 372
            // only call megdnn exec if result is not empty
            this->megdnn_opr(*this).exec(
373
                    inp.as_megdnn(), index_desc.first, odev.as_megdnn(),
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
                    intl::get_megdnn_workspace_from_var(output(1)));
        } else {
            mgb_assert(odev.empty());
        }
    }
}

/* ==================== IndexingModifyMultiAxisVecHelper ==================== */

template<class Opr>
void intl::IndexingModifyMultiAxisVecHelper<Opr>::
init_output_static_infer_desc() {
    using namespace cg::static_infer;
    this->owner_graph()->static_infer_manager().register_shape_infer(
            this->output(0), ShapeInferDesc::make_identity(this->input(0)));

    this->register_workspace_infer(index_desc(), *this, input(0), input(1));
}

template<class Opr>
void intl::IndexingModifyMultiAxisVecHelper<Opr>::scn_do_execute() {
    auto inp = this->fancy_indexing_get_tensors_for_modify_in_scn_do_execute();
    auto index_desc = this->make_megdnn_index_desc(
            inp.first.layout().ndim, ShouldWarnOnScalarIndexer<Opr>::val);
398 399 400 401 402
    if (index_desc.second){
        mgb_assert(inp.second.shape().is_empty());
        return;
    }
    if (index_desc.first.empty()) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416
        using IMT = IndexingModifyType;
        static constexpr auto modify_type =
                IndexingModifyTypeGetter<Opr>::value;
        switch (modify_type) {
            case IMT::SET: {
                inp.first.copy_from_fixlayout(inp.second);
                break;
            } case IMT::INCR: {
                megdnn::AddUpdate* add_update = intl::get_megdnn_global_opr<
                    megdnn::AddUpdate>(comp_node());
                add_update->exec(inp.first.as_megdnn(), inp.second.as_megdnn());
                break;
            } default:
                mgb_throw(MegBrainError, "bad modify type");
417 418 419 420
        }
    } else {
        this->megdnn_opr(*this).exec(
                inp.first.as_megdnn(), inp.second.as_megdnn(),
421
                index_desc.first,
422 423 424 425
                intl::get_megdnn_workspace_from_var(output(1)));
    }
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
template<class Opr>
cg::OperatorNodeBase::NodeProp*
intl::IndexingModifyMultiAxisVecHelper<Opr>::do_make_node_prop() const {
    auto prop = Super::do_make_node_prop();
    using DT = NodeProp::DepType;
    // TODO: should also allow input shape is empty if any
    // indexer's shape is empty
    prop->add_dep_type_existing_var(input(1), DT::VALUE_ALLOW_EMPTY);
    for (auto i: m_input2idxonly_axis_indexer) {
        if (i) {
            prop->add_dep_type_existing_var(
                    i->idx.node(), DT::VALUE_ALLOW_EMPTY);
        }
    }
    return prop;
}

443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
template<class Opr>
void intl::IndexingModifyMultiAxisVecHelper<Opr>::
add_input_layout_constraint() {
    auto check_cont1 = [](const TensorLayout &ly) {
        return ly.collapse_contiguous().ndim == 1;
    };
    this->input(1)->add_layout_constraint(check_cont1);
}

/* ==================== MultiAxisVec misc ==================== */

MGB_IMPL_FANCY_INDEXING_OPR_GET(
        IndexingMultiAxisVec, "indexing_multi_axis_vec", false,
        output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
        );
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(
        IndexingSetMultiAxisVec, "indexing_set_multi_axis_vec", false);
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(
        IndexingIncrMultiAxisVec, "indexing_incr_multi_axis_vec", false);

MGB_IMPL_OPR_GRAD(IndexingMultiAxisVec) {
    if (wrt_idx)
        return InvalidGrad::make(opr, wrt_idx);

    return IndexingIncrMultiAxisVec::make(
            SymbolVar{opr.input(0)}.fill_retain_dtype(0),
            out_grad.at(0), opr.index_desc()).node();
}

MGB_IMPL_OPR_GRAD(IndexingSetMultiAxisVec) {
    if (wrt_idx >= 2)
        return InvalidGrad::make(opr, wrt_idx);
    if (wrt_idx == 0) {
        return IndexingSetMultiAxisVec::make(out_grad.at(0),
                SymbolVar{opr.input(1)}.fill_retain_dtype(0),
                opr.index_desc()).node();
    }
    return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node();
}

MGB_IMPL_OPR_GRAD(IndexingIncrMultiAxisVec) {
    if (wrt_idx >= 2)
        return InvalidGrad::make(opr, wrt_idx);
    if (wrt_idx == 0) {
        return out_grad.at(0);
    }
    return IndexingMultiAxisVec::make(out_grad.at(0), opr.index_desc()).node();
}

/* ============================= Mesh Indexing ============================ */

MGB_IMPL_FANCY_INDEXING_OPR_GET(
        MeshIndexing, "mesh_indexing", false,
496
        output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE););
497 498
MGB_IMPL_FANCY_INDEXING_OPR_GET(
        BatchedMeshIndexing, "batched_mesh_indexing", false,
499
        output(0)->add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE););
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

MGB_IMPL_OPR_GRAD(MeshIndexing) {
    if (wrt_idx != 0) {
        return InvalidGrad::make(opr, wrt_idx);
    }
    return IncrMeshIndexing::make(
                   SymbolVar{opr.input(0)}.fill_retain_dtype(0), out_grad.at(0),
                   opr.index_desc())
            .node();
}
MGB_IMPL_OPR_GRAD(BatchedMeshIndexing) {
    if (wrt_idx != 0) {
        return InvalidGrad::make(opr, wrt_idx);
    }
    return BatchedIncrMeshIndexing::make(
                   SymbolVar{opr.input(0)}.fill_retain_dtype(0), out_grad.at(0),
                   opr.index_desc())
            .node();
}

/* ========================= IncrMeshIndexing ========================= */

MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(IncrMeshIndexing, "incr_mesh_indexing",
                                   false);
MGB_IMPL_OPR_GRAD(IncrMeshIndexing) {
    if (wrt_idx > 2) {
        return opr::InvalidGrad::make(opr, wrt_idx);
    }
    if (wrt_idx == 0) {
        return out_grad.at(0);
    }
    return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node();
}

MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedIncrMeshIndexing,
                                   "batched_incr_mesh_indexing", false);
MGB_IMPL_OPR_GRAD(BatchedIncrMeshIndexing) {
    if (wrt_idx > 2) {
        return opr::InvalidGrad::make(opr, wrt_idx);
    }
    if (wrt_idx == 0) {
        return out_grad.at(0);
    }
    return BatchedMeshIndexing::make(out_grad.at(0), opr.index_desc()).node();
}

/* ======================== SetMeshIndexing =========================== */
MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(SetMeshIndexing, "set_mesh_indexing", false);

MGB_IMPL_OPR_GRAD(SetMeshIndexing) {
    if (wrt_idx >= 2) {
        return opr::InvalidGrad::make(opr, wrt_idx);
    }
    if (wrt_idx == 0) {
        return SetMeshIndexing::make(
                       out_grad.at(0),
                    SymbolVar{opr.input(1)}.fill_retain_dtype(0),
                       opr.index_desc())
                .node();
    } else {
        return MeshIndexing::make(out_grad.at(0), opr.index_desc()).node();
    }
}

MGB_IMPL_FANCY_INDEXING_OPR_MODIFY(BatchedSetMeshIndexing,
                                   "batched_set_mesh_indexing", false);
MGB_IMPL_OPR_GRAD(BatchedSetMeshIndexing) {
    if (wrt_idx > 2) {
        return opr::InvalidGrad::make(opr, wrt_idx);
    }
    if (wrt_idx == 0) {
        return BatchedSetMeshIndexing::make(
                       out_grad.at(0),
                       SymbolVar{opr.input(1)}.fill_retain_dtype(0),
                       opr.index_desc())
                .node();
    } else {
        return BatchedMeshIndexing::make(out_grad.at(0), opr.index_desc())
                .node();
    }
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}