collective_comm.cpp 31.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/**
 * \file src/opr-mm/impl/collective_comm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/collective_comm.h"

#include "megbrain/comp_node_env.h"
#include "megbrain/graph/event.h"
#include "megbrain/graph/grad_impl.h"
17 18
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
19 20 21 22 23 24 25 26 27 28 29
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/megray_helper.h"
#include "megbrain/opr/group_manager.h"
#include "megbrain/serialization/sereg.h"
#include "megbrain/version_symbol.h"

using namespace mgb;
using namespace opr;

MGB_DYN_TYPE_OBJ_FINAL_IMPL(CollectiveComm);

30 31 32 33
#define FOREACH_MODE(cb)                                                    \
    cb(ALL_REDUCE_SUM) cb(ALL_REDUCE_MAX) cb(ALL_REDUCE_MIN) cb(BROADCAST)  \
            cb(REDUCE_SUM) cb(ALL_GATHER) cb(REDUCE_SCATTER_SUM) cb(GATHER) \
            cb(SCATTER) cb(ALL_TO_ALL)
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

namespace {

const char* get_param_name(CollectiveComm::Param param) {
    using Mode = CollectiveComm::Param::Mode;
    switch (param.mode) {
#define C(_m)      \
    case Mode::_m: \
        return #_m;
        FOREACH_MODE(C)
#undef C
        default:
            mgb_throw(MegBrainError, "bad CollectiveComm mode");
    }
}

MegRay::DType get_megray_dtype(megdnn::DType dtype) {
    switch(dtype.enumv()) {
        case DTypeEnum::Int8:
            return MegRay::DType::MEGRAY_INT8;
        case DTypeEnum::Int32:
            return MegRay::DType::MEGRAY_INT32;
        case DTypeEnum::Float32:
            return MegRay::DType::MEGRAY_FLOAT32;
#ifndef MEGDNN_DISABLE_FLOAT16
        case DTypeEnum::Float16:
            return MegRay::DType::MEGRAY_FLOAT16;
#endif
        default:
            mgb_throw(MegBrainError, "bad CollectiveComm dtype");
    }
}

MegRay::Backend get_megray_backend(const std::string& backend) {
    if (backend == "nccl") {
        return MegRay::MEGRAY_NCCL;
    } else if (backend == "ucx") {
        return MegRay::MEGRAY_UCX;
    } else {
        mgb_throw(MegBrainError, "back CollectiveComm backend");
    }
}

cudaStream_t get_stream(VarNode* var) {
    return CompNodeEnv::from_comp_node(var->comp_node()).cuda_env().stream;
}
}  // anonymous namespace

82 83
/* ================= ModeTrait ================= */

84 85 86 87 88 89 90 91
class CollectiveComm::ModeTrait {
    class BROADCAST;
    class REDUCE_SUM;
    class REDUCE_SCATTER_SUM;
    class ALL_GATHER;
    class ALL_REDUCE_SUM;
    class ALL_REDUCE_MAX;
    class ALL_REDUCE_MIN;
92 93 94
    class GATHER;
    class SCATTER;
    class ALL_TO_ALL;
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    class ReducedBasedTrait;
    class AllReduceBase;
    class ReduceBase;

protected:
    using Mode = Param::Mode;

    static void chk_shape_equal(const TensorShapeArray& shp) {
        for (size_t i = 1; i < shp.size(); ++i) {
            mgb_throw_if(!shp[0].eq_shape(shp[i]), GraphError,
                         "input shapes should be equal");
        }
    }

    static void add_output_var_all2all(CollectiveComm* opr) {
        mgb_assert(opr->nr_devices() >= 2);
        auto pname = get_param_name(opr->param());
        // sublinear would setup opr->config if inputs.size() is 1,
        // bypass this situation
        mgb_assert(
                !opr->config().has_comp_node_set() || opr->input().size() == 1,
                "comp node should not be set in %s mode", pname);
        for (auto i : opr->input()) {
            opr->add_output(ssprintf("%s:%s", pname, i->cname()))
                    ->comp_node(i->comp_node());
        }
    }

public:
    virtual ~ModeTrait() = default;

    //! add output var for the opr
    virtual void add_output_var(CollectiveComm* opr,
                                const CompNode::UnorderedSet& inp_cn) = 0;

    /*!
     * \brief the vars on whose comp node the computing should be performed
     * if None, output vars would be used
     */
    virtual Maybe<VarNodeArray> comp_vars(CollectiveComm* opr) {
        return None;
    }

139 140 141
    VarNode* full_grad(VarNode* out_grad, const CollectiveComm* opr) const {
        auto mode = ModeTrait::from_mode(opr->param().mode).grad_mode();
        SymbolVarArray og_syms;
142 143 144 145

        if (out_grad != nullptr) {
            og_syms.push_back(out_grad);
        }
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

        auto&& cn = opr->output(0)->comp_node();

        auto gvar = CollectiveComm::make(
                og_syms, opr->owner_graph(), opr->key() + ":grad",
                opr->nr_devices(), opr->is_root(), opr->rank(), false,
                opr->group_client(), mode, opr->dtype(), opr->backend(), {cn});

        return gvar[0].node();
    }

    virtual VarNode* local_grad(VarNode* out_grad, const CollectiveComm* opr) const {
        mgb_throw(MegBrainError,
                  "only all_reduce all_to_all all_gather reduce_scatter "
                  "support local_grad");
    }

    virtual VarNode* grad(VarNode* out_grad, const CollectiveComm* opr) const {
        if (opr->local_grad()){
            return local_grad(out_grad, opr);
        } else {
            return full_grad(out_grad, opr);
        }
    }

    VarNode* zeros(mgb::cg::ComputingGraph &graph, CompNode node, const SymbolVar& shape,
                 DType dtype) const {
        auto zero = SymbolVar::make_scalar(0, graph, node);
        auto zero_tensor = opr::TypeCvt::make(zero, dtype).broadcast(shape);
        return zero_tensor.node();
    }

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    virtual void get_output_var_shape(const CollectiveComm* opr,
                                      const TensorShapeArray& ishp,
                                      TensorShapeArray& oshp) = 0;

    virtual void exec(CollectiveComm* opr) = 0;

    //! gradient mode
    virtual Mode grad_mode() = 0;

    static ModeTrait& from_mode(Mode mode);
};

class CollectiveComm::ModeTrait::ALL_GATHER : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        chk_shape_equal(ishp);
        auto soshp = ishp[0];
        soshp[0] *= opr->nr_devices();
        for (auto& i : oshp)
            i = soshp;
    }

    void exec(CollectiveComm* opr) override {
        auto ivar = opr->input(0), ovar = opr->output(0);
        auto &&iv = ivar->dev_tensor(), &&ov = ovar->dev_tensor();
        mgb_assert(ivar->comp_node().mem_node() ==
                   ovar->comp_node().mem_node());
        auto status = opr->m_megray_comm->all_gather(
                (void*)iv.raw_ptr(), (void*)ov.raw_ptr(),
                iv.shape().total_nr_elems(),
                get_megray_dtype(iv.dtype()),
                opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay all_gather failed");
    }

    Mode grad_mode() override { return Mode::REDUCE_SCATTER_SUM; }
220 221 222 223 224 225 226 227 228 229 230

    VarNode* local_grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        auto nr_devices = opr->nr_devices();
        auto rank = opr->rank();
        opr::Subtensor::IndexDesc axis;
        auto shape0 = opr::GetVarShape::make(out_grad, 0);
        axis.push_back({0, shape0 * rank / (int)nr_devices,
                        shape0 * (rank + 1) / (int)nr_devices});
        auto grad = opr::Subtensor::make(out_grad, axis);
        return grad.node();
    }
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
};

class CollectiveComm::ModeTrait::REDUCE_SCATTER_SUM : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        chk_shape_equal(ishp);
        auto soshp = ishp[0];
        mgb_throw_if(soshp.shape[0] % opr->nr_devices(), GraphError,
                     "input size can not be divided equally: "
                     "size=%zu parts=%zu",
                     soshp[0], ishp.size());
        soshp[0] /= opr->nr_devices();
        for (auto& i : oshp)
            i = soshp;
    }

    void exec(CollectiveComm* opr) override {
        auto ivar = opr->input(0), ovar = opr->output(0);
        auto &&iv = ivar->dev_tensor(), &&ov = ovar->dev_tensor();
        mgb_assert(ivar->comp_node().mem_node() ==
                   ovar->comp_node().mem_node());

        size_t buff_len = ov.shape().total_nr_elems();// * opr->m_nr_devices;
        auto status = opr->m_megray_comm->reduce_scatter(
                (void*)iv.raw_ptr(), (void*)ov.raw_ptr(), buff_len,
                get_megray_dtype(ov.dtype()), MegRay::ReduceOp::MEGRAY_SUM,
                opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay reduce_scatter failed");
    }

    Mode grad_mode() override { return Mode::ALL_GATHER; }

269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    VarNode* local_grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNodeArray grads;
        auto zeros_tensor =
                zeros(*out_grad->owner_graph(), out_grad->comp_node(),
                      opr::GetVarShape::make(out_grad), out_grad->dtype());
        for (size_t i = 0;i < opr->nr_devices();i++) {
            if (i == opr->rank()) {
                grads.push_back(out_grad);
            } else {
                grads.push_back(zeros_tensor);
            }
        }
        auto grad = opr::Concat::make(grads, 0);
        return grad.node();
    }
};
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

class CollectiveComm::ModeTrait::ReducedBasedTrait {
protected:
    ~ReducedBasedTrait() = default;

    virtual MegRay::ReduceOp op() const = 0;
};

class CollectiveComm::ModeTrait::AllReduceBase : public ReducedBasedTrait,
                                                   public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm*,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        chk_shape_equal(ishp);
        oshp = ishp;
    }

    void exec(CollectiveComm* opr) override {
        auto ivar = opr->input(0), ovar = opr->output(0);
        auto &&iv = ivar->dev_tensor(), &&ov = ovar->dev_tensor();
        mgb_assert(ivar->comp_node().mem_node() ==
                   ovar->comp_node().mem_node());
        auto status = opr->m_megray_comm->all_reduce(
                (void*)iv.raw_ptr(), (void*)ov.raw_ptr(),
                iv.shape().total_nr_elems(),
                get_megray_dtype(iv.dtype()), op(),
                opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay all_reduce failed");
    }

    Mode grad_mode() override { return Mode::ALL_REDUCE_SUM; }
321 322 323 324 325 326

public:
    VarNode* local_grad(VarNode* out_grad,
                        const CollectiveComm* opr) const override {
        return out_grad;
    }
327 328 329 330 331 332 333 334
};

class CollectiveComm::ModeTrait::ALL_REDUCE_SUM final : public AllReduceBase {
    MegRay::ReduceOp op() const override { return MegRay::ReduceOp::MEGRAY_SUM; }
};

class CollectiveComm::ModeTrait::ALL_REDUCE_MAX final : public AllReduceBase {
    MegRay::ReduceOp op() const override { return MegRay::ReduceOp::MEGRAY_MAX; }
335 336 337 338 339 340 341 342 343 344 345 346 347 348

    VarNode* grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNode* grad;
        if (opr->local_grad()) {
            grad = local_grad(out_grad, opr);
        } else {
            grad = full_grad(out_grad, opr);
        }

        grad = opr::Elemwise::make({opr->output(0), opr->input(0), grad},
                                   Elemwise::Mode::COND_LEQ_MOV)
                       .node();
        return grad;
    }
349 350 351 352
};

class CollectiveComm::ModeTrait::ALL_REDUCE_MIN final : public AllReduceBase {
    MegRay::ReduceOp op() const override { return MegRay::ReduceOp::MEGRAY_MIN; }
353 354 355 356 357 358 359 360 361 362 363 364 365 366

    VarNode* grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNode* grad;
        if (opr->local_grad()) {
            grad = local_grad(out_grad, opr);
        } else {
            grad = full_grad(out_grad, opr);
        }

        grad = opr::Elemwise::make({opr->input(0), opr->output(0), grad},
                                   Elemwise::Mode::COND_LEQ_MOV)
                       .node();
        return grad;
    }
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
};

class CollectiveComm::ModeTrait::ReduceBase : public ReducedBasedTrait,
                                                public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet& inp_cn) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        MGB_MARK_USED_VAR(opr);
        chk_shape_equal(ishp);
        if (opr->is_root()) {
            oshp[0] = ishp[0];
        } else {
            oshp[0] = TensorShape{1};
        }
    }

    void exec(CollectiveComm* opr) override {
        auto ovar = opr->output(0);
        auto&& iv = opr->input(0)->dev_tensor();
        void* recvbuf = nullptr;
        if (opr->is_root()) {
            recvbuf = ovar->dev_tensor().raw_ptr();
        }
        auto status = opr->m_megray_comm->reduce(
                (void*)iv.raw_ptr(), recvbuf,
                iv.shape().total_nr_elems(),
                get_megray_dtype(iv.dtype()), op(),
                opr->m_root, opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay reduce failed");
    }
};

class CollectiveComm::ModeTrait::REDUCE_SUM final : public ReduceBase {
    MegRay::ReduceOp op() const override { return MegRay::ReduceOp::MEGRAY_SUM; }

407 408 409 410 411
    VarNode* grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNode* input = opr->is_root() ? out_grad : nullptr;
        return full_grad(input, opr);
    }

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    Mode grad_mode() override { return Mode::BROADCAST; }
};

class CollectiveComm::ModeTrait::BROADCAST : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        if (opr->input().size() > 0) {
            add_output_var_all2all(opr);
            return;
        }

        const auto& cns = opr->config().comp_node();
        mgb_assert(cns.size() == 1, "exactly one comp_node expected, got %zu", cns.size());
        auto pname = get_param_name(opr->param());
        opr->add_output(ssprintf("%s:%s", pname, opr->key().c_str()))->comp_node(cns[0]);
    }

    void get_output_var_shape(const CollectiveComm*,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        mgb_assert(false, "BROADCAST should not use get_output_var_shape");
    }

    void exec(CollectiveComm* opr) override {
        auto ovar = opr->output(0);
        auto&& ov = ovar->dev_tensor();
        mgb_assert(opr->input().size() < 2,
                   "input size of BROADCAST must be either 0 or 1");
        void* buff;
        DType datatype;
        size_t length;
        if (opr->is_root()) {
            auto ivar = opr->input(0);
            auto&& iv = ivar->dev_tensor();
            datatype = iv.dtype();
            buff = (void*)iv.raw_ptr();
            length = iv.shape().total_nr_elems();
        } else {
            buff = NULL;
            datatype = ov.dtype();
            length = ov.shape().total_nr_elems();
        }
        auto status = opr->m_megray_comm->broadcast(
                buff, (void*)ov.raw_ptr(), length,
                get_megray_dtype(datatype), opr->m_root,
                opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay broadcast failed");
    }

    Mode grad_mode() override { return Mode::REDUCE_SUM; }
};

464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
class CollectiveComm::ModeTrait::GATHER : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        MGB_MARK_USED_VAR(opr);
        chk_shape_equal(ishp);
        if (opr->is_root()) {
            oshp[0] = ishp[0];
            oshp[0][0] *= opr->nr_devices();
        } else {
            oshp[0] = TensorShape{1};
        }
    }

    void exec(CollectiveComm* opr) override {
        auto&& iv = opr->input(0)->dev_tensor();
        void* recvbuf = nullptr;
        if (opr->is_root()) {
            recvbuf = opr->output(0)->dev_tensor().raw_ptr();
        }
        auto status = opr->m_megray_comm->gather(
                (void*)iv.raw_ptr(), recvbuf, iv.shape().total_nr_elems(),
                get_megray_dtype(iv.dtype()), opr->m_root, opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay gather failed");
    }

495 496 497 498 499
    VarNode* grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNode* input = opr->is_root() ? out_grad : nullptr;
        return full_grad(input, opr);
    }

500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
    Mode grad_mode() override { return Mode::SCATTER; }
};

class CollectiveComm::ModeTrait::SCATTER : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        if (opr->input().size() > 0) {
            add_output_var_all2all(opr);
            return;
        }

        const auto& cns = opr->config().comp_node();
        mgb_assert(cns.size() == 1, "exactly one comp_node expected, got %zu", cns.size());
        auto pname = get_param_name(opr->param());
        opr->add_output(ssprintf("%s:%s", pname, opr->key().c_str()))->comp_node(cns[0]);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        mgb_throw(MegBrainError, "SCATTER should not use get_output_var_shape");
    }

    void exec(CollectiveComm* opr) override {
        auto&& ov = opr->output(0)->dev_tensor();
        void* sendbuf = nullptr;
        void* recvbuf = ov.raw_ptr();
        if (opr->is_root()) {
            sendbuf = opr->input(0)->dev_tensor().raw_ptr();
        }
        auto status = opr->m_megray_comm->scatter(
                sendbuf, recvbuf, ov.shape().total_nr_elems(),
                get_megray_dtype(ov.dtype()), opr->m_root, opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay scatter failed");
    }

    Mode grad_mode() override { return Mode::GATHER; }
};

class CollectiveComm::ModeTrait::ALL_TO_ALL : public ModeTrait {
    void add_output_var(CollectiveComm* opr,
                        const CompNode::UnorderedSet&) override {
        add_output_var_all2all(opr);
    }

    void get_output_var_shape(const CollectiveComm* opr,
                              const TensorShapeArray& ishp,
                              TensorShapeArray& oshp) override {
        chk_shape_equal(ishp);
        oshp = ishp;
    }

    void exec(CollectiveComm* opr) override {
        auto&& iv = opr->input(0)->dev_tensor();
        auto&& ov = opr->output(0)->dev_tensor();
        auto status = opr->m_megray_comm->all_to_all(
                (void*)iv.raw_ptr(), (void*)ov.raw_ptr(),
                iv.shape().total_nr_elems() / opr->nr_devices(),
                get_megray_dtype(iv.dtype()), opr->megray_ctx());
        mgb_assert(status == MegRay::MEGRAY_OK, "MegRay all_to_all failed");
    }

    Mode grad_mode() override { return Mode::ALL_TO_ALL; }
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

    VarNode* local_grad(VarNode* out_grad, const CollectiveComm* opr) const override {
        VarNodeArray grads;
        auto grad_shape = opr::GetVarShape::make(out_grad);
        auto zeros_tensor =
                zeros(*out_grad->owner_graph(), out_grad->comp_node(),
                      grad_shape, out_grad->dtype());

        auto nr_devices = opr->nr_devices();
        auto rank = opr->rank();
        opr::Subtensor::IndexDesc axis;
        auto shape0 = opr::GetVarShape::make(out_grad, 0);
        axis.push_back({0, shape0 * rank / (int)nr_devices,
                        shape0 * (rank + 1) / (int)nr_devices});
        auto sub_grad = opr::Subtensor::make(out_grad, axis);

        return opr::SetSubtensor::make(zeros_tensor, sub_grad, axis).node();
    }
581 582
};

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
CollectiveComm::ModeTrait& CollectiveComm::ModeTrait::from_mode(Mode mode) {
    switch (mode) {
#define c(_m)          \
    case Mode::_m: {   \
        static _m ins; \
        return ins;    \
    }
        FOREACH_MODE(c)
        default:
            mgb_assert(0);
#undef c
    }
}

/* ================= CollectiveComm ================= */

CollectiveComm::CollectiveComm(
        VarNodeArray inputs, ComputingGraph* const graph,
601
        const std::string& key, const size_t nr_devices, const bool is_root,
602 603 604
        const int rank, const bool local_grad,
        std::shared_ptr<GroupClient> group_client, const Param& param,
        const DType& dtype, const std::string& backend,
605 606 607 608 609 610 611 612 613
        const SmallVector<std::shared_ptr<DeviceTensorND>>& dev_buffer_arr,
        const OperatorNodeConfig& config,
        const std::shared_ptr<DTypeScalar>& disable)
        : Super{graph, config, get_param_name(param), inputs},
          m_param{param},
          m_dtype(dtype),
          m_backend(backend),
          m_group_client{std::move(group_client)},
          m_nr_devices(nr_devices),
614
          m_is_root(is_root),
615
          m_rank(rank),
616
          m_local_grad(local_grad),
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
          m_key(key),
          m_dev_buffers(dev_buffer_arr),
          m_disable{disable} {
    for (auto i : inputs) {
        mgb_assert(i->comp_node().device_type() == CompNode::DeviceType::CUDA,
                   "CollectiveComm currectly only supports CUDA");
    }
    for (auto i : config.comp_node()) {
        mgb_assert(i.device_type() == CompNode::DeviceType::CUDA,
                   "CollectiveComm currectly only supports CUDA");
    }

    CompNode::UnorderedSet inp_cn;
    ThinHashSet<int> inp_dev;

    for (auto i : inputs) {
        add_input({i});
        inp_cn.insert(i->comp_node());
        inp_dev.insert(
                CompNodeEnv::from_comp_node(i->comp_node()).cuda_env().device);
    }
    mgb_assert(
            inp_dev.size() == inputs.size(),
            "CollectiveComm inputs should not contain duplicated input device");

    ModeTrait::from_mode(param.mode).add_output_var(this, inp_cn);

644 645 646 647 648
    const char* c_debug = MGB_GETENV("MGE_MM_OPR_DEBUG");
    if (c_debug != nullptr and strcmp(c_debug, "1") == 0) {
        m_debug_mode = true;
    }

649 650 651 652 653 654 655 656
    add_equivalence_component<PODHash<Param>>(&m_param);
    add_equivalence_component<PODHash<size_t>>(&m_nr_devices);
    m_hash = XXHash{}.update(key.data(), key.size() * sizeof(char)).digest();
    add_equivalence_component<PODHash<size_t>>(&m_hash);
}

SymbolVarArray CollectiveComm::make(
        const SymbolVarArray& inputs, ComputingGraph* const graph,
657
        const std::string& key, const size_t nr_devices, const bool is_root,
658 659 660
        const int rank, const bool local_grad,
        std::shared_ptr<GroupClient> group_client, const Param& param,
        const DType& dtype, const std::string& backend,
661
        const OperatorNodeConfig& config,
662 663 664
        const std::shared_ptr<DTypeScalar>& disable) {
    SmallVector<std::shared_ptr<DeviceTensorND>> dev_buffer_arr(nr_devices,
                                                                nullptr);
665 666
    return make(inputs, graph, key, nr_devices, is_root, rank, local_grad,
                group_client, dev_buffer_arr, param, dtype, backend, config);
667 668 669 670
}

SymbolVarArray CollectiveComm::make(
        const SymbolVarArray& inputs, ComputingGraph* const graph,
671
        const std::string& key, const size_t nr_devices, const bool is_root,
672 673
        const int rank, const bool local_grad,
        std::shared_ptr<GroupClient> group_client,
674 675 676 677 678 679
        const SmallVector<std::shared_ptr<DeviceTensorND>>& dev_buffer_arr,
        const Param& param, const DType& dtype, const std::string& backend,
        const OperatorNodeConfig& config,
        const std::shared_ptr<DTypeScalar>& disable) {
    auto inpvars = cg::to_var_node_array(inputs);
    auto opr = graph->insert_opr(std::make_unique<CollectiveComm>(
680 681 682
            inpvars, graph, key, nr_devices, is_root, rank, local_grad,
            std::move(group_client), param, dtype, backend, dev_buffer_arr,
            config, disable));
683 684 685 686 687 688 689
    mgb_assert(!opr->output().empty());
    return cg::to_symbol_var_array(opr->output());
}

void CollectiveComm::opr_register() {
    if (m_init)
        return;
690 691 692 693 694
    auto&& comp_node = output(0)->comp_node();

    auto reg_info = m_group_client->opr_register(
            m_key, m_nr_devices, m_is_root, m_rank,
            comp_node.get_uid());
695

696 697
    m_rank = reg_info.rank;
    m_root = reg_info.root_rank;
698

699
    m_megray_comm = MegRayCommBuilder::get_megray_comm(
700
            reg_info.hash, m_key, m_nr_devices, m_rank,
701 702
            get_megray_backend(m_backend), m_group_client);

703 704
    m_megray_ctx = MegRay::CudaContext::make(get_stream(output(0)));

705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
    m_init = true;
}

void CollectiveComm::add_input_layout_constraint() {
    // Enable shape infer *after* static infer phase. This is only used by
    // BROADCAST operation.
    m_enable_shape_infer = true;
    for (auto i : input()) {
        i->add_layout_constraint_contiguous();
    }
}

void CollectiveComm::get_output_var_shape(const TensorShapeArray& inp_shape,
                                            TensorShapeArray& out_shape) const {
    ModeTrait::from_mode(m_param.mode)
            .get_output_var_shape(const_cast<CollectiveComm*>(this),
                                  inp_shape, out_shape);
}

void CollectiveComm::init_output_comp_node() {
    mgb_assert(output().size() == 1, "exactly one output expected, got %zu", output().size());
    owner_graph()->seq_comp_node_optimizer().register_stream_var(output()[0],
        {CompNode::Stream::NCCL, cg::SeqCompNodeOptimizer::StreamPropType::WEAK});
}

void CollectiveComm::init_output_mem_plan(bool dynamic) {
    for (size_t i = 0; i < output().size(); i++) {
        if (m_dev_buffers[i]) {
            output(i)->init_mem_plan(m_dev_buffers[i].get());
        } else {
            if (is_static_var_storage(output(i)) == !dynamic &&
                !output(i)->contain_flag(VarNode::Flag::NO_SYS_MEM_ALLOC))
                output(i)->init_mem_plan();
        }
    }
}

void CollectiveComm::mem_plan_fwd_in2out_writable() {
    if (m_param.mode == Param::Mode::ALL_REDUCE_SUM) {
        for (size_t i = 0; i < output().size(); ++i) {
            output(i)->set_fwd_in2out_writable(input(i));
        }
    }
}

cg::OperatorNodeBase::NodeProp* CollectiveComm::do_make_node_prop() const {
    auto prop = OperatorNodeBase::do_make_node_prop();
    prop->add_flag(NodeProp::Flag::CROSS_COMP_NODE_MEMORY);
    prop->add_flag(NodeProp::Flag::NO_AUTOMATIC_DUP);
    return prop;
}

void CollectiveComm::do_execute(ExecEnv& env) {
    auto&& trait = ModeTrait::from_mode(m_param.mode);
    mgb_assert(owner_graph()->options().async_exec_level,
               "collective comm must be used with async dispatch");
    mgb_assert(output().size() == 1,
               "collective comm only support exactly one output");

    auto disable = m_disable->get_cast<int>();
    if (disable == 1)
        return;
    mgb_assert(disable == 0,
               "disable flag on CollectiveComm can only be 0 or 1,"
               " got %d actually.",
               disable);

    auto cn = output(0)->comp_node();
    auto runner = [this, cn, &trait] {
        opr_register();
        cn.activate();

777 778 779 780 781
        if (m_debug_mode) {
            mgb_log_debug("collective comm: executing %s, rank = %d, key = %s",
                    cname(), rank(), key().c_str());
        }

782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        owner_graph()->event().signal_inplace<cg::event::BeforeKernel>(this, cn);
        trait.exec(this);
        owner_graph()->event().signal_inplace<cg::event::AfterKernel>(this, cn);
    };
    env.dispatch_on_comp_node(cn, runner);
}

void CollectiveComm::on_output_comp_node_stream_changed() {}

void CollectiveComm::init_output_dtype() {
    if (m_dtype.valid()) {
        for (size_t i = 0; i < input().size(); ++i) {
            mgb_assert(m_dtype == input(i)->dtype(),
                       "any given input's dtype should be identical to that "
                       "specified from opr's argument");
        }
        for (auto i : output()) {
            if (!i->dtype().valid())
                i->dtype(m_dtype);
        }
    } else {
        Super::init_output_dtype();
    }
}

void CollectiveComm::init_output_static_infer_desc() {
808 809
    if (m_param.mode == Param::Mode::BROADCAST ||
        m_param.mode == Param::Mode::SCATTER) {
810 811 812 813 814
        using namespace cg::static_infer;
        auto&& mgr = owner_graph()->static_infer_manager();

        auto infer_shape_from_input = [this](TensorShape& dest, const InpVal& inp_val) {
            dest = inp_val.val[0].shape();
815 816 817
            if (m_param.mode == Param::Mode::SCATTER) {
                dest[0] /= nr_devices();
            }
818
            if (is_root() && !m_output_shape.valid()) {
819 820 821
                m_output_shape = dest;
                m_group_client->set_output_shape(m_key, dest);
            }
822 823 824 825
            return true;
        };

        auto get_shape_from_server = [this](TensorShape& dest, const InpVal&) {
826
            if (!m_enable_shape_infer && !owner_graph()->options().imperative_proxy_graph) {
827 828 829
                return false;
            }

830 831
            if (!m_output_shape.valid()) {
                m_output_shape = m_group_client->get_output_shape(m_key);
832
            }
833 834

            dest = m_output_shape.val();
835 836 837 838 839
            return true;
        };

        mgb_assert(output().size() == 1);

840
        if (is_root() || input().size() > 0) {
841 842 843 844 845 846 847 848 849 850 851 852 853
            mgb_assert(input().size() == 1);
            mgr.register_shape_infer(output(0),
                {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape_from_input});
        } else {
            mgr.register_shape_infer(output(0),
                {SourceType::MUTABLE, {}, get_shape_from_server});
        }

    } else {
        Super::init_output_static_infer_desc();
    }
}

854 855 856 857 858 859 860 861 862
VarNode* CollectiveComm::grad(VarNode* out_grad) const {
    return ModeTrait::from_mode(m_param.mode).grad(out_grad, this);
}

MGB_IMPL_OPR_GRAD(CollectiveComm) {
    mgb_assert(out_grad.size() == 1, "CollectiveComm should only have one grad");
    return opr.grad(out_grad[0]);
}

863 864 865 866 867 868 869 870 871 872
/* ===================== shallow copy ===================== */

namespace mgb {
namespace opr {

cg::OperatorNodeBase* opr_shallow_copy_collective_mm(
        const serialization::OprShallowCopyContext& ctx,
        const cg::OperatorNodeBase& opr_, const VarNodeArray& inputs,
        const OperatorNodeConfig& config) {
    auto&& opr = opr_.cast_final_safe<opr::CollectiveComm>();
873 874 875 876 877 878 879 880
    auto new_opr =
            CollectiveComm::make(
                    to_symbol_var_array(inputs), ctx.owner_graph(opr_, inputs),
                    opr.key(), opr.nr_devices(), opr.is_root(), opr.rank(),
                    opr.local_grad(), opr.group_client(), opr.dev_buffers(),
                    opr.param(), opr.dtype(), opr.backend(), config)[0]
                    .node()
                    ->owner_opr();
881 882
    new_opr->cast_final_safe<opr::CollectiveComm>().set_pack_hash(opr.pack_hash());
    return new_opr;
883 884 885 886 887 888 889
}
MGB_REG_OPR_SHALLOW_COPY(CollectiveComm, opr_shallow_copy_collective_mm);

}  // namespace opr
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}