conv_bias_multi_thread.cpp 84.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * \file dnn/test/arm_common/conv_bias_multi_thread.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */
#include "test/arm_common/fixture.h"
#include "test/common/benchmarker.h"
#include "test/common/conv_bias.h"

using namespace megdnn;
using namespace test;
using namespace conv_bias;

std::vector<conv_bias::TestArg> get_int8_quint8_conv_bias_args(
        std::vector<size_t> kernel, size_t stride, bool no_pad, bool no_bias,
        bool no_nonlinemode) {
    using namespace conv_bias;
    using Param = param::ConvBias;
    using NLMode = param::ConvBias::NonlineMode;
    std::vector<TestArg> args;

    auto pack = [&](size_t n, size_t oc, size_t ic, size_t w, size_t h,
                    size_t kernel, size_t stride, NLMode nlmode) {
        Param param;
        param.stride_h = stride;
        param.stride_w = stride;
        if (!no_pad) {
            param.pad_h = kernel / 2;
            param.pad_w = kernel / 2;
        } else {
            param.pad_h = 0;
            param.pad_w = 0;
        }
        param.nonlineMode = nlmode;

        args.emplace_back(param, TensorShape{n, ic, h, w},
                          TensorShape{oc, ic, kernel, kernel}, TensorShape{});
        if (!no_bias) {
            args.emplace_back(param, TensorShape{n, ic, h, w},
                              TensorShape{oc, ic, kernel, kernel},
                              TensorShape{1, oc, 1, 1});
        }
    };

    std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
    if (!no_nonlinemode) {
        nonlinemode.emplace_back(NLMode::RELU);
        nonlinemode.emplace_back(NLMode::H_SWISH);
    }

    for (size_t n : {1, 2}) {
        for (auto nlmode : nonlinemode) {
            for (size_t ic : {1, 3, 7}) {
                for (size_t oc : {1, 3, 7}) {
                    for (size_t size : {4, 6, 8, 14, 16, 18}) {
                        for (size_t kern : kernel) {
                            pack(n, oc, ic, size, size, kern, stride, nlmode);
                        }
                    }
                }
            }
        }
    }
    return args;
}
std::vector<conv_bias::TestArg> get_nchw44_conv_bias_args(
        std::vector<size_t> kernel_vec, size_t stride, bool no_pad = false,
        bool no_bias = false, bool no_nonlinemode = false,
75 76 77
        bool is_input_nchw = false, bool is_nchw44_dot = false,
        bool support_full_bias = false, bool support_sigmoid = false,
        bool only_no_bias = false) {
78 79
    using namespace conv_bias;
    using NLMode = param::ConvBias::NonlineMode;
80
    
81 82 83
    std::vector<TestArg> args;

    auto pack = [&](size_t n, size_t oc, size_t ic, size_t h, size_t w,
84
                    size_t kernel, size_t stride, size_t group, NLMode nlmode,
85
                    megdnn::BiasMode bias_mode, int any_pad = -1) {
86
        constexpr int pack_c = 4;
87
        const size_t pad = any_pad >= 0 ? any_pad : kernel / 2;
88 89 90 91 92 93 94
        auto oc_per_group = oc / group;
        auto ic_per_group = ic / group;
        bool ok_group = (oc % group == 0 && ic % group == 0) &&
                        oc_per_group % pack_c == 0 && oc_per_group > 0 &&
                        ic_per_group > 0;
        bool nchw_disable = group > 1 || ic_per_group >= 4;
        bool nchw44_disable = ic_per_group % pack_c != 0;
95 96
        bool invalid_pad = (w + 2 * pad < kernel) || (h + 2 * pad < kernel);
        if (!(ok_group) || invalid_pad) {
97 98 99 100 101 102 103 104 105 106
            return;
        }
        if ((is_input_nchw && nchw_disable) ||
            (!is_input_nchw && nchw44_disable)) {
            return;
        }

        size_t kernel_h = kernel;
        size_t kernel_w = kernel;
        param::ConvBias param;
107 108 109 110 111
        if (!is_nchw44_dot) {
            param.format = param::ConvBias::Format::NCHW44;
        } else {
            param.format = param::ConvBias::Format::NCHW44_DOT;
        }
112 113 114 115 116
        param.stride_h = stride;
        param.stride_w = stride;
        param.pad_h = pad;
        param.pad_w = pad;
        param.nonlineMode = nlmode;
117

118 119 120 121 122 123
        auto src_tensor_shape = TensorShape{n, ic / pack_c, h, w, pack_c};
        auto weight_tensor_shape = TensorShape{
                oc / pack_c, ic / pack_c, kernel_h, kernel_w, pack_c, pack_c};
        auto bias_tensor_shape = TensorShape{};
        if (bias_mode == megdnn::BiasMode::BROADCAST_CHANNEL_BIAS) {
            bias_tensor_shape = {1, oc / pack_c, 1, 1, pack_c};
124 125 126 127
        } else if (bias_mode == megdnn::BiasMode::BIAS) {
            bias_tensor_shape = {n, oc / pack_c,
                                 (h + 2 * pad - kernel) / stride + 1,
                                 (w + 2 * pad - kernel) / stride + 1, pack_c};
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        }
        if (group == 1) {
            param.sparse = param::ConvBias::Sparse::DENSE;
        } else if (group > 1 && ic / group == 1 && oc / group == 1) {
            megdnn_assert(0, "not support channel wise");
            param.sparse = param::ConvBias::Sparse::GROUP;
            weight_tensor_shape = TensorShape{group / pack_c, 1,        1,
                                              kernel_h,       kernel_w, pack_c};
        } else if (group > 1 && oc_per_group % pack_c == 0 && oc / group > 0 &&
                   ic_per_group % pack_c == 0 && ic / group > 0) {
            param.sparse = param::ConvBias::Sparse::GROUP;
            weight_tensor_shape = TensorShape{group,
                                              oc_per_group / pack_c,
                                              ic_per_group / pack_c,
                                              kernel_h,
                                              kernel_w,
                                              pack_c,
                                              pack_c};
        }
        if (is_input_nchw) {
            src_tensor_shape = TensorShape{n, ic, h, w};
            weight_tensor_shape =
                    TensorShape{oc / pack_c, kernel_h, kernel_w, ic, pack_c};
        }
        args.emplace_back(param, src_tensor_shape, weight_tensor_shape,
                          bias_tensor_shape);
    };

    std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
    if (!no_nonlinemode) {
        nonlinemode.emplace_back(NLMode::RELU);
        nonlinemode.emplace_back(NLMode::H_SWISH);
    }
161 162 163
    if (support_sigmoid) {
        nonlinemode.emplace_back(NLMode::SIGMOID);
    }
164 165 166 167 168 169 170 171

    std::vector<megdnn::BiasMode> bias_mode;
    if (!only_no_bias) {
        bias_mode.emplace_back(megdnn::BiasMode::BROADCAST_CHANNEL_BIAS);
        if (no_bias) {
            bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
        }
    } else {
172 173 174
        bias_mode.emplace_back(megdnn::BiasMode::NO_BIAS);
    }
    if (support_full_bias) {
175
      bias_mode.emplace_back(megdnn::BiasMode::BIAS);
176 177 178
    }
    for (auto bias : bias_mode)
        for (auto nlmode : nonlinemode)
179
            for (size_t n : {1,2})
180
                for (size_t kernel : kernel_vec)
M
Megvii Engine Team 已提交
181 182
                    for (size_t oc : {4, 12})
                        for (size_t ic : {1, 3, 4, 12})
183
                            for (size_t h : {3, 5, 12})
M
Megvii Engine Team 已提交
184
                                for (size_t w : {7, 16, 23}) {
185
                                    for (size_t group = 1;
M
Megvii Engine Team 已提交
186 187 188
                                         group <=
                                         std::min(std::min(oc, ic), 4_z);
                                         ++group) {
189 190 191
                                        pack(n, oc, ic, h, w, kernel, stride,
                                             group, nlmode, bias);
                                    }
192 193 194 195
                                }
    return args;
}

196
std::vector<conv_bias::TestArg> get_nchw44_channel_wise_args(
197
        std::vector<size_t> kernel, size_t stride, bool no_bias,
198
        bool no_nonlinemode, bool no_full_bias) {
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    using namespace conv_bias;
    using Param = param::ConvBias;
    using NLMode = param::ConvBias::NonlineMode;
    std::vector<TestArg> args;

    auto pack = [&](size_t n, size_t group, size_t w, size_t h, size_t kernel,
                    size_t stride, NLMode nlmode, bool pad) {
        Param param;
        param.stride_h = stride;
        param.stride_w = stride;
        if (pad) {
            param.pad_h = kernel / 2;
            param.pad_w = kernel / 2;
        } else {
            param.pad_h = 0;
            param.pad_w = 0;
        }
        param.nonlineMode = nlmode;
        param.format = param::ConvBias::Format::NCHW44;
        param.sparse = param::ConvBias::Sparse::GROUP;

        args.emplace_back(param, TensorShape{n, group, h, w, 4},
                          TensorShape{group, 1, 1, kernel, kernel, 4},
                          TensorShape{});
        if (!no_bias) {
            args.emplace_back(param, TensorShape{n, group, h, w, 4},
                              TensorShape{group, 1, 1, kernel, kernel, 4},
                              TensorShape{1, group, 1, 1, 4});
        }
228 229 230 231 232 233 234 235 236
        if (!no_full_bias) {
            args.emplace_back(
                    param, TensorShape{n, group, h, w, 4},
                    TensorShape{group, 1, 1, kernel, kernel, 4},
                    TensorShape{n, group,
                                (h + 2 * param.pad_w - kernel) / stride + 1,
                                (w + 2 * param.pad_w - kernel) / stride + 1,
                                4});
        }
237 238 239 240 241 242 243 244 245 246 247
    };

    std::vector<NLMode> nonlinemode = {NLMode::IDENTITY};
    if (!no_nonlinemode) {
        nonlinemode.emplace_back(NLMode::RELU);
        nonlinemode.emplace_back(NLMode::H_SWISH);
    }
    for (size_t n : {1, 2}) {
        for (auto nlmode : nonlinemode) {
            for (bool pad : {true}) {
                for (size_t group : {1, 2, 4, 7, 128}) {
248
                    for (size_t size : {4, 6, 7, 9, 15, 40}) {
249 250 251 252 253 254 255 256 257
                        for (size_t kern : kernel) {
                            pack(n, group, size, size, kern, stride, nlmode,
                                 pad);
                        }
                    }
                }
            }
            for (bool pad : {false}) {
                for (size_t group : {1, 2, 7, 128}) {
258
                    for (size_t size : {7, 9, 15, 40}) {
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
                        for (size_t kern : kernel) {
                            pack(n, group, size, size, kern, stride, nlmode,
                                 pad);
                        }
                    }
                }
            }
        }
    }
    return args;
}

void checker_conv_bias_qint8x8x8(std::vector<conv_bias::TestArg> args,
                                 Handle* handle, const char* algo_name) {
    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
#if MEGDNN_ARMV7
    checker.set_epsilon(1);
#endif
    UniformIntRNG rng{-50, 50};
    checker.set_dtype(0, dtype::QuantizedS8(0.41113496f))
            .set_dtype(1, dtype::QuantizedS8(0.01887994f))
            .set_dtype(2, dtype::QuantizedS32(0.41113496f * 0.01887994f))
            .set_dtype(4, dtype::QuantizedS8(0.49550694f))
            .set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_rng(2, &rng);
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }
}
void checker_conv_bias_qint8x8x32(std::vector<conv_bias::TestArg> args,
                                  Handle* handle, const char* algo_name) {
    Checker<ConvBias> checker(handle);

    UniformIntRNG rng{-50, 50};
    checker.set_dtype(0, dtype::QuantizedS8(2.5f))
            .set_dtype(1, dtype::QuantizedS8(2.5f))
            .set_dtype(2, dtype::QuantizedS32(6.25f))
            .set_dtype(4, {});
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }
}
void checker_conv_bias_quint8x8x8(std::vector<conv_bias::TestArg> args,
                                  Handle* handle, const char* algo_name) {
    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
    UniformIntRNG rng(0, 255);
    checker.set_dtype(0, dtype::Quantized8Asymm(0.2f, 100))
            .set_dtype(1, dtype::Quantized8Asymm(0.2f, 120))
            .set_dtype(2, dtype::QuantizedS32(0.04f))
            .set_dtype(4, dtype::Quantized8Asymm(1.4f, 110))
            .set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_rng(2, &rng);

    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }
}
void checker_conv_bias_quint8x8x32(std::vector<conv_bias::TestArg> args,
                                   Handle* handle, const char* algo_name) {
    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));

    NormalRNG rng(128.f);
    checker.set_rng(0, &rng).set_rng(1, &rng);
    checker.set_dtype(0, dtype::Quantized8Asymm(1.2f, (uint8_t)127))
            .set_dtype(1, dtype::Quantized8Asymm(1.3f, (uint8_t)129))
            .set_dtype(2, dtype::QuantizedS32(1.2 * 1.3))
            .set_dtype(4, {});
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }
}
void checker_conv_bias_int8x8x32_multi(std::vector<conv_bias::TestArg> args,
                                       Handle* handle, const char* algo_name) {
    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
    checker.set_dtype(0, dtype::Int8());
    checker.set_dtype(1, dtype::Int8());
    checker.set_dtype(2, dtype::Int32());
    checker.set_dtype(4, dtype::Int32());
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }
}

/**********************************F32 direct************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_LARGE_GROUP) {
    check_conv_bias(
            get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
            handle(), "F32DIRECT_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_SMALL_GROUP) {
    check_conv_bias(
            get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
            handle(), "F32DIRECT_SMALL_GROUP");
}
M
Megvii Engine Team 已提交
365

366
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K7) {
M
Megvii Engine Team 已提交
367
    check_conv_bias(get_nchw44_conv_bias_args({7}, 1, false, true, true,
368 369 370
                                              false, false, false),
                    handle(), "F32_CONV_NCHW44_DIRECT");
}
M
Megvii Engine Team 已提交
371

372 373
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K2K3) {
    check_conv_bias(get_nchw44_conv_bias_args({2, 3}, 1, false, false, false,
374
                                              false, false, true, true),
375 376
                    handle(), "F32_CONV_NCHW44_DIRECT");
}
M
Megvii Engine Team 已提交
377

378 379
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S1_K5) {
    check_conv_bias(get_nchw44_conv_bias_args({5}, 1, false, false, false,
380
                                              false, false, true, true),
381 382
                    handle(), "F32_CONV_NCHW44_DIRECT");
}
383 384 385

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_NCHW44_S2) {
    check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
386
                                              false, false, false, true, true),
387
                    handle(), "F32_CONV_NCHW44_DIRECT");
388 389
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_LARGE_GROUP) {
    check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
                    handle(), "F32STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR1_SMALL_GROUP) {
    check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
                    handle(), "F32STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_LARGE_GROUP) {
    check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
                    handle(), "F32STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP32_STR2_SMALL_GROUP) {
    check_conv_bias(get_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
                    handle(), "F32STRD2_SMALL_GROUP");
}
406
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_NCHW_NCHW44_F32) {
407 408 409
    check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false,
                                              false, true),
                    handle(), "F32_CONV_NCHW_NCHW44");
410 411 412
    check_conv_bias(get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false,
                                              false, true),
                    handle(), "F32_CONV_NCHW_NCHW44");
413
}
M
Megvii Engine Team 已提交
414

415
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_1) {
416
    check_conv_bias(
417
            get_nchw44_channel_wise_args({2, 3}, 1, false, false, false),
418 419
            handle(), "F32_CHANNEL_WISE_NCHW44");
}
M
Megvii Engine Team 已提交
420

421 422 423 424
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE1_FP32_NCHW44_2) {
    check_conv_bias(get_nchw44_channel_wise_args({5}, 1, false, false, false),
                    handle(), "F32_CHANNEL_WISE_NCHW44");
}
425 426 427 428 429 430 431

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CHANNEL_WISE_STRIDE2_FP32_NCHW44) {
    check_conv_bias(
            get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, false),
            handle(), "F32_CHANNEL_WISE_NCHW44");
}

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/**********************************F16 direct************************/
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_LARGE_GROUP) {
    NormalRNG rng(1);
    checker_conv_bias_f16(
            get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
            handle(), rng, "F16DIRECT_LARGE_GROUP", 0.03);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_SMALL_GROUP) {
    NormalRNG rng(1);
    checker_conv_bias_f16(
            get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 1, false, false, false),
            handle(), rng, "F16DIRECT_SMALL_GROUP", 0.03);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_LARGE_GROUP) {
    NormalRNG rng(1);
    checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
                          handle(), rng, "F16STRD1_LARGE_GROUP", 0.03);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_DIRECT_FP16_STR1_SMALL_GROUP) {
    NormalRNG rng(1);
    checker_conv_bias_f16(get_conv_bias_args({2, 3, 5}, 1, false, false, false),
                          handle(), rng, "F16STRD1_SMALL_GROUP", 0.03);
}
#endif

/**********************************algo 8816 direct************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_LARGE_GROUP) {
    checker_conv_bias_int8x8x16(
            get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
            "I8816DIRECT_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_DIRECT_SMALL_GROUP) {
    checker_conv_bias_int8x8x16(
            get_conv_bias_args({2, 3, 5}, 1, false, true, true), handle(),
            "I8816DIRECT_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_LARGE_GROUP) {
    checker_conv_bias_int8x8x16(
            get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
            "I8816STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT16_STRIDE2_SMALL_GROUP) {
    checker_conv_bias_int8x8x16(
            get_conv_bias_args({2, 3, 5}, 2, false, true, true), handle(),
            "I8816STRD2_SMALL_GROUP");
}

/**********************************algo 8-8-32 direct************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_LARGE_GROUP) {
    checker_conv_bias_int8x8x32_multi(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "S8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE1_SMALL_GROUP) {
    checker_conv_bias_int8x8x32_multi(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "S8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_LARGE_GROUP) {
    checker_conv_bias_int8x8x32_multi(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "S8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_INT8_INT32_STRIDE2_SMALL_GROUP) {
    checker_conv_bias_int8x8x32_multi(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "S8STRD2_SMALL_GROUP");
}

TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT1_NCHW44) {
    checker_conv_bias_int8x8x32_multi(
505
            get_nchw44_channel_wise_args({2, 3, 5}, 1, false, true, true),
506 507 508 509 510 511
            handle(), "S8_CHAN_WISE_STRD1_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_INT8_INT32_CHANNEL_WISE_DIRECT2_NCHW44) {
    checker_conv_bias_int8x8x32_multi(
512
            get_nchw44_channel_wise_args({2, 3, 5}, 2, false, true, true),
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
            handle(), "S8_CHAN_WISE_STRD2_NCHW44");
}

/********************************qint8 direct******************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_LARGE_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 1, false, false, false),
                                handle(), "S8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_SMALL_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 1, false, false, false),
                                handle(), "S8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_LARGE_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 2, false, false, false),
                                handle(), "S8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_SMALL_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 2, false, false, false),
                                handle(), "S8STRD2_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44) {
    checker_conv_bias_qint8x8x8(
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false),
540 541 542 543 544 545 546 547 548 549 550
            handle(), "S8_NCHW44_DIRECT");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE1_NCHW44_8832) {
    checker_conv_bias_qint8x8x32(
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, true),
            handle(), "S8_NCHW44_DIRECT");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44_8832) {
    checker_conv_bias_qint8x8x32(
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, true),
            handle(), "S8_NCHW44_DIRECT");
551 552 553 554
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_STRIDE2_NCHW44) {
    checker_conv_bias_qint8x8x8(
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false),
555
            handle(), "S8_NCHW44_DIRECT");
556 557
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT1_NCHW44) {
558 559 560
    checker_conv_bias_qint8x8x8(
            get_nchw44_channel_wise_args({2, 3, 5}, 1, false, false, true),
            handle(), "S8_CHAN_WISE_STRD1_NCHW44");
561 562 563
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QS8_CHANNEL_WISE_DIRECT2_NCHW44) {
564 565 566
    checker_conv_bias_qint8x8x8(
            get_nchw44_channel_wise_args({2, 3, 5}, 2, false, false, true),
            handle(), "S8_CHAN_WISE_STRD2_NCHW44");
567 568 569 570
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_INT8_NCHW_NCHW44) {
    checker_conv_bias_qint8x8x8(
571 572 573 574 575 576
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
                                      true),
            handle(), "S8_CONV_NCHW_NCHW44");
    checker_conv_bias_qint8x8x8(
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
                                      true),
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
            handle(), "S8_CONV_NCHW_NCHW44");
}

/*****************************quint8 direct****************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_LARGE_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 1, false, false, false),
                                 handle(), "QU8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE1_SMALL_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 1, false, false, false),
                                 handle(), "QU8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_LARGE_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 2, false, false, false),
                                 handle(), "QU8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_QUINT8_STRIDE2_SMALL_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 2, false, false, false),
                                 handle(), "QU8STRD2_SMALL_GROUP");
}

/****************************dot qint8 direct*************************/
#if __ARM_FEATURE_DOTPROD
604
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_DOT_NCHW_NCHW44) {
605 606 607 608 609 610 611 612 613 614 615 616 617
    auto args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, false, false,
                                          true);
    for (auto&& arg : args) {
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    }
    checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");

    args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, false, false,
                                     true);
    for (auto&& arg : args) {
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    }
    checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8_NCHW_NCHW44");
618
}
619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 1, false, false, false),
                                handle(), "ARMDOTS8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 1, false, false, false),
                                handle(), "ARMDOTS8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 2, false, false, false),
                                handle(), "ARMDOTS8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_INT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
    checker_conv_bias_qint8x8x8(get_int8_quint8_conv_bias_args(
                                        {2, 3, 5, 7}, 2, false, false, false),
                                handle(), "ARMDOTS8STRD2_SMALL_GROUP");
}

/****************************dot 8-8-32 direct*************************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_LARGE_GROUP) {
    checker_conv_bias_qint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "ARMDOTS8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD1_WITHDOT_SMALL_GROUP) {
    checker_conv_bias_qint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "ARMDOTS8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_LARGE_GROUP) {
    checker_conv_bias_qint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "ARMDOTS8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_I8832STRD2_WITHDOT_SMALL_GROUP) {
    checker_conv_bias_qint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "ARMDOTS8STRD2_SMALL_GROUP");
}
/******************************dot quint8*****************************/
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_LARGE_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 1, false, false, false),
                                 handle(), "ARMDOTU8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_QUINT8_STRIDE1_WITHDOTPROD_SMALL_GROUP) {
    checker_conv_bias_quint8x8x8(get_int8_quint8_conv_bias_args(
                                         {2, 3, 5, 7}, 1, false, false, false),
                                 handle(), "ARMDOTU8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_LARGE_GROUP) {
    checker_conv_bias_quint8x8x8(
            get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
            handle(), "ARMDOTU8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_QUINT8_STRIDE2_WITHDOTPROD_SMALL_GROUP) {
    checker_conv_bias_quint8x8x8(
            get_int8_quint8_conv_bias_args({2, 5, 7}, 2, false, false, false),
            handle(), "ARMDOTU8STRD2_SMALL_GROUP");
}

/******************************dot quint8x8x32***********************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_LARGE_GROUP) {
    checker_conv_bias_quint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "ARMDOTU8STRD1_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE1_SMALL_GROUP) {
    checker_conv_bias_quint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 1, false, true, true), handle(),
            "ARMDOTU8STRD1_SMALL_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_LARGE_GROUP) {
    checker_conv_bias_quint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "ARMDOTU8STRD2_LARGE_GROUP");
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_QUINT8_DIRECT_STRIDE2_SMALL_GROUP) {
    checker_conv_bias_quint8x8x32(
            get_conv_bias_args({2, 3, 5, 7}, 2, false, true, true), handle(),
            "ARMDOTU8STRD2_SMALL_GROUP");
}
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768

/******************************dot int8x8x8 nchw44 ***********************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x8) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 1);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_Q8x8x32) {
    using namespace conv_bias;
    std::vector<TestArg> args =
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S1_8x8x32) {
    using namespace conv_bias;
    std::vector<TestArg> args =
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 1, false, true, true);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x8) {
    using namespace conv_bias;
    //! test qint8x8x8
    std::vector<TestArg> args = get_nchw44_conv_bias_args({2, 3, 5, 7}, 2);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_qint8x8x8(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_Q8x8x32) {
    using namespace conv_bias;
    //! test qint8x8x8
    std::vector<TestArg> args =
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_qint8x8x32(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_INT8_DIRECT_DOT_NCHW44_S2_8x8x32) {
    using namespace conv_bias;
    //! test qint8x8x8
    std::vector<TestArg> args =
            get_nchw44_conv_bias_args({2, 3, 5, 7}, 2, false, true, true);
    for (auto&& arg : args)
        arg.param.format = param::ConvBias::Format::NCHW44_DOT;
    checker_conv_bias_int8x8x32_multi(args, handle(), "ARMDOTS8DIRECT_NCHW44");
}

769 770 771 772 773 774 775 776 777
#endif

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_mk_packed_args();
    Checker<ConvBiasForward> checker(handle());

    check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4);
}
778 779 780 781 782 783 784 785 786

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F23_4_NCHW44) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
    Checker<ConvBiasForward> checker(handle());
    check_winograd("4:2:32", checker, args, param::MatrixMul::Format::MK4,
                   param::ConvBias::Format::NCHW44);
}

787 788 789 790 791 792 793 794 795 796 797 798 799
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(3);
    Checker<ConvBiasForward> checker(handle());

    check_winograd("1:6:32", checker, args);
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_mk_packed_args();
    Checker<ConvBiasForward> checker(handle());

800 801 802 803 804 805 806 807 808
    check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4);
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F63_4_NCHW44) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_nchw44_conv_bias_args({3}, 1);
    Checker<ConvBiasForward> checker(handle());
    check_winograd("4:6:16", checker, args, param::MatrixMul::Format::MK4,
                   param::ConvBias::Format::NCHW44);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F54) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(4);
    Checker<ConvBiasForward> checker(handle());

    check_winograd("1:5:32", checker, args);
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F45) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(5);
    Checker<ConvBiasForward> checker(handle());

    check_winograd("1:4:32", checker, args);
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(3);

    Checker<ConvBiasForward> checker(handle());

    auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
                         param::ConvBias param, Handle* handle) {
        megdnn_assert(param.format == param::ConvBias::Format::NCHW);
        auto winograd_preprocess_opr =
                handle->create_operator<WinogradFilterPreprocess>();
        winograd_preprocess_opr->param().output_block_size = m;
        TensorLayout filter_transform_layout;
        winograd_preprocess_opr->deduce_layout(tensors[1].layout,
                                               filter_transform_layout);
        size_t winograd_preprocess_workspace_in_bytes =
                winograd_preprocess_opr->get_workspace_in_bytes(
                        tensors[1].layout, filter_transform_layout);

        auto conv_bias_opr = handle->create_operator<ConvBias>();
        conv_bias_opr->param() = param;
        conv_bias_opr->param().format = param::ConvBias::Format::NCHW_WINOGRAD;
        conv_bias_opr->param().output_block_size = m;
        size_t conv_bias_workspace_in_bytes =
                conv_bias_opr->get_workspace_in_bytes(
                        tensors[0].layout, filter_transform_layout,
853 854
                        tensors[2].layout, tensors[3].layout, tensors[4].layout,
                        nullptr);
855 856 857 858 859 860 861 862 863 864 865

        WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
                                     conv_bias_workspace_in_bytes,
                                     winograd_preprocess_workspace_in_bytes});
        wb.set(malloc(wb.total_size_in_bytes()));

        TensorND filter_transform_tensor(wb.get(0),
                                         std::move(filter_transform_layout));
        winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
                                      wb.get_workspace(2));
        conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
866 867
                            tensors[3], tensors[4], nullptr,
                            wb.get_workspace(1));
868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

        free(wb.ptr());
    };

    auto run = [&checker, &extra_impl](
                       Handle* handle, const std::vector<TestArg>& args,
                       const std::vector<size_t>& out_size, DType A_dtype,
                       DType B_dtype, DType C_dtype, DType D_dtype,
                       const float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(extra_impl,
                                                     std::placeholders::_1, m,
                                                     arg.param, handle));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };
    run(handle(), args, {6}, dtype::Float32(), dtype::Float32(),
        dtype::Float32(), dtype::Float32(), 1e-3f);
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
    run(handle(), args, {6}, dtype::Float16(), dtype::Float16(),
        dtype::Float16(), dtype::Float16(), 0.35f);
#endif
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_PREPROCESS_NCHW44) {
    using namespace conv_bias;
    std::vector<TestArg> nchw44_args = get_nchw44_conv_bias_args({3}, 1);

    Checker<ConvBiasForward> checker(handle());

    auto extra_impl = [](const TensorNDArray& tensors, uint32_t m,
                         param::ConvBias param, Handle* handle) {
        megdnn_assert(param.format == param::ConvBias::Format::NCHW44);
        auto winograd_preprocess_opr =
                handle->create_operator<WinogradFilterPreprocess>();
        winograd_preprocess_opr->param().output_block_size = m;
        winograd_preprocess_opr->param().format = param::MatrixMul::Format::MK4;
        TensorLayout filter_transform_layout;
        winograd_preprocess_opr->deduce_layout(tensors[1].layout,
                                               filter_transform_layout);
        size_t winograd_preprocess_workspace_in_bytes =
                winograd_preprocess_opr->get_workspace_in_bytes(
                        tensors[1].layout, filter_transform_layout);

        auto conv_bias_opr = handle->create_operator<ConvBias>();
        conv_bias_opr->param() = param;
924 925
        conv_bias_opr->param().format =
                param::ConvBias::Format::NCHW44_WINOGRAD;
926 927 928 929
        conv_bias_opr->param().output_block_size = m;
        size_t conv_bias_workspace_in_bytes =
                conv_bias_opr->get_workspace_in_bytes(
                        tensors[0].layout, filter_transform_layout,
930 931
                        tensors[2].layout, tensors[3].layout, tensors[4].layout,
                        nullptr);
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

        WorkspaceBundle wb(nullptr, {filter_transform_layout.span().dist_byte(),
                                     conv_bias_workspace_in_bytes,
                                     winograd_preprocess_workspace_in_bytes});
        wb.set(malloc(wb.total_size_in_bytes()));

        TensorND filter_transform_tensor(wb.get(0),
                                         std::move(filter_transform_layout));
        winograd_preprocess_opr->exec(tensors[1], filter_transform_tensor,
                                      wb.get_workspace(2));
        conv_bias_opr->exec(tensors[0], filter_transform_tensor, tensors[2],
                            tensors[3], tensors[4], nullptr,
                            wb.get_workspace(1));
        free(wb.ptr());
    };

    auto run = [&checker, &extra_impl](
                       Handle* handle, const std::vector<TestArg>& args,
                       const std::vector<size_t>& out_size, DType A_dtype,
                       DType B_dtype, DType C_dtype, DType D_dtype,
                       const float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(extra_impl,
                                                     std::placeholders::_1, m,
                                                     arg.param, handle));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };
    run(handle(), nchw44_args, {2, 6}, dtype::Float32(), dtype::Float32(),
        dtype::Float32(), dtype::Float32(), 1e-3f);
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_1) {
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };
    std::vector<TestArg> args = get_winograd_mk_packed_args(8);
    std::vector<TestArg> args_first_half(args.begin(),
                                         args.begin() + args.size() / 2);
    run(handle(), args_first_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
        dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
        1e-3f);
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F32_2) {
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };
    std::vector<TestArg> args = get_winograd_mk_packed_args(8);
    std::vector<TestArg> args_second_half(args.begin() + args.size() / 2,
                                          args.end());
    run(handle(), args_second_half, {2, 6}, dtype::Float32{}, dtype::Float32{},
        dtype::Float32{}, dtype::Float32{}, param::MatrixMul::Format::MK4,
        1e-3f);
}

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_F16) {
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };

    std::vector<TestArg> args = get_winograd_mk_packed_args(8);
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng);
    run(handle(), args, {2}, dtype::Float16{}, dtype::Float16{},
        dtype::Float16{}, dtype::Float16{}, param::MatrixMul::Format::MK8,
        0.25);
}
#endif
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_MK_PACKED_INT8) {
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };

#if MEGDNN_AARCH64
    const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
#else
    const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
#endif
    checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
            ssprintf("WINOGRAD:%s:8:2:32", matmul_name).c_str()));

    std::vector<TestArg> quantized_args =
            get_quantized_winograd_mk_packed_args(8);
    UniformIntRNG int_rng{-50, 50};
    checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
    run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
        dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
        dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
}

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8) {
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
        }
    };

#if MEGDNN_AARCH64
    const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
#else
    const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
#endif
    checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
            ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));

1140
    std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4);
1141 1142 1143 1144 1145 1146 1147
    UniformIntRNG int_rng{-50, 50};
    checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
    run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
        dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
        dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
}

1148 1149
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_GROUPMODE) {
1150 1151 1152 1153 1154 1155 1156 1157 1158
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        }
    };

#if MEGDNN_AARCH64
    const char* matmul_name = "AARCH64_INT16X16X32_MK8_8X8";
#else
    const char* matmul_name = "ARMV7_INT16X16X32_MK8_4X8";
#endif
    checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
            ssprintf("WINOGRAD_NCHW44:%s:8:2:32", matmul_name).c_str()));

    std::vector<TestArg> quantized_args =
            get_int8_nchw44_args(3, 4, false, true);
    UniformIntRNG int_rng{-50, 50};
    checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
    run(handle(), quantized_args, {2}, dtype::QuantizedS8(2.5f),
        dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),
        dtype::QuantizedS8(60.25f), param::MatrixMul::Format::MK8, 1e-3);
}

1190 1191
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32) {
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    const char* matmul_name = "AARCH64_F32_MK4_4x16";
#else
1219
    const char* matmul_name = "ARMV7_F32_MK4_4x8";
1220 1221 1222
#endif
    checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
            ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
1223
    std::vector<TestArg> quantized_args = get_int8_nchw44_args(3, 4, true);
1224 1225 1226 1227 1228
    UniformIntRNG int_rng{-50, 50};
    checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
    run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
        dtype::QuantizedS8(0.01887994f),
        dtype::QuantizedS32(0.41113496f * 0.01887994f),
1229 1230
        dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
        epsilon);
1231 1232
}

1233 1234
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_WINOGRAD_NCHW44_MK_PACKED_INT8_COMP_F32_GROUPMODE) {
1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    using namespace conv_bias;

    Checker<ConvBiasForward> checker(handle());
    auto run = [&checker](Handle* handle, const std::vector<TestArg>& args,
                          const std::vector<size_t>& out_size, DType A_dtype,
                          DType B_dtype, DType C_dtype, DType D_dtype,
                          param::MatrixMul::Format format, float eps) {
        for (auto&& arg : args) {
            for (uint32_t m : out_size) {
                checker.set_extra_opr_impl(std::bind(
                        winograd_algo_extra_impl, std::placeholders::_1, m,
                        arg.param, handle, format));
                checker.set_dtype(0, A_dtype)
                        .set_dtype(1, B_dtype)
                        .set_dtype(2, C_dtype)
                        .set_dtype(4, D_dtype)
                        .set_epsilon(eps)
                        .set_param(arg.param)
                        .execs({arg.src, arg.filter, arg.bias, {}, {}});
            }
        }
    };

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    const char* matmul_name = "AARCH64_F32_MK4_4x16";
#else
1262
    const char* matmul_name = "ARMV7_F32_MK4_4x8";
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
#endif
    checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker<ConvBias>(
            ssprintf("WINOGRAD_NCHW44:%s:4:2:32", matmul_name).c_str()));
    std::vector<TestArg> quantized_args =
            get_int8_nchw44_args(3, 4, true, true);
    UniformIntRNG int_rng{-50, 50};
    checker.set_rng(0, &int_rng).set_rng(1, &int_rng).set_rng(2, &int_rng);
    run(handle(), quantized_args, {2}, dtype::QuantizedS8(0.41113496f),
        dtype::QuantizedS8(0.01887994f),
        dtype::QuantizedS32(0.41113496f * 0.01887994f),
1273 1274
        dtype::QuantizedS8(0.49550694f), param::MatrixMul::Format::MK4,
        epsilon);
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F23) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_mk_packed_args();
    Checker<ConvBiasForward> checker(handle());
    check_winograd_fp16("1:2:32", checker, args, NULL, 0.08);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_1) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(5);
    std::vector<TestArg> args_head_half(args.begin(),
                                        args.begin() + args.size() / 2);
    Checker<ConvBiasForward> checker(handle());
    //! fp16 range -1.0 ~ 1.0
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    check_winograd_fp16("1:4:32", checker, args_head_half, rng, 0.25);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F45_2) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(5);
    std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
                                        args.end());
    Checker<ConvBiasForward> checker(handle());
    //! fp16 range -1.0 ~ 1.0
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    check_winograd_fp16("1:4:32", checker, args_back_half, rng, 0.25);
}
//! FIXME: This test may be failed if run `ARM_COMMON.CONV_BIAS_WINOGRAD*`, but
//! it will pass when run single testcase
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_F63) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_args(3);
    Checker<ConvBiasForward> checker(handle());
    //! fp16 range -1.0 ~ 1.0
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    check_winograd_fp16("1:6:32", checker, args, rng, 0.3);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_1) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_mk_packed_args(8);
    std::vector<TestArg> args_head_half(args.begin(),
                                        args.begin() + args.size() / 2);
    Checker<ConvBiasForward> checker(handle());
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    check_winograd_fp16("8:2:32", checker, args_head_half, rng, 0.25,
                        param::MatrixMul::Format::MK8);
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_F16_8x8_2) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_winograd_mk_packed_args(8);
    std::vector<TestArg> args_back_half(args.begin() + args.size() / 2,
                                        args.end());
    Checker<ConvBiasForward> checker(handle());
    Float16PeriodicalRNG* rng = new Float16PeriodicalRNG(0x3c00);
    check_winograd_fp16("8:2:32", checker, args_back_half, rng, 0.25,
                        param::MatrixMul::Format::MK8);
}
#endif
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_WINOGRAD_INT8_8X8) {
    using namespace conv_bias;
    std::vector<TestArg> args = get_quantized_winograd_mk_packed_args(8);
    Checker<ConvBiasForward> checker(handle());
    UniformIntRNG rng{-50, 50};
    checker.set_dtype(0, dtype::QuantizedS8(2.5f))
            .set_dtype(1, dtype::QuantizedS8(2.5f))
            .set_dtype(2, dtype::QuantizedS32(6.25f))
            .set_dtype(4, dtype::QuantizedS8(60.25f))
            .set_rng(0, &rng)
            .set_rng(1, &rng)
            .set_rng(2, &rng);

    check_winograd("8:2:32", checker, args, param::MatrixMul::Format::MK8);
}

void checker_conv_bias(std::vector<conv_bias::TestArg> args, Handle* handle,
                       RNG* rng, float epsilon, DType type0, DType type1,
                       DType type2, DType type3, const char* algo_name) {
    using namespace conv_bias;

    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
    checker.set_dtype(0, type0);
    checker.set_dtype(1, type1);
    checker.set_dtype(2, type2);
    checker.set_dtype(4, type3);
    checker.set_epsilon(epsilon);
    if (NULL != rng) {
        checker.set_rng(0, rng).set_rng(1, rng).set_rng(2, rng).set_rng(3, rng);
    }
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs(
                {arg.src, arg.filter, arg.bias, {}, {}});
    }
}
// clang-format off
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE2) {
#define cb(name)                                                               \
    check_conv_bias(                                                           \
            get_conv_bias_args({1, 2, 3, 4, 5, 6, 7}, 2, false, false, false), \
            handle(), name);
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
    cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
    cb("IM2COLMATMUL:FB_F32_K8X12X1")
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:ARMV7_F32")
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COL_FP32_STRIDE1) {
#define cb(name)                                                            \
    check_conv_bias(                                                        \
            get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false), \
            handle(), name);
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_F32K8X12X1")
    cb("IM2COLMATMUL:AARCH64_F32K4X16X1")
    cb("IM2COLMATMUL:FB_F32_K8X12X1")
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:ARMV7_F32")
    cb("IM2COLMATMUL:FB_F32_K8X12X1")
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                              \
    checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
                                         false, true, true),                  \
                      handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),      \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),   \
                      dtype::QuantizedS8(60.25f), name);                      \
    checker_conv_bias(                                                        \
            get_conv_bias_args({1}, 2, false, false, false, true, true),      \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),             \
            dtype::QuantizedS8(60.25f), name);

    float epsilon = 0.001;
#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
#else
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
#endif
#elif MEGDNN_ARMV7
    epsilon = 1;
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
#endif
#undef cb
}
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537

#if __ARM_FEATURE_DOTPROD

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                               \
    checker_conv_bias(get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false,  \
                                                false, false, false, true),    \
                      handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),       \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),    \
                      dtype::QuantizedS8(60.25f), name);                       \
    checker_conv_bias(                                                         \
            get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true), \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                 \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),              \
            dtype::QuantizedS8(60.25f), name);

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X6X4_DOTPROD:96");
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                              \
    checker_conv_bias(                                                        \
            get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false,    \
                                      true, false, true, false, false, true), \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);  \
    checker_conv_bias(                                                        \
            get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
                                      false, false, true),                    \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X6X4_DOTPROD:96");
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32_MK4_DOT) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                              \
    checker_conv_bias(                                                        \
            get_nchw44_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false,    \
                                      true, false, true, false, false, true), \
            handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(),            \
            dtype::Int32(), {}, name);                                        \
    checker_conv_bias(                                                        \
            get_nchw44_conv_bias_args({1}, 2, false, true, true, false, true, \
                                      false, false, true),                    \
            handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(),            \
            dtype::Int32(), {}, name);

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96");
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X6X4_DOTPROD:96");
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_CONV1x1_QUANTIZEDSYM_MK4_DOT) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                               \
    checker_conv_bias(                                                         \
            get_nchw44_conv_bias_args({1}, 1, true, true, false, false, true), \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                 \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),              \
            dtype::QuantizedS8(60.25f), name);                                 \
    checker_conv_bias(                                                         \
            get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true,   \
                                      false, false, true),                     \
            handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),                 \
            dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), {}, name);   \
    checker_conv_bias(                                                         \
            get_nchw44_conv_bias_args({1}, 1, true, true, true, false, true,   \
                                      false, false, true),                     \
            handle(), &rng, epsilon, dtype::Int8(), dtype::Int8(),             \
            dtype::Int32(), {}, name);

    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("CONV1x1:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD");
#elif MEGDNN_ARMV7
    cb("CONV1x1:AARCH32_INT8_MK4_8X6X4_DOTPROD");
#endif
#undef cb
}
#endif

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
// clang-format on
#if MEGDNN_AARCH64 || MEGDNN_ARMV7
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDASYM) {
    NormalRNG rng(128.f);

#define cb(name)                                                              \
    checker_conv_bias(get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, \
                                         false, true, true),                  \
                      handle(), &rng, epsilon,                                \
                      dtype::Quantized8Asymm(1.2f, (uint8_t)125),             \
                      dtype::Quantized8Asymm(1.3f, (uint8_t)129),             \
                      dtype::QuantizedS32(1.2 * 1.3),                         \
                      dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);     \
    checker_conv_bias(                                                        \
            get_conv_bias_args({1}, 2, false, false, false, true, true),      \
            handle(), &rng, epsilon,                                          \
            dtype::Quantized8Asymm(1.2f, (uint8_t)125),                       \
            dtype::Quantized8Asymm(1.3f, (uint8_t)129),                       \
            dtype::QuantizedS32(1.2 * 1.3),                                   \
            dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
    float epsilon = 0.001;
#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
#else
    cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
#endif
#elif MEGDNN_ARMV7
    epsilon = 1;
    cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
#endif
#undef cb
}
#endif

#if MEGDNN_AARCH64 || MEGDNN_ARMV7
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUINT8x8x32) {
    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                               \
    checker_conv_bias(                                                         \
            get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true),      \
            handle(), &rng, epsilon,                                           \
            dtype::Quantized8Asymm(1.2f, (uint8_t)125),                        \
            dtype::Quantized8Asymm(1.3f, (uint8_t)129),                        \
            dtype::QuantizedS32(1.2 * 1.3), {}, name);                         \
    checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
                      &rng, epsilon,                                           \
                      dtype::Quantized8Asymm(1.2f, (uint8_t)125),              \
                      dtype::Quantized8Asymm(1.3f, (uint8_t)129),              \
                      dtype::QuantizedS32(1.2 * 1.3), {}, name);

#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X4_DOTPROD");
#else
    cb("IM2COLMATMUL:AARCH64_QUINT8_K8X8X8");
#endif
#elif MEGDNN_ARMV7
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH32_QUINT8_K4X8X4");
#endif
    cb("IM2COLMATMUL:ARMV7_QUINT8_K4X8X8");
#endif
#undef cb
}
TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_IM2COLMATMUL_INT8x8x16) {
    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                               \
    checker_conv_bias(                                                         \
            get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true),      \
            handle(), &rng, epsilon, dtype::Int8{}, dtype::Int8{},             \
            dtype::Int16{}, dtype::Int16{}, name);                             \
    checker_conv_bias(get_conv_bias_args({1}, 2, false, true, true), handle(), \
                      &rng, epsilon, dtype::Int8{}, dtype::Int8{},             \
                      dtype::Int16{}, dtype::Int16{}, name);

#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X16_K8X8X8");
    cb("IM2COLMATMUL:AARCH64_INT8X8X16_K4X4X16");
    cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:ARM_COMMON_INT8X8X16");
    cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X8X8");
    cb("IM2COLMATMUL:ARMV7_INT8X8X16_K4X2X16");
#endif
#undef cb
}
#endif

#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_FP16) {
    using namespace conv_bias;

    param::ConvBias cur_param;

    std::vector<conv_bias::TestArg> args =
            get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, false, false);
    std::vector<conv_bias::TestArg> args1 =
            get_conv_bias_args({1}, 2, false, false, false);
    args.insert(args.begin(), args1.begin(), args1.end());

    NormalRNG rng(1);
#define cb(name)                                                            \
    checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},         \
                      dtype::Float16{}, dtype::Float16{}, dtype::Float16{}, \
                      name);

#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_F16_K8X24X1");
#elif MEGDNN_ARMV7
    cb("IM2COLMATMUL:AARCH32_F16_K4X16X1");
#endif
#undef cb
}
#endif

void checker_conv_bias_mul_int8x8x32(std::vector<conv_bias::TestArg> args,
                                     Handle* handle, const char* algo_name) {
    using namespace conv_bias;

    Checker<ConvBias> checker(handle);
    checker.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBias>(algo_name));
    checker.set_dtype(0, dtype::Int8());
    checker.set_dtype(1, dtype::Int8());
    checker.set_dtype(2, dtype::Int32());
    checker.set_dtype(4, dtype::Int32());
    for (auto&& arg : args) {
        checker.set_param(arg.param).execs({arg.src, arg.filter, {}, {}, {}});
    }

    UniformIntRNG rng{-50, 50};
    for (auto&& arg : args) {
        checker.set_dtype(0, dtype::QuantizedS8(2.5f))
                .set_dtype(1, dtype::QuantizedS8(2.5f))
                .set_dtype(2, dtype::QuantizedS32(6.25f))
                .set_dtype(4, {})
                .set_rng(0, &rng)
                .set_rng(1, &rng)
                .set_rng(2, &rng)
                .set_param(arg.param)
                .execs({arg.src, arg.filter, {}, {}, {}});
    }
}

#if MEGDNN_AARCH64 || MEGDNN_ARMV7
#if !__ARM_FEATURE_DOTPROD
1687
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S2) {
1688 1689
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
1690
            get_nchw44_conv_bias_args({2, 5, 7}, 2, false, true, true);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700

#define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
#else
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
#endif
#undef cb
}

1701
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32NCHW44_S1) {
1702 1703
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
1704
            get_nchw44_conv_bias_args({3, 4, 6}, 1, false, true, true);
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

#define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
#else
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
#endif

#undef cb
}

1716 1717
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S2) {
1718 1719
    UniformIntRNG rng{-50, 50};

1720 1721 1722 1723
#define cb(name)                                                               \
    checker_conv_bias(get_nchw44_conv_bias_args({3, 4, 6}, 2), handle(), &rng, \
                      epsilon, dtype::QuantizedS8(2.5f),                       \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),    \
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
                      dtype::QuantizedS8(60.25f), name);
    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
#else
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS,
1735
       CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_S1) {
1736 1737
    UniformIntRNG rng{-50, 50};

1738 1739 1740 1741
#define cb(name)                                                               \
    checker_conv_bias(get_nchw44_conv_bias_args({2, 5, 7}, 1), handle(), &rng, \
                      epsilon, dtype::QuantizedS8(2.5f),                       \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),    \
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
                      dtype::QuantizedS8(60.25f), name);
    float epsilon = 0.001;
#if MEGDNN_AARCH64
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
#else
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_MK4_4X2X16:96");
#endif
#undef cb
}

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
#if MEGDNN_AARCH64
TEST_F(ARM_COMMON_MULTI_THREADS,
       CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_NCHW44_FUSE) {
    UniformIntRNG rng{-50, 50};

#define cb(name)                                                            \
    checker_conv_bias(get_nchw44_conv_bias_args({3}, 1), handle(), &rng,    \
                      epsilon, dtype::QuantizedS8(2.5f),                    \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
                      dtype::QuantizedS8(60.25f), name);
    float epsilon = 0.001;
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_4X4X16:96");
#undef cb
}
#endif

1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
#endif
#endif

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_INT8x8x32) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
            get_conv_bias_args({2, 3, 4, 5, 6, 7}, 1, false, true, true);
    std::vector<conv_bias::TestArg> args1 =
            get_conv_bias_args({1}, 2, false, true, true);
    args.insert(args.begin(), args1.begin(), args1.end());

#define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);

#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X12X4_DOTPROD");
#else
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K8X8X8");
    cb("IM2COLMATMUL:AARCH64_INT8X8X32_K4X4X16");
#endif
#elif MEGDNN_ARMV7
#if __ARM_FEATURE_DOTPROD
    cb("IM2COLMATMUL:AARCH32_INT8_K6X8X4");
#endif
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X8X8");
#endif

#if MEGDNN_ARMV7
    cb("IM2COLMATMUL:ARMV7_INT8X8X32_K4X2X16");
#endif
#undef cb
}

1801 1802
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S1_MK4_PACK_F32) {
    using namespace conv_bias;
1803 1804
    std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
            {2, 4, 7}, 1, false, false, false, false, false, true,true);
1805
#if MEGDNN_AARCH64
1806
    check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
1807 1808
#elif MEGDNN_ARMV7
    check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
1809
#endif
1810
}
1811 1812 1813

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) {
    using namespace conv_bias;
1814 1815
    std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args(
            {3, 5, 6}, 2, false, false, false, false, false, true, true);
1816
#if MEGDNN_AARCH64
1817
    check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1");
1818 1819
#elif MEGDNN_ARMV7
    check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12");
1820
#endif
1821
}
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
/***************************** Conv1x1 Algo Test ***********************/
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
#if MEGDNN_AARCH64
    check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32K8X12X1:24");
#elif MEGDNN_ARMV7
    check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32:48");
#endif
}

1834 1835 1836 1837
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_PACK_F32) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
            get_nchw44_conv_bias_args({1}, 1, true, false, false);
1838
#if MEGDNN_AARCH64
1839
    check_conv_bias(args, handle(), "CONV1x1:AARCH64_F32_MK4_K8X12X1:24");
1840 1841
#elif MEGDNN_ARMV7
    check_conv_bias(args, handle(), "CONV1x1:ARMV7_F32_MK4_PACK_4X12:24");
1842
#endif
1843
}
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_MK4_NO_PACK_F32) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
            get_nchw44_conv_bias_args({1}, 1, true, false, false);
    std::vector<conv_bias::TestArg> args_of_4;
    for (auto&& arg : args) {
        if (arg.src.shape[2] * arg.src.shape[3] % 4 == 0) {
            args_of_4.push_back(arg);
        }
    }
#if MEGDNN_AARCH64
    check_conv_bias(args_of_4, handle(), "CONV1x1:AARCH64_F32_MK4_4x16:24");
#elif MEGDNN_ARMV7
    check_conv_bias(args_of_4, handle(), "CONV1x1:ARMV7_F32_MK4_4x8:48");
#endif
}

1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F16) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(false, false);
    NormalRNG rng(1);
#if MEGDNN_AARCH64
    checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
                      dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
                      "CONV1x1:AARCH64_F16_K8X24X1:48");
#elif MEGDNN_ARMV7
    checker_conv_bias(args, handle(), &rng, 0.03, dtype::Float16{},
                      dtype::Float16{}, dtype::Float16{}, dtype::Float16{},
                      "CONV1x1:AARCH32_F16_K4X16X1:24");
#endif
}
#endif

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDSYM) {
    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                            \
    checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true),     \
                      handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),    \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \
                      dtype::QuantizedS8(60.25f), name);
#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:24");
#else
    cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
    cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:48");
#endif
#elif MEGDNN_ARMV7
    epsilon = 1;
    cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:48");
#endif
#undef cb
}

#if MEGDNN_AARCH64 || MEGDNN_ARMV7
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUANTIZEDASYM) {
    NormalRNG rng(128.f);
#define cb(name)                                                        \
    checker_conv_bias(get_conv_bias_1x1_args(false, false, true, true), \
                      handle(), &rng, epsilon,                          \
                      dtype::Quantized8Asymm(1.2f, (uint8_t)125),       \
                      dtype::Quantized8Asymm(1.3f, (uint8_t)129),       \
                      dtype::QuantizedS32(1.2 * 1.3),                   \
                      dtype::Quantized8Asymm(50.3f, (uint8_t)120), name);
    float epsilon = 0.001;
#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:48");
#else
    cb("CONV1x1:AARCH64_QUINT8_K8X8X8:24");
#endif
#elif MEGDNN_ARMV7
    epsilon = 1;
    cb("CONV1x1:ARMV7_QUINT8_K4X8X8:48");
#endif
#undef cb
}
#endif

#if MEGDNN_AARCH64 || MEGDNN_ARMV7
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_QUINT8x8x32) {
    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                           \
    checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng,  \
                      epsilon, dtype::Quantized8Asymm(1.2f, (uint8_t)125), \
                      dtype::Quantized8Asymm(1.3f, (uint8_t)129),          \
                      dtype::QuantizedS32(1.2 * 1.3), {}, name);

#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH64_QUINT8_K8X8X4_DOTPROD:24");
#else
    cb("CONV1x1:AARCH64_QUINT8_K8X8X8:48");
#endif
#elif MEGDNN_ARMV7
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH32_QUINT8_K4X8X4:48");
#endif
    cb("CONV1x1:ARMV7_QUINT8_K4X8X8:24");
#endif
#undef cb
}

TEST_F(ARM_COMMON_MULTI_THREADS, CONVBIAS_1X1_S1_INT8x8x16) {
    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                             \
    checker_conv_bias(get_conv_bias_1x1_args(true, true), handle(), &rng,    \
                      epsilon, dtype::Int8{}, dtype::Int8{}, dtype::Int16{}, \
                      dtype::Int16{}, name);

#if MEGDNN_AARCH64
    cb("CONV1x1:AARCH64_INT8X8X16_K8X8X8:24");
    cb("CONV1x1:AARCH64_INT8X8X16_K4X4X16:24");
#elif MEGDNN_ARMV7
    cb("CONV1x1:ARMV7_INT8X8X16_K4X8X8:24");
    cb("CONV1x1:ARMV7_INT8X8X16_K4X2X16:48");
#endif
    cb("CONV1x1:ARM_COMMON_INT8X8X16:48");
#undef cb
}
#endif

TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args = get_conv_bias_1x1_args(true, true);

#define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);

#if MEGDNN_AARCH64
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH64_INT8X8X32_K8X12X4_DOTPROD:48");
#else
    cb("CONV1x1:AARCH64_INT8X8X32_K8X8X8:24");
    cb("CONV1x1:AARCH64_INT8X8X32_K4X4X16:24");
#endif
#elif MEGDNN_ARMV7
#if __ARM_FEATURE_DOTPROD
    cb("CONV1x1:AARCH32_INT8_K6X8X4:48");
#endif
    cb("CONV1x1:ARMV7_INT8X8X32_K4X8X8:24");
#endif

#if MEGDNN_ARMV7
    cb("CONV1x1:ARMV7_INT8X8X32_K4X2X16:48");
#endif
#undef cb
}

#ifndef __ARM_FEATURE_DOTPROD
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_INT8x8x32_MK4) {
    using namespace conv_bias;
    std::vector<conv_bias::TestArg> args =
            get_nchw44_conv_bias_args({1}, 1, true, true, true);

#define cb(name) checker_conv_bias_mul_int8x8x32(args, handle(), name);

#if MEGDNN_AARCH64
    cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
#elif MEGDNN_ARMV7
    cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
#endif
#undef cb

    UniformIntRNG rng{-50, 50};
    float epsilon = 0.001;
#define cb(name)                                                             \
    checker_conv_bias(get_nchw44_conv_bias_args({1}, 1, true, false, false), \
                      handle(), &rng, epsilon, dtype::QuantizedS8(2.5f),     \
                      dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f),  \
                      dtype::QuantizedS8(60.25f), name);
#if MEGDNN_AARCH64
    cb("CONV1x1:AARCH64_INT8X8X32_MK4_4X4X16:24");
#elif MEGDNN_ARMV7
    cb("CONV1x1:ARMV7_INT8X8X32_MK4_4X2X16:24");
#endif
#undef cb
}
#endif

// vim: syntax=cpp.doxygen