indexing.cpp 6.4 KB
Newer Older
1
#include "../dnn_op_helper.h"
2 3 4 5 6
#include "megbrain/imperative/ops/autogen.h"

#include "../op_trait.h"

#include "megbrain/opr/indexing.h"
7
#include "megdnn/oprs/general.h"
8 9 10 11 12 13 14 15

namespace mgb {
namespace imperative {

namespace {
namespace indexing_one_hot {

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
M
Megvii Engine Team 已提交
16
        const OpDef& def, const SmallVector<LogicalTensorDesc>& input_descs) {
17
    auto&& op = def.cast_final_safe<IndexingOneHot>();
18 19
    mgb_assert(input_descs.size() == 2, "IndexingOneHot expects two inputs");
    auto comp_node = input_descs[0].comp_node;
M
Megvii Engine Team 已提交
20
    TensorLayout src = input_descs[0].layout, index = input_descs[1].layout;
21 22 23 24 25 26 27 28 29

    mgb_assert(index.dtype == dtype::Int32(), "index dtype must be int32");

    if (!src.ndim) {
        return {{{{{}, src.dtype}, comp_node}}, false};
    }

    mgb_assert(src.ndim >= 2, "src ndim must be at least 2");
    mgb_assert(src.is_contiguous(), "src should be contiguous");
M
Megvii Engine Team 已提交
30
    mgb_assert(
31 32 33 34 35 36 37
            -static_cast<int>(src.ndim) <= op.axis &&
                    op.axis < static_cast<int>(src.ndim),
            "axis %d not exists in src", op.axis);
    int real_axis = static_cast<int>(op.axis);
    if (real_axis < 0) {
        real_axis += static_cast<int>(src.ndim);
    }
38
    TensorLayout dst = src;
39
    dst.shape[real_axis] = 1;
40 41 42 43 44 45 46
    dst.init_contiguous_stride();

    if (!index.ndim) {
        return {{{dst, comp_node}}, false};
    }

    mgb_assert(index.is_contiguous(), "index should be all contiguous");
M
Megvii Engine Team 已提交
47
    mgb_assert(
48 49
            index.eq_shape(src.remove_axis(real_axis)),
            "index shape doesn't match src");
50 51 52 53
    return {{{dst, comp_node}}, true};
}

auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
54
    auto&& op = def.cast_final_safe<IndexingOneHot>();
55
    mgb_assert(inputs.size() == 2);
56 57 58 59
    int real_axis = static_cast<int>(op.axis);
    if (real_axis < 0) {
        real_axis += static_cast<int>(op.ndim);
    }
60
    OperatorNodeConfig config{op.make_name()};
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
    return opr::IndexingOneHot::make(inputs[0], inputs[1], real_axis, config);
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def, SmallVector<TensorPtr> inputs,
        SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
    auto&& op = def.cast_final_safe<IndexingOneHot>();
    auto&& inp = inputs[0];
    auto&& index = inputs[1];
    TensorLayout layout = inp->layout();
    TensorLayout index_layout = index->layout();
    DnnOprCaller<megdnn::IndexingOneHot> dnn_op(inp->comp_node());
    auto&& indexing_one_hot_param = dnn_op.op->param();
    int real_axis = static_cast<int>(op.axis);
    if (real_axis < 0) {
        real_axis += static_cast<int>(layout.ndim);
    }
    mgb_assert(
            0 <= real_axis && real_axis < static_cast<int>(layout.ndim),
            "Dimension out of range (expected to be in range of [%d, %d], but got %d)",
            0, static_cast<int>(layout.ndim) - 1, op.axis);
    indexing_one_hot_param = real_axis;
    TensorLayout tlayout;
    dnn_op.op->deduce_layout(layout, index_layout, tlayout);
    TensorPtr out = Tensor::make(tlayout, inp->comp_node());
    megdnn::TensorND in = inp->dnn_tensor();
    megdnn::TensorND ind = index->dnn_tensor();
88 89 90
    size_t sz = dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout);

    auto dnn_workspace = dnn_op.create_workspace(sz);
91 92
    dnn_op.op->exec(in, ind, out->dnn_tensor(), dnn_workspace);
    return {out};
93 94 95
}

OP_TRAIT_REG(IndexingOneHot, IndexingOneHot)
M
Megvii Engine Team 已提交
96 97
        .infer_output_attrs_fallible(infer_output_attrs_fallible)
        .apply_on_var_node(apply_on_var_node)
98
        .apply_on_physical_tensor(apply_on_physical_tensor)
M
Megvii Engine Team 已提交
99
        .fallback();
100
}  // namespace indexing_one_hot
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

namespace indexing_set_one_hot {

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
        const OpDef& def, const SmallVector<LogicalTensorDesc>& input_descs) {
    mgb_assert(input_descs.size() == 3, "IndexingSetOneHot expects three inputs");
    auto comp_node = input_descs[0].comp_node;
    TensorLayout src = input_descs[0].layout, index = input_descs[1].layout;

    mgb_assert(index.dtype == dtype::Int32(), "index dtype must be int32");

    if (!src.ndim) {
        return {{{{{}, src.dtype}, comp_node}}, false};
    }
    mgb_assert(src.is_contiguous(), "src should be contiguous");
    return {{input_descs[0]}, true};
}

auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) {
    auto&& op = static_cast<const IndexingSetOneHot&>(def);
    mgb_assert(inputs.size() == 3);
    int real_axis = static_cast<int>(op.axis);
    if (real_axis < 0) {
        real_axis += static_cast<int>(op.ndim);
    }
    OperatorNodeConfig config{op.make_name()};
    return opr::IndexingSetOneHot::make(
            inputs[0], inputs[1], inputs[2], real_axis, config);
}

SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def, SmallVector<TensorPtr> inputs,
        SmallVector<LogicalTensorDesc>& output_descs, const bool& validated) {
    auto&& op = def.cast_final_safe<IndexingSetOneHot>();
    auto&& inp = inputs[0];
    auto&& index = inputs[1];
    auto&& sub = inputs[2];
    TensorLayout layout = inp->layout();
    TensorLayout index_layout = index->layout();
    TensorLayout tlayout = sub->layout();
    mgb_assert(layout.is_contiguous());
    DnnOprCaller<megdnn::IndexingSetOneHot> dnn_op(inp->comp_node());
    auto&& indexing_one_hot_param = dnn_op.op->param();
    int real_axis = static_cast<int>(op.axis);
    if (real_axis < 0) {
        real_axis += static_cast<int>(layout.ndim);
    }
    indexing_one_hot_param = real_axis;
    TensorPtr out = Tensor::make(layout, inp->comp_node());
    out->dev_tensor().copy_from_fixlayout(inp->dev_tensor());
    megdnn::TensorND in = inp->dnn_tensor();
    megdnn::TensorND ind = index->dnn_tensor();
    megdnn::TensorND su = sub->dnn_tensor();
154 155 156

    size_t sz = dnn_op.op->get_workspace_in_bytes(layout, index_layout, tlayout);
    auto dnn_workspace = dnn_op.create_workspace(sz);
157 158 159 160 161 162 163 164 165 166 167
    dnn_op.op->exec(out->dnn_tensor(), ind, su, dnn_workspace);
    return {out};
}

OP_TRAIT_REG(IndexingSetOneHot, IndexingSetOneHot)
        .infer_output_attrs_fallible(infer_output_attrs_fallible)
        .apply_on_var_node(apply_on_var_node)
        .apply_on_physical_tensor(apply_on_physical_tensor)
        .fallback();
}  // namespace indexing_set_one_hot

168 169 170 171 172
}  // anonymous namespace
}  // namespace imperative
}  // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}