convolution.cpp 100.1 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/test/dnn/convolution.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/comp_node_env.h"
#include "./legacy_checker.h"

#include "megbrain/opr/dnn/convolution.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/test/megdnn_helper.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/gopt/inference.h"
#include "megbrain/opr/tensor_manip.h"
23
#include "megdnn/dtype.h"
24
#include "megdnn/oprs/base.h"
25

26 27
#include <gmock/gmock.h>

28
#include <cmath>
29
#include <memory>
30 31 32 33 34 35 36 37 38 39 40 41
#include <random>

using namespace mgb;

namespace {

using Param = opr::Convolution::Param;
using Param3D = opr::Convolution3D::Param;
using Mode = Param::Mode;

Mode modes_to_check[] = {Mode::CONVOLUTION, Mode::CROSS_CORRELATION};

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
void conv_bwd_data_brute(const std::vector<std::shared_ptr<HostTensorND>>& inps,
                         std::shared_ptr<HostTensorND>& dest,
                         const opr::ConvolutionBackwardData::Param& param) {
    mgb_assert(param.format == Param::Format::NCHW);
    auto &&data = *inps[0], &&filter = *inps[1];
    size_t N = data.shape(0), IH = data.shape(2), IW = data.shape(3);
    size_t GROUP, ICPG, OCPG, FH, FW;

    if (param.sparse == Param::Sparse::DENSE) {
        GROUP = 1, ICPG = filter.shape(0), OCPG = filter.shape(1),
        FH = filter.shape(2), FW = filter.shape(3);
    } else {
        mgb_assert(param.sparse == Param::Sparse::GROUP);
        GROUP = filter.shape(0), ICPG = filter.shape(1), OCPG = filter.shape(2),
        FH = filter.shape(3), FW = filter.shape(4);
    }
    auto get_shp = [](size_t inp, size_t filter, size_t stride, size_t pad,
                      size_t dilate) {
        return (inp - 1) * stride + (filter - 1) * dilate + 1 - pad * 2;
    };
    size_t OH = get_shp(IH, FH, param.stride_h, param.pad_h, param.dilate_h),
           OW = get_shp(IW, FW, param.stride_w, param.pad_w, param.dilate_w);
    dest = std::make_shared<HostTensorND>(CompNode::load("xpu0"),
                                         TensorShape{N, OCPG * GROUP, OH, OW});
    auto&& out = *dest;
    auto fptr = filter.ptr<float>(), dptr = data.ptr<float>(),
         optr = out.ptr<float>();
    memset(optr, 0, sizeof(float) * out.shape().total_nr_elems());
    auto ol = out.layout(), fl = filter.layout();

#define FOR2(a, A, b, B)           \
    for (size_t a = 0; a < A; ++a) \
        for (size_t b = 0; b < B; ++b)
#define FOR3(a, A, b, B, c, C) \
    FOR2(a, A, b, B)           \
    for (size_t c = 0; c < C; ++c)

    FOR3(n, N, group, GROUP, icg, ICPG)
    FOR2(ih, IH, iw, IW) {
        float scale = *(dptr++);

        FOR3(ocg, OCPG, fh, FH, fw, FW) {
            auto oc_tot = group * OCPG + ocg;
            int oh = int(ih * param.stride_h + fh * param.dilate_h) -
                     int(param.pad_h),
                ow = int(iw * param.stride_w + fw * param.dilate_w) -
                     int(param.pad_w);
            if (oh >= 0 && ow >= 0 && oh < static_cast<int>(OH) &&
                ow < static_cast<int>(OW)) {
                auto out_off = n * ol.stride[0] + oc_tot * ol.stride[1] +
                               oh * ol.stride[2] + ow;
                size_t flt_off = 0;
                if (param.sparse == Param::Convolution::Sparse::DENSE) {
                    flt_off = icg * fl.stride[0] +
                              ocg * fl.stride[1] + fh * fl.stride[2] + fw;
                } else {
                    flt_off = group * fl.stride[0] + icg * fl.stride[1] +
                              ocg * fl.stride[2] + fh * fl.stride[3] + fw;
                }
                optr[out_off] += scale * fptr[flt_off];
            }
        }
    }
#undef FOR3
#undef FOR2
}

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
void conv_bwd_flt_brute(const std::vector<std::shared_ptr<HostTensorND>>& inps,
                  std::shared_ptr<HostTensorND>& out,
                  const opr::ConvolutionBackwardFilter::Param& param) {
    auto &&src = *inps[0], &&diff = *inps[1], &&filter = *inps[2];
    size_t N = src.shape(0), IH = src.shape(2), IW = src.shape(3),
           OC = filter.shape(0), IC = filter.shape(1), FH = filter.shape(2),
           FW = filter.shape(3), OH = diff.shape(2), OW = diff.shape(3);
    out = std::make_shared<HostTensorND>(CompNode::load("xpu0"),
                                         TensorShape{OC, IC, FH, FW});
    auto&& grad = *out;
    auto sptr = src.ptr<float>(), dptr = diff.ptr<float>(),
         gptr = grad.ptr<float>();
    memset(gptr, 0, sizeof(float) * grad.shape().total_nr_elems());
    auto valid = [&](size_t ih, size_t iw) { return ih < IH && iw < IW; };
    for (size_t n = 0; n < N; ++n)
        for (size_t oc = 0; oc < OC; ++oc)
            for (size_t ic = 0; ic < IC; ++ic) {
                for (size_t oh = 0; oh < OH; ++oh)
                    for (size_t ow = 0; ow < OW; ++ow) {
                        for (size_t fh = 0; fh < FH; ++fh)
                            for (size_t fw = 0; fw < FW; ++fw) {
                                size_t ih = oh * param.stride_h + fh -
                                            param.pad_h,
                                       iw = ow * param.stride_w + fw -
                                            param.pad_w;
                                auto src_data =
                                        valid(ih, iw)
                                                ? sptr[(n * IC + ic) * IH * IW +
                                                       ih * IW + iw]
                                                : 0;
                                gptr[(oc * IC + ic) * FH * FW + fh * FW + fw] +=
                                        dptr[(n * OC + oc) * OH * OW + oh * OW +
                                             ow] *
                                        src_data;
                            }
                    }
            }
}

void local_share_brute(const std::vector<std::shared_ptr<HostTensorND>>& inps,
                       std::shared_ptr<HostTensorND>& out,
                       const opr::LocalShare::Param& param) {
    auto in = inps[0], filter = inps[1];
    mgb_assert(in->shape().ndim == 4);
    mgb_assert(filter->shape().ndim == 6);
    int batch_size = in->shape()[0], ci = in->shape()[1], hi = in->shape()[2],
        wi = in->shape()[3];
    int fh = filter->shape()[3], fw = filter->shape()[4];
    int ph = param.pad_h, pw = param.pad_w;
    int sh = param.stride_h, sw = param.stride_w;
    int dh = param.dilate_h, dw = param.dilate_w;
    int sgh = filter->shape()[0], sgw = filter->shape()[1];
    mgb_assert(dh == 1 && dw == 1);
    mgb_assert(static_cast<uint32_t>(sgh) == param.spatial_groups_h &&
               static_cast<uint32_t>(sgw) == param.spatial_groups_w);

    int ho = (hi + 2 * ph - fh) / sh + 1;
    int wo = (wi + 2 * pw - fw) / sw + 1;
    mgb_assert(ho % sgh == 0 && wo % sgw == 0);
    int grp_ho = ho / sgh, grp_wo = wo / sgw;
    int co = filter->shape()[5];

    size_t u_batch = batch_size, u_co = co, u_ho = ho, u_wo = wo;
    out = std::make_shared<HostTensorND>(
            CompNode::load("xpu0"), TensorShape{u_batch, u_co, u_ho, u_wo});
    mgb_assert(param.mode == Param::Mode::CROSS_CORRELATION);
    for (int n = 0; n < batch_size; ++n) {
        for (int oc = 0; oc < co; ++oc) {
            for (int oh = 0; oh < ho; ++oh) {
                for (int ow = 0; ow < wo; ++ow) {
                    size_t u_n = n, u_oc = oc, u_oh = oh, u_ow = ow;
                    float& dval = out->ptr<float>({u_n, u_oc, u_oh, u_ow})[0];
                    dval = 0;
                    int grp_oh_idx = oh / grp_ho;
                    int grp_ow_idx = ow / grp_wo;
                    for (int ic = 0; ic < ci; ++ic) {
                        for (int kh = 0; kh < fh; ++kh) {
                            for (int kw = 0; kw < fw; ++kw) {
                                int ih = oh * sh - ph + kh;
                                int iw = ow * sw - pw + kw;
                                float sval = 0.f;
                                float fval = 0.f;
                                if (ih >= 0 && ih < hi && iw >= 0 && iw < wi) {
                                    sval = in->ptr<float>(
                                            {static_cast<size_t>(n),
                                             static_cast<size_t>(ic),
                                             static_cast<size_t>(ih),
                                             static_cast<size_t>(iw)})[0];
                                }
                                fval = filter->ptr<float>(
                                        {static_cast<size_t>(grp_oh_idx),
                                         static_cast<size_t>(grp_ow_idx),
                                         static_cast<size_t>(ic),
                                         static_cast<size_t>(kh),
                                         static_cast<size_t>(kw),
                                         static_cast<size_t>(oc)})[0];
                                dval += fval * sval;
                            }
                        }
                    }
                }
            }
        }
    }
}

void convolution_brute(const std::vector<std::shared_ptr<HostTensorND>> &in_tensor,
        std::shared_ptr<HostTensorND> &out_tensor,
        const opr::Convolution::Param &param)
{
    mgb_assert(in_tensor.size() == 2);
    auto in = in_tensor[0], filter = in_tensor[1];
    mgb_assert(in->shape().ndim == 4);
    mgb_assert(filter->shape().ndim == 4);

    int batch_size = in->shape().shape[0];
    int ic = in->shape().shape[1];
    int ih = in->shape().shape[2];
    int iw = in->shape().shape[3];

    int fh = filter->shape().shape[2];
    int fw = filter->shape().shape[3];

    int ph = param.pad_h;
    int pw = param.pad_w;

    int sh = param.stride_h;
    int sw = param.stride_w;

    int dh = param.dilate_h;
    int dw = param.dilate_w;

    mgb_assert(ih + 2*ph >= (fh - 1) * dh + 1);
    mgb_assert(iw + 2*pw >= (fw - 1) * dw + 1);
    int oh = (ih + 2*ph - ((fh - 1) * dh + 1)) / sh + 1;
    int ow = (iw + 2*pw - ((fw - 1) * dw + 1)) / sw + 1;
    mgb_assert(static_cast<size_t>(ic) == filter->shape().shape[1]);
    int oc = filter->shape().shape[0];

    out_tensor = std::make_shared<HostTensorND>(CompNode::load("xpu0"),
            TensorShape{
            static_cast<size_t>(batch_size),
            static_cast<size_t>(oc),
            static_cast<size_t>(oh),
            static_cast<size_t>(ow)});

    int pn, poc, poh, pow, pih, piw, pic, pfh, pfw;
    for (pn = 0; pn < batch_size; ++pn)
    for (poc = 0; poc < oc; ++poc)
    for (poh = 0, pih = -ph; poh < oh; ++poh, pih += sh)
    for (pow = 0, piw = -pw; pow < ow; ++pow, piw += sw)
    {
        float &target = out_tensor->ptr<float>({
                static_cast<size_t>(pn),
                static_cast<size_t>(poc),
                static_cast<size_t>(poh),
                static_cast<size_t>(pow)})[0];
        target = 0;
        for (pic = 0; pic < ic; ++pic)
        for (pfh = 0; pfh < fh; ++pfh)
        for (pfw = 0; pfw < fw; ++pfw)
        {
            int prih, priw;
            float img_data, filter_data;
            if (param.mode == Param::Mode::CONVOLUTION) {
                prih = pih + (fh - pfh - 1) * dh;
                priw = piw + (fw - pfw - 1) * dw;
            } else {
                mgb_assert(param.mode == Param::Mode::CROSS_CORRELATION);
                prih = pih + pfh * dh;
                priw = piw + pfw * dw;
            }
            if (prih >= 0 && prih < ih &&
                    priw >= 0 && priw < iw) {
                img_data = in_tensor[0]->ptr<float>({
                        static_cast<size_t>(pn),
                        static_cast<size_t>(pic),
                        static_cast<size_t>(prih),
                        static_cast<size_t>(priw)})[0];
            } else {
                img_data = 0;
            }
            filter_data = filter->ptr<float>({
                    static_cast<size_t>(poc),
                    static_cast<size_t>(pic),
                    static_cast<size_t>(pfh),
                    static_cast<size_t>(pfw)})[0];
            target += img_data * filter_data;
        }
    }
}



opr::Convolution::Param convert_to_conv_param(
        const opr::ConvBiasForward::Param& param) {
    return opr::Convolution::Param{
            param.mode,     param.pad_h,    param.pad_w,
            param.stride_h, param.stride_w, param.dilate_h,
            param.dilate_w, param.sparse,   param.format};
};
#if MGB_CUDA
opr::Convolution::Param convert_to_conv_param(
        const opr::BatchConvBiasForward::Param& param) {
    return opr::Convolution::Param{
            param.mode,     param.pad_h,    param.pad_w,
            param.stride_h, param.stride_w, param.dilate_h,
            param.dilate_w, param.sparse,   param.format};
};
#endif

TEST(TestOprDNN, ConvolutionForward) {
    uint32_t ih = 10, ic = 16, oc = 32, ph = 0, sh = 1, fh = 2;
    for (auto mode: modes_to_check) {
        uint32_t iw = ih + 1, fw = fh + 1, pw = ph + 1, sw = sh + 1;
        Param param{mode, ph, pw, sh, sw};
        size_t batch_size = 32;
        // !!! DEPRECATED. use AutoOprChecker instead.
        opr::test::ForwardChecker<opr::Convolution, 2> forward_checker({
                {batch_size, ic, ih, iw},
                {oc, ic, fh, fw}},
                convolution_brute, param);
        forward_checker.run();
    }
}

TEST(TestOprDNN, ConvolutionBackward) {
    uint32_t ih = 10, ic = 16, oc = 32, ph = 0, sh = 1, fh = 2;
    for (auto mode: modes_to_check) {
        uint32_t iw = 11, fw = 4, pw = 1, sw = 3;
        Param param{mode, ph, pw, sh, sw};
        size_t batch_size = 32;
        // !!! DEPRECATED. use AutoOprChecker instead.
        opr::test::BackwardChecker<opr::Convolution, 2> backward_checker({
                {batch_size, ic, ih, iw},
                {oc, ic, fh, fw}}, param, 1e-2, 1);
        backward_checker.run();
    }
}

TEST(TestOprDNN, ConvBiasExePolicy) {
    using Param = opr::ConvBias::Param;
    Param param;
    using Policy = opr::ConvBias::ExecutionPolicy;
    using S = Policy::Strategy;

    auto cn = CompNode::load("cpux");

#if MGB_ENABLE_FASTRUN
358 359
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
M
Megvii Engine Team 已提交
360
          S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) {
361
#else
362 363
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
#endif
        auto graph = ComputingGraph::make();
        HostTensorGenerator<> gen;

        auto mkvar = [&](const char* name, const TensorShape& shp,
                         const DType& dtype) {
            return opr::TypeCvt::make(
                    opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name),
                    dtype);
        };

        auto x = mkvar("x", {20, 50, 50, 16}, dtype::QuantizedS8(2.5f));
        auto w = mkvar("w", {24, 3, 3, 16}, dtype::QuantizedS8(2.5f));
        auto bias = mkvar("bias", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));

        param.nonlineMode = Param::NonlineMode::RELU;
        param.format = Param::Format::NHWC;

        Policy policy;
        policy.strategy = strategy;

        auto conv_bias = opr::ConvBias::make(
                x, w, bias, param, policy,
                OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        HostTensorND host_y;
        auto func = graph->compile({make_callback_copy(conv_bias, host_y)});
        func->execute();
    }
}

TEST(TestOprDNN, ConvBiasExePolicy_Quantized8Asym) {
    using Param = opr::ConvBias::Param;
    Param param;
    using Policy = opr::ConvBias::ExecutionPolicy;
    using S = Policy::Strategy;

    auto cn = CompNode::load("cpux");

402 403
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::PROFILE | S::REPRODUCIBLE}) {
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444

        auto graph = ComputingGraph::make();
        HostTensorGenerator<> gen;

        auto mkvar = [&](const char* name, const TensorShape& shp,
                         const DType& dtype) {
            return opr::TypeCvt::make(
                    opr::Host2DeviceCopy::make(*graph, gen(shp), cn).rename(name),
                    dtype);
        };

        auto x = mkvar("x", {20, 50, 50, 16}, dtype::Quantized8Asymm(2.5f, static_cast<uint8_t>(0)));
        auto w = mkvar("w", {24, 3, 3, 16}, dtype::Quantized8Asymm(2.5f, static_cast<uint8_t>(0)));
        auto bias = mkvar("bias", {1, 1, 1, 24}, dtype::QuantizedS32(6.25f));

        param.nonlineMode = Param::NonlineMode::RELU;
        param.format = Param::Format::NHWC;

        Policy policy;
        policy.strategy = strategy;

        auto conv_bias = opr::ConvBias::make(
                x, w, bias, param, policy,
                OperatorNodeConfig{dtype::Quantized8Asymm(2.5f, static_cast<uint8_t>(0))});
        HostTensorND host_y;
        auto func = graph->compile({make_callback_copy(conv_bias, host_y)});
        func->execute();
    }
}

TEST(TestOprDNN, ConvolutionExePolicy) {
    Param param{Mode::CONVOLUTION};
    using Policy = opr::Convolution::ExecutionPolicy;
    using S = Policy::Strategy;

    int nr_get = 0;
    auto on_get = [&nr_get](const std::string&, const void*, size_t,
                            const void*, size_t) { ++nr_get; };
    PersistentCacheHook cache_hook{on_get};

#if MGB_ENABLE_FASTRUN
445 446
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
M
Megvii Engine Team 已提交
447
          S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) {
448
#else
449 450
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
#endif
        using Checker = AutoOprChecker<2, 1>;

        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            auto out =
                    opr::Convolution::make(inputs[0], inputs[1], param, policy);
            return {out};
        };

        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            std::shared_ptr<HostTensorND> sh_out;
            convolution_brute({inp.begin(), inp.end()}, sh_out, param);
            dest[0] = *sh_out;
        };

        Checker::RunOptions opt;
        opt.numdiff_eps = 1;
        nr_get = 0;
        Checker(make_graph, fwd)
                .run({TensorShape{3, 2, 10, 6}, {4, 2, 3, 2}}, opt)
                .run({TensorShape{6, 3, 8, 13}, {2, 3, 2, 13}}, opt)
                .run({TensorShape{1, 1, 10, 10}, {2, 1, 3, 3}}, opt);
        if (strategy == S::HEURISTIC) {
            ASSERT_EQ(0, nr_get);
        } else {
            ASSERT_LT(0, nr_get);
        }
    }
}

484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
TEST(TestOprDNN, ConvolutionBackwardDataBfloat16ExePolicy) {
    REQUIRE_GPU(1);
    Param param{Mode::CROSS_CORRELATION, 1, 1, 1, 1};
    param.compute_mode = Param::ComputeMode::FLOAT32;
    using Policy = opr::Convolution::ExecutionPolicy;
    using S = Policy::Strategy;

    auto gen_bfp16 = [](HostTensorND& dest) {
        RNGxorshf rng{next_rand_seed()};
        auto rand_real = [&rng]() {
            std::uniform_real_distribution<float> dist(-1, 1);
            return dist(rng);
        };
        auto ptr = dest.ptr<dt_bfloat16>();
        size_t elems = dest.shape().total_nr_elems();
        for (size_t i = 0; i < elems; i++) {
            ptr[i] = dt_bfloat16(rand_real());
        }
    };

    auto f32_to_bf16 = [](const std::shared_ptr<HostTensorND>& src)
            -> std::shared_ptr<HostTensorND> {
        auto ret = std::make_shared<HostTensorND>(
                src->comp_node(), src->shape(), dtype::BFloat16{});
        for (size_t i = 0; i < src->layout().total_nr_elems(); i++) {
            ret->ptr<dt_bfloat16>()[i] = src->ptr<dt_float32>()[i];
        }
        return ret;
    };

    auto bf16_to_f32 = [](const std::shared_ptr<HostTensorND>& src)
            -> std::shared_ptr<HostTensorND> {
        auto ret = std::make_shared<HostTensorND>(
                src->comp_node(), src->shape(), dtype::Float32{});
        for (size_t i = 0; i < src->layout().total_nr_elems(); i++) {
            ret->ptr<dt_float32>()[i] = src->ptr<dt_bfloat16>()[i];
        }
        return ret;
    };

    int nr_get = 0;
    auto on_get = [&nr_get](const std::string&, const void*, size_t,
                            const void*, size_t) { ++nr_get; };
    PersistentCacheHook cache_hook{on_get};

#if MGB_ENABLE_FASTRUN
530 531 532
    for (auto strategy :
         {S::PROFILE, S::HEURISTIC, S(S::PROFILE | S::REPRODUCIBLE),
          S(S::PROFILE | S::HEURISTIC)}) {
533
#else
534
    for (auto strategy: {S:HEURISTIC, S(S::PROFILE | S::HEURISTIC)}) {
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
#endif
        using Checker = AutoOprChecker<2, 1>;

        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            return {opr::ConvolutionBackwardData::make_deconv(
                    inputs[0], inputs[1], param, policy)};
        };

        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            std::shared_ptr<HostTensorND> out;
            conv_bwd_data_brute(
                    {bf16_to_f32(inp[0]), bf16_to_f32(inp[1])}, out,
                    param);
            dest[0] = *f32_to_bf16(out);
        };

        Checker::RunOptions opt;
        opt.outputs_max_err = 1e-3;
        nr_get = 0;
        Checker(make_graph, fwd)
                .disable_grad_check()
                .set_input_dtype(0, dtype::BFloat16{})
                .set_input_dtype(1, dtype::BFloat16{})
                .set_input_generator(0, gen_bfp16)
                .set_input_generator(1, gen_bfp16)
                .run({TensorShape{3, 4, 10, 6}, {4, 2, 3, 3}}, opt)
                .run({TensorShape{2, 2, 4, 3}, {2, 2, 3, 3}}, opt)
                .run({TensorShape{1, 3, 10, 6}, {3, 2, 3, 3}}, opt);
        if (strategy == S::HEURISTIC) {
            ASSERT_EQ(0, nr_get);
        } else {
            ASSERT_LT(0, nr_get);
        }
    }
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587
TEST(TestOprDNN, Deconvolution) {
    // dilated grouped deconv
    using Checker = AutoOprChecker<2, 1>;

    Param param{Mode::CROSS_CORRELATION, 0, 1, 1, 2};
    param.dilate_h = 2;
    param.sparse = Param::Sparse::GROUP;
    auto make_graph = [&](
            const Checker::SymInpArray &inputs) -> Checker::SymOutArray {
        return {opr::ConvolutionBackwardData::make_deconv(
                inputs[0], inputs[1], param)};
    };

    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
588 589 590
        std::shared_ptr<HostTensorND> out;
        conv_bwd_data_brute({inp[0], inp[1]}, out, param);
        dest[0] = *out;
591 592 593 594 595 596 597 598 599 600
    };

    Checker::RunOptions opt;
    opt.numdiff_eps = 1;
    Checker(make_graph, fwd).
        run({TensorShape{2, 4, 6, 8}, {1, 4, 5, 3, 2}}, opt).
        run({TensorShape{3, 2, 1, 1}, {2, 1, 1, 4, 3}}, opt).
        run({TensorShape{4, 6, 7, 2}, {2, 3, 4, 8, 13}}, opt);
}

601 602 603 604 605 606 607 608 609 610 611
TEST(TestOprDNN, DeconvolutionExePolicy_QuantizedS8) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);

    Param param;
    using Policy = opr::ConvolutionBackwardData::ExecutionPolicy;
    using S = Policy::Strategy;

#if MGB_ENABLE_FASTRUN
612 613 614
    for (auto strategy :
         {S::PROFILE, S::HEURISTIC, S(S::PROFILE | S::REPRODUCIBLE),
          S(S::PROFILE | S::HEURISTIC)}) {
615
#else
616
    for (auto strategy: {S:HEURISTIC, S(S::PROFILE | S::HEURISTIC)}) {
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
#endif
        auto graph = ComputingGraph::make();
        HostTensorGenerator<> gen;

        auto mkvar = [&](const char* name, const TensorShape& shp,
                         const DType& dtype) {
            return opr::TypeCvt::make(
                    opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
                    dtype);
        };

        auto x = mkvar("x", {16, 4, 50, 50, 4}, dtype::QuantizedS8(1.2f));
        auto w = mkvar("w", {16, 4, 4, 4, 4}, dtype::QuantizedS8(1.3f));

        param.format = Param::Format::NCHW4;
        param.pad_h = param.pad_w = 2;
        param.stride_h = param.stride_w = 2;

        Policy policy;
        policy.strategy = strategy;

        auto deconv = opr::ConvolutionBackwardData::make_deconv(
                x, w, param, policy,
                OperatorNodeConfig{dtype::QuantizedS8(1.2f)});
        HostTensorND host_y;
        auto func = graph->compile({make_callback_copy(deconv, host_y)});
        func->execute();
    }
}

647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
TEST(TestOprDNN, ConvolutionBackwardFilter) {
    using Checker = AutoOprChecker<3, 1>;

    constexpr size_t PH = 0, PW = 1, SH = 1, SW = 2;

    auto make_graph = [&](
            const Checker::SymInpArray &inputs) -> Checker::SymOutArray {
        Param param{Mode::CROSS_CORRELATION, PH, PW, SH, SW};
        return {opr::ConvolutionBackwardFilter::make(
                inputs[0], inputs[1], inputs[2], param)};
    };

    auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
        std::shared_ptr<HostTensorND> out;
        conv_bwd_flt_brute({inp[0], inp[1], inp[2]}, out,
                           Param{Mode::CROSS_CORRELATION, PH, PW, SH, SW});
        dest[0] = *out;
    };
665

666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
#define get_shp(N, P, S, F) ((N + 2 * P - F) / S + 1)
#define inp_tensor(N, IC, OC, IH, IW, FH, FW) \
    { TensorShape{N, IC, IH, IW}, \
      {N, OC, get_shp(IH, PH, SH, FH), get_shp(IW, PW, SW, FW)}, \
      {OC, IC, FH, FW} }
    Checker::RunOptions opt;
    opt.numdiff_eps = 1;
    Checker(make_graph, fwd).
        run(inp_tensor(2, 3, 4, 9, 8, 4, 3), opt).
        run(inp_tensor(1, 5, 3, 7, 9, 3, 4), opt).
        run(inp_tensor(3, 4, 4, 9, 9, 3, 3), opt);
#undef inp_tensor
#undef get_shp
}

TEST(TestOprDNN, DilatedConvolution) {
    using Checker = AutoOprChecker<2, 1>;

    opr::ConvolutionForward::Param param;
    param.pad_h = 5;
    param.pad_w = 2;
    param.stride_w = 2;
    param.dilate_h = 2;

    auto make_graph = [&](const Checker::SymInpArray &inputs) ->
        Checker::SymOutArray {
        return {opr::Convolution::make(inputs[0], inputs[1], param)};
    };

    auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
        auto opr = megdnn_naive_handle()->create_operator<
            megdnn::Convolution>();
        opr->param() = param;
        TensorLayout dest_layout;
        opr->deduce_layout(inp[0]->layout(), inp[1]->layout(), dest_layout);
        std::vector<dt_byte> workspace(opr->get_workspace_in_bytes(
702
                    inp[0]->layout(), inp[1]->layout(), dest_layout, nullptr));
703 704
        dest[0].dtype(dtype::Float32()).
            comp_node(inp[0]->comp_node()).resize(dest_layout);
705 706
        opr->exec(inp[0]->as_megdnn(), inp[1]->as_megdnn(), dest[0].as_megdnn(),
                  nullptr, {workspace.data(), workspace.size()});
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
    };
    Checker::RunOptions option;
    option.numdiff_eps = 0.1;

    Checker(make_graph, fwd).
        run({TensorShape{2, 3, 8, 7}, TensorShape{4, 3, 2, 2}}, option).
        run({TensorShape{2, 3, 8, 7}, TensorShape{4, 3, 3, 2}}, option).
        run({TensorShape{2, 3, 8, 9}, TensorShape{4, 3, 3, 2}}, option);
}

TEST(TestOprDNN, GroupConv) {
    using Checker = AutoOprChecker<2, 1>;
    opr::Convolution::Param param;
    param.pad_h = 1;
    param.pad_w = 2;
    param.stride_h = 2;
    auto make_graph = [&](
            const Checker::SymInpArray &inputs) -> Checker::SymOutArray {
        auto p1 = param;
        p1.sparse = opr::Convolution::Param::Sparse::GROUP;
        return {opr::Convolution::make(inputs[0], inputs[1], p1)};
    };

    auto cn = CompNode::load("xpux");
    auto inp0 = std::make_shared<HostTensorND>(cn, dtype::Float32()),
         inp1 = std::make_shared<HostTensorND>(cn, dtype::Float32());
    HostTensorND out_raw;
    auto graph_raw = ComputingGraph::make();
    auto func_raw = graph_raw->compile({
            make_callback_copy(
                    opr::Convolution::make(
                        opr::Host2DeviceCopy::make(*graph_raw, inp0),
                        opr::Host2DeviceCopy::make(*graph_raw, inp1),
                        param),
                    out_raw)});
    auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
        auto &&out = dest[0];
        auto sl = inp[0]->layout(),
             fl = inp[1]->layout().remove_axis(0);
        TensorLayout ol;
        auto group = inp[1]->layout()[0];
        sl.shape[1] /= group;
        for (size_t i = 0; i < group; ++ i) {
            inp0->copy_from(inp[0]->sub(SubTensorSpec::make_from_offset_elem(
                            sl, i * sl[1] * sl[2] * sl[3])));
            inp1->copy_from(inp[1]->sub(SubTensorSpec::make_from_offset_elem(
                            fl, i * fl.total_nr_elems())));
            func_raw->execute();
            if (!i) {
                auto oshp = out_raw.shape();
                oshp[1] *= group;
                out.resize(oshp);
                ol = out.layout();
                ol[1] /= group;
            }
            out.sub(SubTensorSpec::make_from_offset_elem(
                        ol, i * ol[1] * ol[2] * ol[3])).copy_from_fixlayout(
                        out_raw);
        }
    };

    Checker::RunOptions opt;
    opt.numdiff_eps = 1;
    opt.outputs_max_err = 5e-5;
    Checker checker{make_graph, fwd};
    auto run = [&](const TensorShape &ishp,
            size_t fh, size_t fw, size_t oc, size_t group) {
        size_t ic = ishp[1];
        TensorShape flt{group, oc/group, ic/group, fh, fw};
        checker.run({ishp, flt}, opt);
    };
    run({1, 2, 1, 1}, 1, 1, 2, 2);
    run({3, 9, 5, 4}, 1, 2, 6, 3);
    run({3, 6, 8, 9}, 3, 1, 4, 2);
    run({2, 5, 3, 6}, 2, 3, 5, 1);
    run({2, 6, 3, 6}, 2, 3, 6, 6);
}

TEST(TestOprDNN, MaskConvolution) {
    using Checker = AutoOprChecker<3, 1>;
    opr::Convolution::Param param;
    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        return {opr::MaskConvolution::make(inputs[0], inputs[1], inputs[2],
                                           param)};
    };

    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
        std::shared_ptr<HostTensorND> sh_out;
        convolution_brute({inp[0], inp[1]}, sh_out, param);
        dest[0] = *sh_out;
        size_t N = dest[0].shape()[0];
        size_t OC = dest[0].shape()[1];
        size_t OH = dest[0].shape()[2];
        size_t OW = dest[0].shape()[3];
        auto mask_ptr = inp[2]->ptr<int8_t>();
        auto dest_ptr = dest[0].ptr<float>();
        for (size_t i = 0; i < N * OC; ++i) {
            for (size_t mask_idx = 0; mask_idx < OH * OW; ++mask_idx) {
                if (mask_ptr[mask_idx] == 0) {
                    dest_ptr[i * OH * OW + mask_idx] = 0;
                }
            }
        }
    };

    auto gen_mask = [](HostTensorND& dest) {
        HostTensorGenerator<dtype::Int8, RandomDistribution::UNIFORM>
                mask_generator{0, 1};
        dest = *mask_generator(dest.shape(), dest.comp_node());
    };

    auto run_with_param = [&](size_t SH = 1, size_t SW = 1, size_t PH = 0,
                              size_t PW = 0) {
        param.pad_h = PH;
        param.pad_w = PW;
        param.stride_h = SH;
        param.stride_w = SW;
        Checker checker{make_graph, fwd};
        Checker::RunOptions opt;
        checker.set_output_allow_grad(0, false);
        checker.set_input_dtype(2, dtype::Int8());
        checker.set_input_generator(2, gen_mask);
        auto run = [&](size_t N, size_t IC, size_t OC, size_t IH, size_t IW,
                       size_t FH, size_t FW) {
            size_t OH = (IH + 2 * PH - FH) / SH + 1;
            size_t OW = (IW + 2 * PW - FW) / SW + 1;
            checker.run(
                    {TensorShape{N, IC, IH, IW}, {OC, IC, FH, FW}, {OH, OW}},
                    opt);
        };
        run(1, 1, 1, 5, 5, 3, 3);
        run(2, 3, 4, 5, 5, 3, 3);
        run(3, 3, 4, 224, 223, 3, 3);
        run(3, 3, 4, 224, 223, 2, 2);
    };

    run_with_param();
    run_with_param(2, 2, 3, 3);
    run_with_param(3, 2, 1, 2);
    run_with_param(2, 3, 2, 2);
}

TEST(TestOprDNN, MaskPropagate) {
    using Checker = AutoOprChecker<3, 1>;
    opr::MaskPropagate::Param mask_param;
    opr::Convolution::Param conv_param;

    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        auto inp_mask = inputs[2];
        auto out_mask = opr::MaskPropagate::make(inp_mask, mask_param);
        return {opr::MaskConvolution::make(inputs[0], inputs[1], out_mask,
                                           conv_param)};
    };

    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
        auto& src = *inp[0];
        auto& mask = *inp[2];
        auto src_ptr = inp[0]->ptr<float>();
        auto mask_ptr = inp[2]->ptr<int>();
        mgb_assert(src.shape()[2] == mask.shape()[0] &&
                   src.shape()[3] == mask.shape()[1]);
        for (size_t i = 0; i < src.shape()[0] * src.shape()[1]; ++i) {
            for (size_t mask_idx = 0;
                 mask_idx < src.shape()[2] * src.shape()[3]; ++mask_idx) {
                if (mask_ptr[mask_idx] == 0) {
                    src_ptr[i * src.layout().stride[1] + mask_idx] = 0;
                }
            }
        }
        std::shared_ptr<HostTensorND> sh_out;
        convolution_brute({inp[0], inp[1]}, sh_out, conv_param);
        dest[0] = *sh_out;
    };

    auto gen_mask = [](HostTensorND& dest) {
        HostTensorGenerator<dtype::Int32, RandomDistribution::UNIFORM>
                mask_generator{0, 1};
        dest = *mask_generator(dest.shape(), dest.comp_node());
    };

    auto run_with_param = [&](size_t FH, size_t FW, size_t SH = 1,
                              size_t SW = 1, size_t PH = 0, size_t PW = 0,
                              size_t DH = 1, size_t DW = 1) {
        conv_param.pad_h = PH;
        conv_param.pad_w = PW;
        conv_param.stride_h = SH;
        conv_param.stride_w = SW;
        conv_param.dilate_h = DH;
        conv_param.dilate_w = DW;

        mask_param.pad_h = PH;
        mask_param.pad_w = PW;
        mask_param.stride_h = SH;
        mask_param.stride_w = SW;
        mask_param.kernel_h = FH;
        mask_param.kernel_w = FW;
        mask_param.dilate_h = DH;
        mask_param.dilate_w = DW;

        Checker checker{make_graph, fwd};
        Checker::RunOptions opt;
        checker.set_output_allow_grad(0, false);
        checker.set_input_dtype(2, dtype::Int32());
        checker.set_input_generator(2, gen_mask);
        auto run = [&](size_t N, size_t IC, size_t OC, size_t IH, size_t IW) {
            checker.run(
                    {TensorShape{N, IC, IH, IW}, {OC, IC, FH, FW}, {IH, IW}},
                    opt);
        };
        run(1, 1, 1, 5, 5);
        run(2, 3, 4, 5, 5);
        run(3, 3, 4, 224, 223);
        run(3, 3, 4, 224, 223);
    };

    run_with_param(3, 3, 1, 1, 0, 0, 2, 2);
    run_with_param(3, 3, 2, 2, 3, 3);
    run_with_param(4, 2, 3, 2, 1, 2);
    run_with_param(2, 4, 2, 3, 2, 2);
    run_with_param(4, 2, 3, 2, 1, 2, 2, 2);
    run_with_param(2, 4, 2, 3, 2, 2, 2, 1);
}
void convolution3d_brute(const std::vector<std::shared_ptr<HostTensorND>> &in_tensor,
        std::shared_ptr<HostTensorND> &out_tensor,
        const opr::Convolution3D::Param &param)
{
    mgb_assert(in_tensor.size() == 2);
    auto in = in_tensor[0], filter = in_tensor[1];
    mgb_assert(in->shape().ndim == 5);
    mgb_assert(filter->shape().ndim == 5);

    int batch_size = in->shape().shape[0];
    int ic = in->shape().shape[1];
    int id = in->shape().shape[2];
    int ih = in->shape().shape[3];
    int iw = in->shape().shape[4];

    int fd = filter->shape().shape[2];
    int fh = filter->shape().shape[3];
    int fw = filter->shape().shape[4];

    int pd = param.pad_d;
    int ph = param.pad_h;
    int pw = param.pad_w;

    int sd = param.stride_d;
    int sh = param.stride_h;
    int sw = param.stride_w;

    int dd = param.dilate_d;
    int dh = param.dilate_h;
    int dw = param.dilate_w;

    mgb_assert(id + 2*pd >= (fd - 1) * dd + 1);
    mgb_assert(ih + 2*ph >= (fh - 1) * dh + 1);
    mgb_assert(iw + 2*pw >= (fw - 1) * dw + 1);
    int od = (id + 2*pd - ((fd - 1) * dd + 1)) / sd + 1;
    int oh = (ih + 2*ph - ((fh - 1) * dh + 1)) / sh + 1;
    int ow = (iw + 2*pw - ((fw - 1) * dw + 1)) / sw + 1;
    mgb_assert(static_cast<size_t>(ic) == filter->shape().shape[1]);
    int oc = filter->shape().shape[0];

    out_tensor = std::make_shared<HostTensorND>(CompNode::load("xpu0"),
            TensorShape{
            static_cast<size_t>(batch_size),
            static_cast<size_t>(oc),
            static_cast<size_t>(od),
            static_cast<size_t>(oh),
            static_cast<size_t>(ow)});

    int pn, poc, pod, poh, pow,
            pic, pid, pih, piw,
                 pfd, pfh, pfw;
    for (pn = 0; pn < batch_size; ++pn)
    for (poc = 0; poc < oc; ++poc)
    for (pod = 0, pid = -pd; pod < od; ++pod, pid += sd)
    for (poh = 0, pih = -ph; poh < oh; ++poh, pih += sh)
    for (pow = 0, piw = -pw; pow < ow; ++pow, piw += sw)
    {
        float &target = out_tensor->ptr<float>({
                static_cast<size_t>(pn),
                static_cast<size_t>(poc),
                static_cast<size_t>(pod),
                static_cast<size_t>(poh),
                static_cast<size_t>(pow)})[0];
        target = 0;
        for (pic = 0; pic < ic; ++pic)
        for (pfd = 0; pfd < fd; ++pfd)
        for (pfh = 0; pfh < fh; ++pfh)
        for (pfw = 0; pfw < fw; ++pfw)
        {
            int prid, prih, priw;
            float img_data, filter_data;
            if (param.mode == opr::Convolution3D::Param::Mode::CONVOLUTION) {
                prid = pid + (fd - pfd - 1) * dd;
                prih = pih + (fh - pfh - 1) * dh;
                priw = piw + (fw - pfw - 1) * dw;
            } else {
                mgb_assert(param.mode == opr::Convolution3D::Param::Mode::CROSS_CORRELATION);
                prid = pid + pfd * dd;
                prih = pih + pfh * dh;
                priw = piw + pfw * dw;
            }
            if (prid >= 0 && prid < id &&
                prih >= 0 && prih < ih &&
                priw >= 0 && priw < iw) {
                img_data = in_tensor[0]->ptr<float>({
                        static_cast<size_t>(pn),
                        static_cast<size_t>(pic),
                        static_cast<size_t>(prid),
                        static_cast<size_t>(prih),
                        static_cast<size_t>(priw)})[0];
            } else {
                img_data = 0;
            }
            filter_data = filter->ptr<float>({
                    static_cast<size_t>(poc),
                    static_cast<size_t>(pic),
                    static_cast<size_t>(pfd),
                    static_cast<size_t>(pfh),
                    static_cast<size_t>(pfw)})[0];
            target += img_data * filter_data;
        }
    }
}
TEST(TestOprDNN, Convolution3DForward) {
    for (uint32_t batch_size : {8})
    for (uint32_t id : {12})
    for (uint32_t fd : {1, 3})
    for (uint32_t ic : {4})
    for (uint32_t oc : {ic})
    for (uint32_t pd : {0, 2})
    for (uint32_t sd : {1, 3})
    for (uint32_t dd : {1, 3})
    for (bool xcorr : {0, 1}) {
        uint32_t ih = id + 1, fh = fd, ph = pd + 1, sh = sd + 1;
        uint32_t iw = ih + 1, fw = fh, pw = ph + 1, sw = sh + 1;
        Param3D param{xcorr ? Param3D::Mode::CROSS_CORRELATION :
            Param3D::Mode::CONVOLUTION , pd, ph, pw,
                sd, sh, sw, dd, dd, dd};
        // !!! DEPRECATED. use AutoOprChecker instead.
        opr::test::ForwardChecker<opr::Convolution3D, 2> forward_checker({
                {batch_size, ic, id, ih, iw},
                {oc, ic, fd, fh, fw}},
                convolution3d_brute, param);
        forward_checker.run();
    }
}

TEST(TestOprDNN, Convolution3DBackward) {
    for (uint32_t batch_size : {8})
    for (uint32_t id : {12})
    for (uint32_t fd : {1, 3})
    for (uint32_t ic : {4})
    for (uint32_t oc : {ic})
    for (uint32_t pd : {0, 2})
    for (uint32_t sd : {1, 3})
    for (uint32_t dd : {1, 3})
    for (bool xcorr : {0, 1}) {
        uint32_t ih = id + 1, fh = fd, ph = pd + 1, sh = sd + 1;
        uint32_t iw = ih + 1, fw = fh, pw = ph + 1, sw = sh + 1;
        Param3D param{xcorr ? Param3D::Mode::CROSS_CORRELATION :
            Param3D::Mode::CONVOLUTION,
                pd, ph, pw, sd, sh, sw, dd, dd, dd};
        // !!! DEPRECATED. use AutoOprChecker instead.
        opr::test::BackwardChecker<opr::Convolution3D, 2> backward_checker(
                {{batch_size, ic, id, ih, iw},
                {oc, ic, fd, fh, fw}}, param, 1e-2, 1);
        backward_checker.run();
    }
}

TEST(TestOprDNN, GroupConv3D) {
    using Checker = AutoOprChecker<2, 1>;
    opr::Convolution3D::Param param;
    param.pad_d = 0;
    param.pad_h = 1;
    param.pad_w = 0;
    param.stride_d = 1;
    param.stride_h = 2;
    auto make_graph = [&](
            const Checker::SymInpArray &inputs) -> Checker::SymOutArray {
        auto p1 = param;
        p1.sparse = opr::Convolution3D::Param::Sparse::GROUP;
        return {opr::Convolution3D::make(inputs[0], inputs[1], p1)};
    };

    auto cn = CompNode::load("xpux");
    auto inp0 = std::make_shared<HostTensorND>(cn, dtype::Float32()),
         inp1 = std::make_shared<HostTensorND>(cn, dtype::Float32());
    HostTensorND out_raw;
    auto graph_raw = ComputingGraph::make();
    auto func_raw = graph_raw->compile({
            make_callback_copy(
                    opr::Convolution3D::make(
                        opr::Host2DeviceCopy::make(*graph_raw, inp0),
                        opr::Host2DeviceCopy::make(*graph_raw, inp1),
                        param),
                    out_raw)});
    auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
        auto &&out = dest[0];
        auto sl = inp[0]->layout(),
             fl = inp[1]->layout().remove_axis(0);
        TensorLayout ol;
        auto group = inp[1]->layout()[0];
        sl.shape[1] /= group;
        for (size_t i = 0; i < group; ++ i) {
            inp0->copy_from(inp[0]->sub(SubTensorSpec::make_from_offset_elem(
                            sl, i * sl[1] * sl[2] * sl[3] * sl[4])));
            inp1->copy_from(inp[1]->sub(SubTensorSpec::make_from_offset_elem(
                            fl, i * fl.total_nr_elems())));
            func_raw->execute();
            if (!i) {
                auto oshp = out_raw.shape();
                oshp[1] *= group;
                out.resize(oshp);
                ol = out.layout();
                ol[1] /= group;
            }
            out.sub(SubTensorSpec::make_from_offset_elem(
                ol, i * ol[1] * ol[2] * ol[3] * ol[4])).
                copy_from_fixlayout(out_raw);
        }
    };

    Checker::RunOptions opt;
    opt.numdiff_eps = 1;
    opt.outputs_max_err = 5e-5;
    Checker checker{make_graph, fwd};
    auto run = [&](const TensorShape &ishp,
            size_t fd, size_t fh, size_t fw, size_t oc, size_t group) {
        size_t ic = ishp[1];
        TensorShape flt{group, oc/group, ic/group, fd, fh, fw};
        checker.
            run({ishp, flt}, opt);
    };
    run({1, 2, 1, 1, 1}, 1, 1, 1, 2, 2);
    run({3, 9, 5, 4, 3}, 1, 2, 3, 6, 3);
    run({2, 1, 3, 6, 9}, 2, 3, 3, 5, 1);
    run({2, 1, 3, 6, 9}, 2, 3, 3, 5, 1);
}

TEST(TestOprDNN, Deconvolution3D) {
    using Checker = AutoOprChecker<2, 1>;
    Param3D param{Param3D::Mode::CROSS_CORRELATION, 0, 1, 1, 1, 2, 2};
    param.sparse = Param3D::Sparse::GROUP;
    auto make_graph = [&](
            const Checker::SymInpArray &inputs) -> Checker::SymOutArray {
        return {opr::Convolution3DBackwardData::make_deconv(
                inputs[0], inputs[1], param)};
    };

    auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
        auto &&data = *inp[0], &&filter = *inp[1];
        size_t N = data.shape(0),
               ID = data.shape(2), IH = data.shape(3), IW = data.shape(4),
               GROUP = filter.shape(0),
               ICPG = filter.shape(1), OCPG = filter.shape(2),
               FD = filter.shape(3), FH = filter.shape(4), FW = filter.shape(5);
        auto &&out = dest[0];
        auto get_shp = [](
                size_t inp, size_t filter, size_t stride, size_t pad,
                size_t dilate) {
            return (inp - 1) * stride + (filter - 1) * dilate + 1 - pad * 2;
        };
        size_t OD = get_shp(ID, FD,
                        param.stride_d, param.pad_d, param.dilate_d),
               OH = get_shp(IH, FH,
                        param.stride_h, param.pad_h, param.dilate_h),
               OW = get_shp(IW, FW,
                        param.stride_w, param.pad_w, param.dilate_w);
        out.resize({N, OCPG * GROUP, OD, OH, OW});
        auto fptr = filter.ptr<float>(),
             dptr = data.ptr<float>(),
             optr = out.ptr<float>();
        memset(optr, 0, sizeof(float) * out.shape().total_nr_elems());
        auto ol = out.layout(), fl = filter.layout();
#define FOR2(a, A, b, B) \
        for (size_t a = 0; a < A; ++ a) \
        for (size_t b = 0; b < B; ++ b)
#define FOR3(a, A, b, B, c, C) \
        FOR2(a, A, b, B) \
        for (size_t c = 0; c < C; ++ c)
#define FOR4(a, A, b, B, c, C, d, D) \
        FOR3(a, A, b, B, c, C) \
        for (size_t d = 0; d < D; ++ d)
        FOR3(n, N, group, GROUP, icg, ICPG)
        FOR3(id, ID, ih, IH, iw, IW) {
            float scale = *(dptr ++);
            FOR4(ocg, OCPG, fd, FD, fh, FH, fw, FW) {
                auto oc_tot = group * OCPG + ocg;
                int od = int(id * param.stride_d +
                            fd * param.dilate_d) - int(param.pad_d),
                    oh = int(ih * param.stride_h +
                            fh * param.dilate_h) - int(param.pad_h),
                    ow = int(iw * param.stride_w +
                            fw * param.dilate_w) - int(param.pad_w);
                if (od >= 0 && oh >= 0 && ow >= 0 &&
                        od < static_cast<int>(OD) &&
                        oh < static_cast<int>(OH) &&
                        ow < static_cast<int>(OW)) {
                    auto out_off = n * ol.stride[0] + oc_tot * ol.stride[1] +
                                   od * ol.stride[2] + oh * ol.stride[3] + ow,
                         flt_off = group * fl.stride[0] + icg * fl.stride[1] +
                             ocg * fl.stride[2] + fd * fl.stride[3] +
                             fh * fl.stride[4] + fw;
                    optr[out_off] += scale * fptr[flt_off];
                }
            }
        }
#undef FOR4
#undef FOR3
#undef FOR2
    };

    Checker::RunOptions opt;
    opt.numdiff_eps = 1;
    Checker(make_graph, fwd).
        run({TensorShape{2, 4, 3, 3, 2}, {1, 4, 5, 3, 2, 2}}, opt).
        run({TensorShape{3, 2, 1, 1, 1}, {2, 1, 1, 4, 3, 3}}, opt).
        run({TensorShape{4, 6, 2, 2, 2}, {2, 3, 4, 6, 5, 4}}, opt);
}

TEST(TestOprDNN, Convolution3DExePolicy) {
    Param3D param{Param3D::Mode::CONVOLUTION};
    using Policy = opr::Convolution3D::ExecutionPolicy;
    using S = Policy::Strategy;

#if MGB_ENABLE_FASTRUN
1238 1239 1240
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
          S::PROFILE | S::HEURISTIC}) {
1241
#else
1242 1243
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
#endif

        using Checker = AutoOprChecker<2, 1>;

        auto make_graph = [&](const Checker::SymInpArray &inputs) ->
                Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            auto out = opr::Convolution3D::make(
                    inputs[0], inputs[1], param, policy);
            return {out};
        };

        auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) {
            std::shared_ptr<HostTensorND> sh_out;
            convolution3d_brute({inp.begin(), inp.end()}, sh_out, param);
            dest[0] = *sh_out;
        };

        Checker::RunOptions opt;
        opt.numdiff_eps = 1;
        Checker(make_graph, fwd).
            run({TensorShape{3, 2, 3, 4, 1}, {4, 2, 2, 2, 1}}, opt).
            run({TensorShape{3, 3, 2, 6, 2}, {2, 3, 1, 4, 1}}, opt).
            run({TensorShape{1, 1, 4, 4, 4}, {2, 1, 3, 3, 3}}, opt);
    }
}

TEST(TestOprDNN, ConvBiasForward) {
    using Checker2 = AutoOprChecker<2, 1>;
    using Checker3 = AutoOprChecker<3, 1>;
    opr::ConvBiasForward::Param param;
    auto make_graph2 =
            [&](const Checker2::SymInpArray& inputs) -> Checker2::SymOutArray {
        return {opr::ConvBiasForward::make(inputs[0], inputs[1], param)};
    };

    auto make_graph3 =
            [&](const Checker3::SymInpArray& inputs) -> Checker3::SymOutArray {
        return {opr::ConvBiasForward::make(inputs[0], inputs[1], inputs[2],
                                           param)};
    };

    auto fwd2 = [&](Checker2::NumOutArray& dest, Checker2::NumInpArray inp) {
        std::shared_ptr<HostTensorND> sh_out;
        convolution_brute({inp[0], inp[1]}, sh_out,
                          convert_to_conv_param(param));
        dest[0] = *sh_out;
    };


    auto fwd3 = [&](Checker3::NumOutArray& dest, Checker3::NumInpArray inp) {
        std::shared_ptr<HostTensorND> sh_out;
        convolution_brute({inp[0], inp[1]}, sh_out,
                          convert_to_conv_param(param));
        dest[0] = *sh_out;
        size_t N = dest[0].shape()[0];
        size_t OC = dest[0].shape()[1];
        size_t OH = dest[0].shape()[2];
        size_t OW = dest[0].shape()[3];
        auto dest_ptr = dest[0].ptr<float>();
        for (size_t i = 0; i < N; i++) {
            auto bias_ptr = inp[2]->ptr<float>();
            for (size_t c = 0; c < OC; c++) {
                for (size_t hw = 0; hw < OH * OW; hw++) {
                    *(dest_ptr++) += *(bias_ptr);
                }
                bias_ptr++;
            }
        }
    };

    auto run_with_param = [&](size_t SH = 1, size_t SW = 1, size_t PH = 0,
                              size_t PW = 0) {
        param.pad_h = PH;
        param.pad_w = PW;
        param.stride_h = SH;
        param.stride_w = SW;
        Checker2 checker2{make_graph2, fwd2};
        Checker2::RunOptions opt2;
        checker2.set_output_allow_grad(0, false);
        Checker3 checker3{make_graph3, fwd3};
        Checker3::RunOptions opt3;
        checker3.set_output_allow_grad(0, false);

        auto run = [&](size_t N, size_t IC, size_t OC, size_t IH, size_t IW,
                       size_t FH, size_t FW) {
            auto opr = megdnn_naive_handle()
                               ->create_operator<megdnn::ConvolutionForward>();
            opr->param() = convert_to_conv_param(param);
            TensorLayout dest_layout;
            opr->deduce_layout({{N, IC, IH, IW}, dtype::Float32()},
                               {{OC, IC, FH, FW}, dtype::Float32()},
                               dest_layout);
            checker2.run({TensorShape{N, IC, IH, IW}, {OC, IC, FH, FW}}, opt2);

            checker3.run({TensorShape{N, IC, IH, IW},
                          {OC, IC, FH, FW},
                          {1, OC, 1, 1}},
                         opt3);
        };
1345
        run(1, 1, 1, 5, 5, 1, 1);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
        run(1, 1, 1, 5, 5, 3, 3);
        run(2, 3, 4, 5, 5, 3, 3);
        run(3, 3, 4, 224, 223, 3, 3);
        run(3, 3, 4, 224, 223, 2, 2);
    };
    run_with_param();
    run_with_param(2, 2, 3, 3);
    run_with_param(3, 2, 1, 2);
    run_with_param(2, 3, 2, 2);
}

TEST(TestOprDNN, ConvBiasForwardWithZ) {
    REQUIRE_GPU(1);
    using Checker4 = AutoOprChecker<4, 1>;
    opr::ConvBiasForward::Param param;

    auto make_graph4 =
            [&](const Checker4::SymInpArray& inputs) -> Checker4::SymOutArray {
        return {opr::ConvBiasForward::make(inputs[0], inputs[1], inputs[2],
                                           inputs[3], param)};
    };

    auto fwd4 = [&](Checker4::NumOutArray& dest, Checker4::NumInpArray inp) {
        std::shared_ptr<HostTensorND> sh_out;
        convolution_brute({inp[0], inp[1]}, sh_out,
                          convert_to_conv_param(param));
        dest[0] = *sh_out;
        size_t N = dest[0].shape()[0];
        size_t OC = dest[0].shape()[1];
        size_t OH = dest[0].shape()[2];
        size_t OW = dest[0].shape()[3];
        auto dest_ptr = dest[0].ptr<float>();
        float* z_ptr = inp[3]->ptr<float>();

        for (size_t i = 0; i < N; i++) {
            auto bias_ptr = inp[2]->ptr<float>();
            for (size_t c = 0; c < OC; c++) {
                for (size_t hw = 0; hw < OH * OW; hw++) {
                    *(dest_ptr++) += *(bias_ptr) + *(z_ptr++);
                }
                bias_ptr++;
            }
        }
    };

    auto run_with_param = [&](size_t SH = 1, size_t SW = 1, size_t PH = 0,
                              size_t PW = 0) {
        param.pad_h = PH;
        param.pad_w = PW;
        param.stride_h = SH;
        param.stride_w = SW;
        Checker4 checker4{make_graph4, fwd4};
        Checker4::RunOptions opt4;
        checker4.set_output_allow_grad(0, false);

        auto run = [&](size_t N, size_t IC, size_t OC, size_t IH, size_t IW,
                       size_t FH, size_t FW) {
            auto opr = megdnn_naive_handle()
                               ->create_operator<megdnn::ConvolutionForward>();
            opr->param() = convert_to_conv_param(param);
            TensorLayout dest_layout;
            opr->deduce_layout({{N, IC, IH, IW}, dtype::Float32()},
                               {{OC, IC, FH, FW}, dtype::Float32()},
                               dest_layout);
            checker4.run({TensorShape{N, IC, IH, IW},
                          {OC, IC, FH, FW},
                          {1, OC, 1, 1},
                          {N, OC, dest_layout[2], dest_layout[3]}},
                         opt4);
        };
        run(1, 1, 1, 5, 5, 3, 3);
        run(2, 3, 4, 5, 5, 3, 3);
        run(3, 3, 4, 224, 223, 3, 3);
        run(3, 3, 4, 224, 223, 2, 2);
    };
    run_with_param();
    run_with_param(2, 2, 3, 3);
    run_with_param(3, 2, 1, 2);
    run_with_param(2, 3, 2, 2);
}

TEST(TestOprDNN, ConvBiasINT8x8xX_NCHW4) {
    using Checker = AutoOprChecker<3, 1>;
    using Param = opr::ConvBias::Param;
    opr::ConvBiasForward::Param param;

    auto make_quantized = [&](SymbolVar x, const DType& dtype) {
        return opr::TypeCvt::make(x, dtype);
    };
    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        auto conv_param = convert_to_conv_param(param);
        auto y = opr::Convolution::make(
                make_quantized(inputs[0], dtype::QuantizedS8(0.3f)),
                make_quantized(inputs[1], dtype::QuantizedS8(0.1f)), conv_param);
        y = y + make_quantized(inputs[2], dtype::QuantizedS32(0.03f));
        if (param.nonlineMode == Param::NonlineMode::RELU)
            y = opr::Elemwise::make(
                    {y}, {opr::Elemwise::Mode::RELU});
        y = opr::TypeCvt::make(y, dtype::QuantizedS8(0.5f));
        return {opr::TypeCvt::make(y, dtype::Float32())};
    };
    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
        auto graph = ComputingGraph::make();
        Checker::SymInpArray inputs;
        for (size_t i = 0; i < inp.size(); ++i) {
            inputs[i] = opr::Host2DeviceCopy::make(
                    *graph, inp[i]);
        }

1456 1457
        auto options = gopt::OptimizeForInferenceOptions{};
        options.enable_fuse_conv_bias_nonlinearity();
1458
        auto y = gopt::optimize_for_inference({make_graph(inputs)[0]},
1459
                                              options)[0];
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
        auto func = graph->compile({make_callback_copy(y, dest[0])});
        func->execute();
        func->wait();
    };

    auto run_with_param = [&](size_t SH = 1, size_t SW = 1, size_t PH = 0,
                              size_t PW = 0, size_t group = 1) {
        param.pad_h = PH;
        param.pad_w = PW;
        param.stride_h = SH;
        param.stride_w = SW;
        param.format = Param::Format::NCHW4;
        if (group != 1)
            param.sparse = Param::Sparse::GROUP;
        Checker checker{make_graph, fwd, CompNode::load("cpu0")};
        Checker::RunOptions opt;
        checker.set_output_allow_grad(0, false);
        auto run = [&](size_t N, size_t IC, size_t OC, size_t IH, size_t IW,
                       size_t FH, size_t FW) {

            mgb_assert(IC % 4 == 0 && OC % 4 == 0);
            checker.run({TensorShape{N, group * IC / 4, IH, IW, 4},
                         {group, OC, IC / 4, FH, FW, 4},
                         {1, group * OC / 4, 1, 1, 4}},
                        opt);
        };
        run(1, 8, 8, 56, 56, 3, 3);
        run(1, 8, 8, 56, 56, 3, 3);
        run(1, 8, 8, 56, 56, 3, 3);
    };
    run_with_param(1, 1, 1, 1, 8);
    run_with_param();
    run_with_param(2, 2, 3, 3);
    run_with_param(3, 2, 1, 2);
    run_with_param(2, 3, 2, 2);
}


TEST(TestOprDNN, ConvolutionDTypeInference) {
    Param param;
    param.mode = Mode::CONVOLUTION;

    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    HostTensorND inp_host{
            cn, {1, 3, 7, 7}, dtype::Quantized8Asymm(0.233f, (uint8_t)123)};
    HostTensorND filt_host{
            cn, {8, 3, 1, 1}, dtype::Quantized8Asymm(0.874f, (uint8_t)234)};
    auto inp = opr::ImmutableTensor::make(*graph, inp_host);
    auto filt = opr::ImmutableTensor::make(*graph, filt_host);
    auto opr = opr::Convolution::make(inp, filt, param);
    ASSERT_EQ(opr.dtype().enumv(), DTypeEnum::QuantizedS32);
    // This has to be EQ instead of NEAR
    EXPECT_EQ(opr.dtype().param<dtype::QuantizedS32>().scale, 0.233f * 0.874f);

    inp_host = {cn, {1, 3, 7, 7}, dtype::QuantizedS8(0.1234f)};
    filt_host = {cn, {8, 3, 1, 1}, dtype::QuantizedS8(0.2345f)};
    inp = opr::ImmutableTensor::make(*graph, inp_host);
    filt = opr::ImmutableTensor::make(*graph, filt_host);
    opr = opr::Convolution::make(inp, filt, param);
    ASSERT_EQ(opr.dtype().enumv(), DTypeEnum::QuantizedS32);
    EXPECT_EQ(opr.dtype().param<dtype::QuantizedS32>().scale,
              0.1234f * 0.2345f);

    inp_host = {cn, {1, 3, 7, 7}, dtype::Int8()};
    filt_host = {cn, {8, 3, 1, 1}, dtype::Int8()};
    inp = opr::ImmutableTensor::make(*graph, inp_host);
    filt = opr::ImmutableTensor::make(*graph, filt_host);
    opr = opr::Convolution::make(inp, filt, param);
    ASSERT_EQ(opr.dtype().enumv(), DTypeEnum::Int32);
}

TEST(TestOprDNN, ConvBiasINT8x8xXDTypeInference) {
    float inp_scale = 1.926f;
    float filt_scale = 0.817f;
    float bias_scale = inp_scale * filt_scale;
    opr::ConvBias::Param param;
    param.mode = Mode::CONVOLUTION;

    auto cn = CompNode::load("cpu0");
    auto graph = ComputingGraph::make();
    HostTensorND inp_host{cn, {1, 3, 7, 7}, dtype::QuantizedS8(inp_scale)};
    HostTensorND filt_host{cn, {8, 3, 1, 1}, dtype::QuantizedS8(filt_scale)};
    DType output_dtype = dtype::QuantizedS8(bias_scale);
    HostTensorND bias_host{cn, {1, 3, 7, 7}, dtype::QuantizedS32(bias_scale)};
    auto inp = opr::ImmutableTensor::make(*graph, inp_host);
    auto filt = opr::ImmutableTensor::make(*graph, filt_host);
    auto bias = opr::ImmutableTensor::make(*graph, filt_host);
    auto opr = opr::ConvBiasForward::make(inp, filt, bias, param,
            {}, OperatorNodeConfig{output_dtype});
    ASSERT_EQ(opr.dtype().enumv(), DTypeEnum::QuantizedS8);
    EXPECT_EQ(opr.dtype().param<dtype::QuantizedS8>().scale, bias_scale);
}

TEST(TestOprDNN, ConvBiasINT8x8xXSerialization) {
    using namespace serialization;

    float inp_scale = 1.926f;
    float filt_scale = 0.817f;
    float bias_scale = inp_scale * filt_scale;
    DType output_dtype = dtype::QuantizedS8(bias_scale);

    auto fname = output_file("ConvBiasINT8x8xXTest");
    auto dump = [&]() {
        opr::ConvBias::Param param;
        param.mode = Mode::CONVOLUTION;

        auto cn = CompNode::load("cpu0");
        auto graph = ComputingGraph::make();
        HostTensorND inp_host{cn, {1, 3, 7, 7}, dtype::QuantizedS8(inp_scale)};
        HostTensorND filt_host{
                cn, {8, 3, 1, 1}, dtype::QuantizedS8(filt_scale)};
        HostTensorND bias_host{
                cn, {1, 3, 7, 7}, dtype::QuantizedS32(bias_scale)};
        auto inp = opr::ImmutableTensor::make(*graph, inp_host);
        auto filt = opr::ImmutableTensor::make(*graph, filt_host);
        auto bias = opr::ImmutableTensor::make(*graph, filt_host);
        auto opr = opr::ConvBiasForward::make(inp, filt, bias, param,
                {},
                                              OperatorNodeConfig{output_dtype});
        auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()));
        auto rst = dumper->dump({opr});
        ASSERT_EQ(rst.outputs.size(), 1u);
    };

    auto load = [&]() {
        auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()));
        auto rst = loader->load();
        ASSERT_EQ(rst.output_var_list.size(), 1u);
        EXPECT_EQ(rst.output_var_list[0].dtype(), output_dtype);
    };

    dump();
    load();
}

TEST(TestOprDNN, LocalShareForward) {
    REQUIRE_GPU(1);
    using Checker = AutoOprChecker<2, 1>;
    using Param = opr::LocalShare::Param;
    Param param;
    param.mode = Param::Mode::CROSS_CORRELATION;
    param.sparse = Param::Sparse::DENSE;
    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        return {opr::LocalShare::make(inputs[0], inputs[1], param)};
    };

    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
        mgb_assert(inp.size() == 2);
        mgb_assert(dest.size() == 1);
        std::shared_ptr<HostTensorND> out;
        local_share_brute({inp[0], inp[1]}, out, param);
        dest[0] = *out;
    };

    auto run_with_param = [&](size_t fh = 3, size_t fw = 3, size_t sh = 1,
                              size_t sw = 1, size_t sgh = 3, size_t sgw = 3) {
        size_t ph = fh / 2, pw = fw / 2;
        param.pad_h = ph, param.pad_w = pw;
        param.stride_h = sh, param.stride_w = sw, param.spatial_groups_h = sgh,
        param.spatial_groups_w = sgw;
        Checker checker{make_graph, fwd};
        Checker::RunOptions opt;
        checker.set_output_allow_grad(0, false);
        checker.set_input_dtype(0, dtype::Float32());
        checker.set_input_dtype(1, dtype::Float32());
        auto run = [&](size_t n, size_t ci, size_t co, size_t hi, size_t wi) {
            size_t ho = (hi + 2 * ph - fh) / sh + 1;
            size_t wo = (wi + 2 * pw - fw) / sw + 1;
            if (ho % sgh != 0 || wo % sgw != 0)
                return;
            checker.run({TensorShape{n, ci, hi, wi},
                         TensorShape{sgh, sgw, ci, fh, fw, co}},
                        opt);
        };
        run(32, 2, 7, 24, 24);
        run(16, 2, 7, 24, 24);
        run(32, 2, 8, 12, 12);
        run(16, 2, 9, 6, 6);
    };
    run_with_param(1, 1, 1, 1, 3, 3);
    run_with_param(3, 3, 1, 1, 2, 2);
    run_with_param(5, 5, 1, 1, 2, 2);
    run_with_param(7, 7, 1, 1, 2, 2);
    run_with_param(1, 1, 2, 2, 3, 3);
    run_with_param(3, 3, 2, 2, 2, 2);
    run_with_param(5, 5, 1, 1, 2, 2);
    run_with_param(7, 7, 1, 1, 2, 2);
}

TEST(TestOprDNN, LocalShareForwardGrad) {
    REQUIRE_GPU(1);
    using Checker = AutoOprChecker<2, 1>;
    using Param = opr::LocalShare::Param;
    Param param;
    param.mode = Param::Mode::CROSS_CORRELATION;
    param.sparse = Param::Sparse::DENSE;
    auto make_graph =
            [&](const Checker::SymInpArray& inputs) -> Checker::SymOutArray {
        return {opr::LocalShare::make(inputs[0], inputs[1], param)};
    };

    auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
        mgb_assert(inp.size() == 2);
        mgb_assert(dest.size() == 1);
        std::shared_ptr<HostTensorND> out;
        local_share_brute({inp[0], inp[1]}, out, param);
        dest[0] = *out;
    };

    auto run_with_param = [&](size_t fh = 3, size_t fw = 3, size_t sh = 1,
                              size_t sw = 1, size_t sgh = 3, size_t sgw = 3) {
        size_t ph = fh / 2, pw = fw / 2;
        param.pad_h = ph, param.pad_w = pw;
        param.stride_h = sh, param.stride_w = sw, param.spatial_groups_h = sgh,
        param.spatial_groups_w = sgw;
        Checker checker{make_graph, fwd};
        Checker::RunOptions opt;
        checker.set_output_allow_grad(0, true);
        opt.numdiff_max_err = 1e-1;
        checker.set_input_dtype(0, dtype::Float32());
        checker.set_input_dtype(1, dtype::Float32());
        auto run = [&](size_t n, size_t ci, size_t co, size_t hi, size_t wi) {
            size_t ho = (hi + 2 * ph - fh) / sh + 1;
            size_t wo = (wi + 2 * pw - fw) / sw + 1;
            if (ho % sgh != 0 || wo % sgw != 0)
                return;
            checker.run({TensorShape{n, ci, hi, wi},
                         TensorShape{sgh, sgw, ci, fh, fw, co}},
                        opt);
        };
        run(4, 2, 8, 24, 24);
        run(8, 2, 4, 6, 6);
        run(16, 4, 8, 12, 12);
        run(4, 4, 8, 12, 12);
    };
    run_with_param(1, 1, 1, 1, 3, 3);
    run_with_param(1, 1, 2, 2, 3, 3);
    run_with_param(3, 3, 2, 2, 2, 2);
}

TEST(TestOprDNN, LocalShareForwardExecPolicy) {
    REQUIRE_GPU(1);
    using Checker = AutoOprChecker<2, 1>;
    using Policy = opr::LocalShare::ExecutionPolicy;
    using S = Policy::Strategy;
    using Param = opr::LocalShare::Param;
    Param param;
    param.mode = Param::Mode::CROSS_CORRELATION;
    param.sparse = Param::Sparse::DENSE;

    int nr_get = 0;
    auto on_get = [&nr_get](const std::string&, const void*, size_t,
                            const void*, size_t) { ++nr_get; };
    PersistentCacheHook cache_hook{on_get};

#if MGB_ENABLE_FASTRUN
1718 1719
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
M
Megvii Engine Team 已提交
1720
          S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) {
1721
#else
1722 1723
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
#endif
        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            return {opr::LocalShare::make(inputs[0], inputs[1], param, policy)};
        };

        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            mgb_assert(inp.size() == 2);
            mgb_assert(dest.size() == 1);
            std::shared_ptr<HostTensorND> out;
            local_share_brute({inp[0], inp[1]}, out, param);
            dest[0] = *out;
        };

        auto run_with_param = [&](size_t fh = 3, size_t fw = 3, size_t sh = 1,
                                  size_t sw = 1, size_t sgh = 3,
                                  size_t sgw = 3) {
            size_t ph = fh / 2, pw = fw / 2;
            param.pad_h = ph, param.pad_w = pw;
            param.stride_h = sh, param.stride_w = sw,
            param.spatial_groups_h = sgh, param.spatial_groups_w = sgw;
            Checker checker{make_graph, fwd};
            Checker::RunOptions opt;
            checker.set_output_allow_grad(0, false);
            checker.set_input_dtype(0, dtype::Float32());
            checker.set_input_dtype(1, dtype::Float32());
            nr_get = 0;
            opt.outputs_max_err = 1e-3;
            auto run = [&](size_t n, size_t ci, size_t co, size_t hi,
                           size_t wi) {
                size_t ho = (hi + 2 * ph - fh) / sh + 1;
                size_t wo = (wi + 2 * pw - fw) / sw + 1;
                if (ho % sgh != 0 || wo % sgw != 0)
                    return;
                checker.run({TensorShape{n, ci, hi, wi},
                             TensorShape{sgh, sgw, ci, fh, fw, co}},
                            opt);
            };
            run(32, 4, 8, 24, 24);
            run(32, 4, 8, 12, 12);
            run(16, 4, 8, 12, 12);
            run(32, 4, 8, 6, 6);
            if (strategy == S::HEURISTIC) {
                ASSERT_EQ(0, nr_get);
            } else {
                ASSERT_LT(0, nr_get);
            }
        };
        run_with_param(1, 1, 1, 1, 3, 3);
        run_with_param(3, 3, 1, 1, 2, 2);
        run_with_param(5, 5, 1, 1, 2, 2);
        run_with_param(7, 7, 1, 1, 2, 2);
        run_with_param(1, 1, 2, 2, 3, 3);
        run_with_param(3, 3, 2, 2, 2, 2);
        run_with_param(5, 5, 1, 1, 2, 2);
        run_with_param(7, 7, 1, 1, 2, 2);
    }
}

TEST(TestOprDNN, LocalShareSerialization) {
    using namespace serialization;

    auto fname = output_file("LocalShareForwardTest");
    auto dump = [&]() {
        opr::LocalShare::Param param;
        param.mode = Mode::CROSS_CORRELATION;
        param.stride_h = param.stride_w = 1;
        param.pad_h = param.pad_w = 0;
        param.spatial_groups_h = param.spatial_groups_w = 3;

        auto cn = CompNode::load("cpu0");
        auto graph = ComputingGraph::make();
        HostTensorND inp_host{cn, {32, 4, 24, 24}, dtype::Float32()};
        HostTensorND filt_host{
                cn, {3, 3, 4, 1, 1, 8}, dtype::Float32()};
        auto inp = opr::ImmutableTensor::make(*graph, inp_host);
        auto filt = opr::ImmutableTensor::make(*graph, filt_host);
        auto opr = opr::LocalShareForward::make(inp, filt, param,
                {});
        auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()));
        auto rst = dumper->dump({opr});
        ASSERT_EQ(rst.outputs.size(), 1u);
    };

    auto load = [&]() {
        auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()));
        auto rst = loader->load();
        ASSERT_EQ(rst.output_var_list.size(), 1u);
    };

    dump();
    load();
}

TEST(TestOprDNN, DeformableConvForward) {
    REQUIRE_GPU(1);
    using Checker = AutoOprChecker<4, 1>;
    using Policy = opr::DeformableConvForward::ExecutionPolicy;
    using S = Policy::Strategy;
    using Param = opr::DeformableConvForward::Param;
    Param param;

#if MGB_ENABLE_FASTRUN
1829 1830
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
M
Megvii Engine Team 已提交
1831
          S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) {
1832
#else
1833 1834
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899
#endif
        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            return {opr::DeformableConvForward::make(
                    inputs[0], inputs[1], inputs[2], inputs[3], param, policy)};
        };
        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            auto opr =
                    megdnn_naive_handle()
                            ->create_operator<megdnn::DeformableConvForward>();
            opr->param() = param;
            TensorLayout dest_layout;
            opr->deduce_layout(inp[0]->layout(), inp[1]->layout(),
                               inp[2]->layout(), inp[3]->layout(), dest_layout);
            std::vector<dt_byte> workspace(opr->get_workspace_in_bytes(
                    inp[0]->layout(), inp[1]->layout(), inp[2]->layout(),
                    inp[3]->layout(), dest_layout));
            dest[0].dtype(dtype::Float32())
                    .comp_node(inp[0]->comp_node())
                    .resize(dest_layout);
            opr->exec(inp[0]->as_megdnn(), inp[1]->as_megdnn(),
                      inp[2]->as_megdnn(), inp[3]->as_megdnn(),
                      dest[0].as_megdnn(),
                      {workspace.data(), workspace.size()});
        };
        auto run_with_param = [&](size_t fh, size_t fw, size_t sh, size_t sw,
                                  size_t dh, size_t dw, size_t group,
                                  size_t deformable_group) {
            Checker checker{make_graph, fwd};
            size_t ph = fh / 2, pw = fw / 2;
            param.pad_h = ph, param.pad_w = pw;
            param.stride_h = sh, param.stride_w = sw;
            param.dilate_h = dh, param.dilate_w = dw;

            param.format = Param::Format::NCHW;
            param.mode = Param::Mode::CROSS_CORRELATION;
            param.sparse = Param::Sparse::DENSE;
            if (group > 1)
                param.sparse = Param::Sparse::GROUP;
            Checker::RunOptions opt;
	    float DELTA = 1e-3;
            opt.numdiff_eps = DELTA;
            opt.numdiff_max_err = 1e-1;
            auto gen_off = [DELTA](HostTensorND& off, float l = -2.f, float h = 2.f) {
                RNGxorshf rng{next_rand_seed()};
                auto elems = off.shape().total_nr_elems();
                auto ptr = off.ptr<float>();
                auto rand_real = [](RNGxorshf& rng, float lo, float hi) {
                    std::uniform_real_distribution<float> dist(lo, hi);
                    return dist(rng);
                };
                for (size_t i = 0; i < elems; ++i) {
                    do {
                        float val = rand_real(rng, l, h);
                        if (abs(floor(val + 2 * DELTA) - floor(val)) <= 1e-6f &&
                            abs(floor(val - 2 * DELTA) - floor(val)) <= 1e-6f) {
                            ptr[i] = val;
                            break;
                        }
                    } while (true);
                }
            };
            //! generate offset to avoid value near integer
1900
	    /// because bilinear function is not derivable over there
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
	    checker.set_input_generator(2, gen_off);
            checker.set_input_dtype(0, dtype::Float32());
            checker.set_input_dtype(1, dtype::Float32());
            checker.set_input_dtype(2, dtype::Float32());
            checker.set_input_dtype(3, dtype::Float32());
            auto run = [&](size_t n, size_t ih, size_t iw, size_t icpg,
                           size_t ocpg) {
                size_t oh = (ih + 2 * ph - fh) / sh + 1;
                size_t ow = (iw + 2 * pw - fw) / sw + 1;
                checker.run({TensorShape{n, group * icpg, ih, iw},
                             (param.sparse == Param::Sparse::GROUP)
                                     ? TensorShape{group, ocpg, icpg, fh, fw}
                                     : TensorShape{group * ocpg, group * icpg,
                                                   fh, fw},
                             {n, 2 * deformable_group * fh * fw, oh, ow},
                             {n, deformable_group * fh * fw, oh, ow}},
                            opt);
            };
            run(1, 3, 3, 2, 1);
            run(2, 3, 3, 2, 2);
            run(1, 5, 5, 2, 1);
        };
        // run_with_param(1, 1, 1, 1, 1, 1, 1, 1);
        run_with_param(3, 3, 1, 1, 1, 1, 2, 2);
        // run_with_param(5, 5, 1, 1, 1, 1, 2, 2);
    }
}

TEST(TestOprDNN, DeformableConvSerialization) {
    using namespace serialization;

    auto fname = output_file("DeformableConvTest");
    auto dump = [&]() {
        using Param = opr::DeformableConvForward::Param;
        Param param;
        size_t n = 16, ocpg = 2, icpg = 4;
	size_t ih = 24, iw = 24, fh = 3, fw = 3, ph = 2, pw = 2, sh = 1, sw = 1, dh = 1, dw = 1;
        size_t group = 1, deformable_group =1;

        size_t oh = (ih + 2 * ph - fh) / sh + 1;
        size_t ow = (iw + 2 * pw - fw) / sw + 1;

	param.pad_h = ph, param.pad_w = pw;
        param.stride_h = sh, param.stride_w = sw;
        param.dilate_h = dh, param.dilate_w = dw;

        param.format = Param::Format::NCHW;
        param.mode = Param::Mode::CROSS_CORRELATION;
        param.sparse = Param::Sparse::DENSE;

        auto cn = CompNode::load("cpu0");
        auto graph = ComputingGraph::make();
        HostTensorND inp_host{cn, {n, group * icpg, ih, iw}, dtype::Float32()};
        HostTensorND filt_host{
                cn, {group * ocpg, group * icpg, fh, fw}, dtype::Float32()};
        HostTensorND offset_host{
                cn, {n, 2 * deformable_group * fh * fw, oh, ow}, dtype::Float32()};
        HostTensorND mask_host{
                cn, {n, deformable_group * fh * fw, oh, ow}, dtype::Float32()};
        auto inp = opr::ImmutableTensor::make(*graph, inp_host);
        auto filt = opr::ImmutableTensor::make(*graph, filt_host);
        auto offset = opr::ImmutableTensor::make(*graph, offset_host);
        auto mask = opr::ImmutableTensor::make(*graph, mask_host);
        auto opr = opr::DeformableConvForward::make(inp, filt, offset, mask,
                                                    param, {}, {});
        auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()));
        auto rst = dumper->dump({opr});
        ASSERT_EQ(rst.outputs.size(), 1u);
    };

    auto load = [&]() {
        auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()));
        auto rst = loader->load();
        ASSERT_EQ(rst.output_var_list.size(), 1u);
    };

    dump();
    load();
}

#if MGB_CUDA
TEST(TestOprDNN, BatchConvBiasForward) {
    REQUIRE_GPU(1);
    auto cn = CompNode::load("gpu0");
    cn.activate();
    REQUIRE_CUDA_COMPUTE_CAPABILITY(6, 1);

    using Checker = AutoOprChecker<3, 1>;
    using Policy = opr::BatchConvBiasForward::ExecutionPolicy;
    using S = Policy::Strategy;
    using Param = opr::BatchConvBiasForward::Param;
    Param param;
    param.format = Param::Format::NCHW4;
    param.mode = Param::Mode::CROSS_CORRELATION;
    param.sparse = Param::Sparse::DENSE;

#if MGB_ENABLE_FASTRUN
1998 1999
    for (auto strategy :
         SmallVector<S>{S::PROFILE, S::HEURISTIC, S::PROFILE | S::REPRODUCIBLE,
M
Megvii Engine Team 已提交
2000
          S::PROFILE | S::HEURISTIC, S::PROFILE | S::OPTIMIZED}) {
2001
#else
2002 2003
    for (auto strategy :
         SmallVector<S>{S : HEURISTIC, S::PROFILE | S::HEURISTIC}) {
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
#endif

        auto make_quantized = [&](SymbolVar x, const DType& dtype) {
            return opr::TypeCvt::make(x, dtype);
        };
        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Policy policy;
            policy.strategy = strategy;
            auto conv_bias = opr::BatchConvBiasForward::make(
                    make_quantized(inputs[0], dtype::QuantizedS8{1.1f}),
                    make_quantized(inputs[1], dtype::QuantizedS8{1.2f}),
                    make_quantized(inputs[2], dtype::QuantizedS32{1.1f * 1.2f}),
                    param, policy,
                    OperatorNodeConfig{dtype::QuantizedS8{1.3f}});
            return {opr::TypeCvt::make(conv_bias, dtype::Float32())};
        };
        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            mgb_assert(inp.size() == 3);
            mgb_assert(dest.size() == 1);
            auto graph = ComputingGraph::make();
            Checker::SymInpArray inputs;
            for (size_t i = 0; i < inp.size(); ++i) {
                inputs[i] = opr::Host2DeviceCopy::make(*graph, inp[i]);
            }
            auto src = make_quantized(inputs[0], dtype::QuantizedS8{1.1f}),
                 filter = make_quantized(inputs[1], dtype::QuantizedS8{1.2f}),
                 bias = make_quantized(inputs[2],
                                       dtype::QuantizedS32{1.1f * 1.2f});
            {
                auto xshp = opr::GetVarShape::make(src);

                auto cv = [&src](int v) { return src.make_scalar(v); };
                auto sub = [&xshp, &cv](int idx) {
                    return opr::IndexAt::make(xshp, {{0, cv(idx)}});
                };
                auto tshp = opr::Concat::make(
                        {cv(1), sub(0) * sub(1), sub(2), sub(3), sub(4)}, 0);
                src = opr::Reshape::make(src, tshp);
            }
            auto conv_param = convert_to_conv_param(param);
            conv_param.sparse = opr::BatchConvBias::Param::Sparse::GROUP;
            auto y = opr::Convolution::make(src, filter, conv_param);
            {
                auto fshp = opr::GetVarShape::make(filter);
                auto batch =
                        opr::IndexAt::make(fshp, {{0, filter.make_scalar(0)}});

                auto xshp = opr::GetVarShape::make(y);

                auto cv = [&y](int v) { return y.make_scalar(v); };
                auto sub = [&xshp, &cv](int idx) {
                    return opr::IndexAt::make(xshp, {{0, cv(idx)}});
                };
                auto tshp = opr::Concat::make(
                        {batch, sub(1) / batch, sub(2), sub(3), sub(4)}, 0);
                y = opr::Reshape::make(y, tshp);
            }
            y = y + bias;
            y = opr::TypeCvt::make(y, dtype::QuantizedS8{1.3f});
            y = opr::TypeCvt::make(y, dtype::Float32());
            auto func = graph->compile({make_callback_copy(y, dest[0])});
            func->execute();
            func->wait();
        };

        auto run_with_param = [&](size_t sh = 1, size_t sw = 1) {
            size_t fh = 1;
            size_t fw = 1;
            size_t ph = fh / 2, pw = fw / 2;
            param.pad_h = ph, param.pad_w = pw;
            param.stride_h = sh, param.stride_w = sw;
            Checker checker{make_graph, fwd, cn};
            Checker::RunOptions opt;
            checker.set_output_allow_grad(0, false);
            checker.set_input_dtype(0, dtype::Float32());
            checker.set_input_dtype(1, dtype::Float32());
            checker.set_input_dtype(2, dtype::Float32());
            auto run = [&](size_t n, size_t ci, size_t co, size_t hi,
                           size_t wi) {
                checker.run({TensorShape{n, ci / 4, hi, wi, 4},
                             TensorShape{n, co, ci / 4, fh, fw, 4},
                             TensorShape{1, co / 4, 1, 1, 4}},

                            opt);
            };
            run(32, 16, 32, 24, 24);
            run(16, 16, 32, 24, 24);
            run(32, 16, 64, 12, 12);
            run(16, 16, 64, 6, 6);
        };
        run_with_param(1, 1);
        run_with_param(2, 2);
    }
}
#endif

TEST(TestOprDNN, BatchConvBiasSerialization) {
    using namespace serialization;

    auto fname = output_file("BatchConvBiasForwardTest");
    auto dump = [&]() {
        opr::BatchConvBias::Param param;
        param.mode = Mode::CROSS_CORRELATION;
        param.format = opr::BatchConvBias::Param::Format::NCHW4;
        param.stride_h = param.stride_w = 1;
        param.pad_h = param.pad_w = 0;

        auto cn = CompNode::load("cpu0");
        auto graph = ComputingGraph::make();
        HostTensorND inp_host{cn, {32, 1, 24, 24, 4}, dtype::QuantizedS8{1.1f}};
        HostTensorND filt_host{cn, {32, 8, 1, 1, 1, 4}, dtype::QuantizedS8{1.2f}};
        auto inp = opr::ImmutableTensor::make(*graph, inp_host);
        auto filt = opr::ImmutableTensor::make(*graph, filt_host);
        auto opr = opr::BatchConvBiasForward::make(
                inp, filt, param, {},
                OperatorNodeConfig{dtype::QuantizedS8{1.3f}});
        auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str()));
        auto rst = dumper->dump({opr});
        ASSERT_EQ(rst.outputs.size(), 1u);
    };

    auto load = [&]() {
        auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str()));
        auto rst = loader->load();
        ASSERT_EQ(rst.output_var_list.size(), 1u);
    };

    dump();
    load();
}

TEST(TestOprDNN, HeuristicReproducible) {
    using Policy = opr::ConvolutionBackwardFilter::ExecutionPolicy;
    using S = Policy::Strategy;

    using Checker = AutoOprChecker<3, 1>;

    constexpr size_t PH = 1, PW = 1, SH = 1, SW = 1;

2144 2145
    for (auto strategy :
         SmallVector<S>{S::HEURISTIC, S::HEURISTIC | S::REPRODUCIBLE}) {
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
        VarNode* bwd_flt;
        auto make_graph = [&](const Checker::SymInpArray& inputs)
                -> Checker::SymOutArray {
            Param param{Mode::CROSS_CORRELATION, PH, PW, SH, SW};
            Policy policy;
            policy.strategy = strategy;
            auto out = opr::ConvolutionBackwardFilter::make(
                    inputs[0], inputs[1], inputs[2], param, policy);
            bwd_flt = out.node();
            return {out};
        };

        auto fwd = [&](Checker::NumOutArray& dest, Checker::NumInpArray inp) {
            std::shared_ptr<HostTensorND> out;
            conv_bwd_flt_brute({inp[0], inp[1], inp[2]}, out,
                               Param{Mode::CROSS_CORRELATION, PH, PW, SH, SW});
            dest[0] = *out;
        };

#define get_shp(N, P, S, F) ((N + 2 * P - F) / S + 1)
#define inp_tensor(N, IC, OC, IH, IW, FH, FW)                                \
    {                                                                        \
        TensorShape{N, IC, IH, IW},                                          \
                {N, OC, get_shp(IH, PH, SH, FH), get_shp(IW, PW, SW, FW)}, { \
            OC, IC, FH, FW                                                   \
        }                                                                    \
    }
        Checker::RunOptions opt;
        opt.numdiff_eps = 1;
        opt.outputs_max_err = 1e-3;
        std::string algo_name0, algo_name1;
        {
            Checker checker(make_graph, fwd);
            checker.run(inp_tensor(2, 3, 4, 9, 8, 3, 3), opt)
                    .run(inp_tensor(1, 5, 3, 7, 9, 3, 3), opt)
                    .run(inp_tensor(3, 4, 4, 9, 9, 3, 3), opt);

2183
            auto&& megdnn_opr = static_cast<megdnn::ConvolutionBackwardFilter*>(
2184 2185
                                static_cast<opr::ConvolutionBackwardFilter*>(
                                        bwd_flt->owner_opr())
2186 2187 2188 2189 2190
                                        ->megdnn_opr());
            auto&& algo = megdnn_opr->execution_policy().algo;
            megdnn::Algorithm* palgo =
                    megdnn_opr->get_algorithm_from_desc(algo);
            mgb_assert(palgo, "Unknown algo description");
2191
            if (strategy == S(S::HEURISTIC | S::REPRODUCIBLE)) {
2192
                EXPECT_TRUE(palgo->contain_attribute_all(
2193
                            megdnn::AlgoAttribute::REPRODUCIBLE));
2194
            }
2195
            algo_name0 = palgo->name();
2196 2197 2198 2199 2200 2201
        }
        {
            Checker checker(make_graph, fwd);
            checker.run(inp_tensor(2, 3, 4, 9, 8, 3, 3), opt)
                    .run(inp_tensor(1, 5, 3, 7, 9, 3, 3), opt)
                    .run(inp_tensor(3, 4, 4, 9, 9, 3, 3), opt);
2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
            auto&& megdnn_opr = static_cast<megdnn::ConvolutionBackwardFilter*>(
                    static_cast<opr::ConvolutionBackwardFilter*>(
                            bwd_flt->owner_opr())
                            ->megdnn_opr());
            auto&& algo = megdnn_opr->execution_policy().algo;
            megdnn::Algorithm* palgo =
                    megdnn_opr->get_algorithm_from_desc(algo);
            mgb_assert(palgo, "Unknown algo description");

            algo_name1 = palgo->name();
2212 2213 2214 2215 2216 2217 2218
        }
        EXPECT_TRUE(algo_name0 == algo_name1);
    }
#undef inp_tensor
#undef get_shp
}

2219 2220
#if MGB_CUDA
TEST(TestOprDNN, ConvolutionMultiCompNode) {
2221
    REQUIRE_GPU(1);
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
    auto cn0 = CompNode::load("gpu0:0"), cn1 = CompNode::load("gpu0:1");
    cn0.activate();
    auto&& prop = CompNodeEnv::from_comp_node(cn0).cuda_env().device_prop;
    auto sm_ver = prop.major * 10 + prop.minor;
    if (sm_ver < 61) {
        printf("This testcast ignored due to insufficient cuda cap(got: %d, "
               "expected: %d)\n",
               sm_ver, 61);
        return;
    }

    HostTensorGenerator<dtype::Int8> gen;
    auto mkvar = [&gen](const char* name, const TensorShape& shp,
                     const DType& dtype,
                     std::shared_ptr<ComputingGraph> graph,
                     const CompNode& cn) {
        return opr::TypeCvt::make(
                opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name),
                dtype);
    };
    auto mkcvar = [&gen](const char* name, const TensorShape& shp,
                      const DType& dtype,
                      std::shared_ptr<ComputingGraph> graph,
                      const CompNode& cn) {
        return opr::TypeCvt::make(
                opr::SharedDeviceTensor::make(*graph, *gen(shp, cn))
                        .rename(name),
                dtype);
    };

    auto graph0 = ComputingGraph::make();
    graph0->options().graph_opt_level = 0;
    auto graph1 = ComputingGraph::make();
    graph1->options().graph_opt_level = 0;
    auto make_func = [&gen, &mkvar, &mkcvar](
                             std::shared_ptr<ComputingGraph> graph,
                             const CompNode& cn) {
        using Policy = opr::ConvBias::ExecutionPolicy;
        using S = Policy::Strategy;
        auto x = mkvar("x", {64, 32, 28, 28, 4}, dtype::QuantizedS8(2.5f),
                       graph, cn),
             w1 = mkcvar("w1", {256, 32, 5, 5, 4}, dtype::QuantizedS8(2.5f),
                         graph, cn),
             b1 = mkcvar("b1", {1, 64, 1, 1, 4}, dtype::QuantizedS32(6.25f),
                         graph, cn),
             w2 = mkcvar("w2", {256, 64, 3, 3, 4}, dtype::QuantizedS8(2.5f),
                         graph, cn),
             b2 = mkcvar("b2", {1, 64, 1, 1, 4}, dtype::QuantizedS32(6.25f),
                         graph, cn);
        opr::ConvBias::Param param;
        param.format = opr::ConvBias::Param::Format::NCHW4;
        param.nonlineMode = opr::ConvBias::Param::NonlineMode::RELU;
        param.stride_h = param.stride_w = 2;
        param.pad_h = param.pad_w = 2;
        Policy policy;
        policy.strategy = S::PROFILE;

        auto y = opr::ConvBias::make(
                x, w1, b1, param, policy,
                OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        param.stride_h = param.stride_w = 1;
        param.pad_h = param.pad_w = 1;
        y = opr::ConvBias::make(y, w2, b2, param, policy,
                                OperatorNodeConfig{dtype::QuantizedS8(2.5f)});
        return y;
    };
    auto y0 = make_func(graph0, cn0);
    auto y1 = make_func(graph1, cn1);
    HostTensorND host_y0, host_y1;
    auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
    auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
    auto worker = [&func0, &func1](int wid) {
        static const int iter_num = 1000;
        if (wid == 0) {
            for (int i = 0; i < iter_num; ++i)
                func0->execute();
        } else {
            for (int i = 0; i < iter_num; ++i)
                func1->execute();
        }
    };
    std::thread worker0(worker, 0);
    std::thread worker1(worker, 1);
    worker0.join();
    worker1.join();
2308
}
2309

2310 2311
#endif

2312 2313
}  // anonymous namespace

2314 2315
#ifndef _WIN32

2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
namespace mgb {
namespace opr {
namespace testing {

class ConvolutionTestingPeer {
    opr::ConvolutionForward& m_conv_opr;
public:
    explicit ConvolutionTestingPeer(cg::OperatorNodeBase* opr)
            : m_conv_opr(opr->cast_final_safe<opr::ConvolutionForward>()) {}
    void set_megdnn_opr(
            std::unique_ptr<megdnn::ConvolutionForward> megdnn_opr) {
        m_conv_opr.set_megdnn_opr(std::move(megdnn_opr));
    }
};

}  // namespace testing
}  // namespace opr
}  // namespace mgb

namespace {

using megdnn::TensorND;
using megdnn::Workspace;
using opr::testing::ConvolutionTestingPeer;

class MockConvolutionForward : public megdnn::ConvolutionForward {
    const char* m_algorithm_set_name;
public:
    MockConvolutionForward(megdnn::ConvolutionForward* orig,
                           const char* algo_set_name)
            : megdnn::ConvolutionForward(orig->handle()),
              m_algorithm_set_name(algo_set_name) {}

    MOCK_METHOD5(exec, void(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                            _megdnn_tensor_out dst,
                            const PreprocessedFilter* preprocessed_filter,
                            _megdnn_workspace workspace));
    MOCK_METHOD5(exec_preprocess,
                 void(const TensorLayout& src_layout, _megdnn_tensor_in filter,
                      const TensorLayout& dst_layout,
                      PreprocessedFilter* preprocessed_filter,
                      _megdnn_workspace workspace));
    MOCK_METHOD4(get_workspace_in_bytes,
                 size_t(const TensorLayout& src, const TensorLayout& filter,
                        const TensorLayout& dst,
                        const PreprocessedFilter* preprocessed_filter));
    MOCK_METHOD3(deduce_preprocessed_filter_layout,
                 SmallVector<TensorLayout>(const TensorLayout& src,
                                           const TensorLayout& filter,
                                           const TensorLayout& dst));
    MOCK_METHOD3(get_preprocess_workspace_in_bytes,
                 size_t(const TensorLayout& src, const TensorLayout& filter,
                        const TensorLayout& dst));
2369 2370 2371 2372 2373

    MOCK_METHOD3(get_all_algorithms_info,
                 std::vector<AlgorithmInfo>(const TensorLayout& p0,
                                         const TensorLayout& p1,
                                         const TensorLayout& p2));
2374
    MOCK_METHOD6(get_algorithm_info_heuristic,
2375
                 AlgorithmInfo(const TensorLayout& p0, const TensorLayout& p1,
2376 2377 2378 2379
                               const TensorLayout& p2,
                               size_t workspace_limit_in_bytes,
                               const AlgoAttribute& positive_attr,
                               const AlgoAttribute& negative_attr));
2380

2381 2382 2383 2384
    MOCK_METHOD3(get_all_algorithms,
                 std::vector<Algorithm*>(const TensorLayout& p0,
                                         const TensorLayout& p1,
                                         const TensorLayout& p2));
2385
    MOCK_METHOD6(get_algorithm_heuristic,
2386 2387 2388
                 Algorithm*(const TensorLayout& p0, const TensorLayout& p1,
                            const TensorLayout& p2,
                            size_t workspace_limit_in_bytes,
2389 2390
                            const AlgoAttribute& positive_attr,
                            const AlgoAttribute& negative_attr));
2391 2392 2393 2394

    MOCK_METHOD1(get_algorithm_from_desc,
                 Algorithm*(const AlgorithmDesc&));

2395
protected:
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
    const char* get_algorithm_set_name() const override {
        return m_algorithm_set_name;
    }
};

class MockAlgorithm : public megdnn::detail::Algorithm {
    const char* m_name;

public:
    MockAlgorithm(const char* name = "NotImportant") : m_name(name) {}
2406 2407 2408
    Attribute attribute() const override {
        return Attribute::REPRODUCIBLE;
    }
2409
    const char* name() const override { return m_name; }
2410 2411 2412
    uint32_t type() const override {
        return megdnn::detail::Algorithm::INVALID_ALGO_TYPE;
    }
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433

    virtual ~MockAlgorithm() = default;
};

class TestWeightPreprocess : public ::testing::Test {
protected:
    CompNode comp_node;
    std::shared_ptr<ComputingGraph> graph;
    std::shared_ptr<HostTensorND> x_host;
    MockConvolutionForward* mock_conv_ptr;
    SymbolVar y;
    HostTensorND y_host;
    std::unique_ptr<cg::AsyncExecutable> func;

    MockConvolutionForward& mock_conv() { return *mock_conv_ptr; }

    void SetUp() override {
        constexpr uint32_t ih = 10, ic = 16, oc = 32, ph = 0, sh = 1, fh = 2,
                           iw = ih;
        comp_node = CompNode::load("cpux");
        graph = ComputingGraph::make();
2434
        graph->options().graph_opt.weight_preprocess = is_weight_preprocess();
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        TensorShape x_shape{1, ic, ih, iw}, w_shape{oc, ic, fh, fh};
        x_host = std::make_shared<HostTensorND>(comp_node, x_shape);
        auto x = opr::Host2DeviceCopy::make(*graph, x_host);
        auto w = opr::ImmutableTensor::make(*graph, {comp_node, w_shape});
        Param param;
        param.pad_h = param.pad_w = ph;
        param.stride_h = param.stride_w = sh;
        param.format = Param::Format::NCHW;
        y = opr::ConvolutionForward::make(x, w, param);
        auto& opr =
                y.node()->owner_opr()->cast_final<opr::ConvolutionForward>();
        auto mock = std::make_unique<MockConvolutionForward>(
                opr.megdnn_opr(), ::testing::UnitTest::GetInstance()
                                          ->current_test_info()
                                          ->name());
        mock_conv_ptr = mock.get();
        ConvolutionTestingPeer{&opr}.set_megdnn_opr(std::move(mock));
        func = graph->compile({make_callback_copy(y, y_host)});
    }

    void run() { func->execute().wait(); }

2457 2458
    virtual bool is_weight_preprocess() { return true; }

2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472
    void TearDown() override {
        func.reset();
        // Triggers mock check
        graph.reset();
        x_host.reset();
    }
};

TEST_F(TestWeightPreprocess, NoPreprocessNeeded) {
    using ::testing::_;
    using ::testing::Return;
    auto& mock = mock_conv();

    MockAlgorithm algo;
2473
    EXPECT_CALL(mock, get_algorithm_heuristic(_, _, _, _, _, _))
2474
            .WillRepeatedly(Return(&algo));
2475 2476
    EXPECT_CALL(mock, get_algorithm_from_desc(_))
            .WillRepeatedly(Return(&algo));
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
    EXPECT_CALL(mock, get_workspace_in_bytes(_, _, _, _))
            .WillRepeatedly(Return(0));
    EXPECT_CALL(mock, get_preprocess_workspace_in_bytes(_, _, _))
            .WillRepeatedly(Return(0));

    {
        ::testing::InSequence seq;
        // Return empty preprocess filters, indicating no need to preprocess
        EXPECT_CALL(mock, deduce_preprocessed_filter_layout(_, _, _))
                .WillRepeatedly(Return(SmallVector<TensorLayout>{}));
        EXPECT_CALL(mock, exec_preprocess(_, _, _, _, _)).Times(0);
        EXPECT_CALL(mock, exec(_, _, _, nullptr, _));
        run();
    }
}

TEST_F(TestWeightPreprocess, PreprocessCalledOnlyOnce) {
    using ::testing::_;
    using ::testing::Return;
    using ::testing::Field;
    using ::testing::Invoke;
    using ::testing::Expectation;
    using PF = MockConvolutionForward::PreprocessedFilter;

    auto& mock = mock_conv();
    MockAlgorithm algo;
    SmallVector<TensorLayout> filter_layout{{{1, 2, 3, 4}, dtype::Float32()},
                                            {{5, 6, 7, 8}, dtype::Float32()}};

    EXPECT_CALL(mock, deduce_preprocessed_filter_layout(_, _, _))
            .WillRepeatedly(Return(filter_layout));

2509 2510 2511
    EXPECT_CALL(mock, get_algorithm_from_desc(_))
            .WillRepeatedly(Return(&algo));

2512
    Expectation algo_call =
2513
            EXPECT_CALL(mock, get_algorithm_heuristic(_, _, _, _, _, _))
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561
                    .WillOnce(Return(&algo));
    Expectation ws_call = EXPECT_CALL(mock, get_workspace_in_bytes(_, _, _, _))
                                  .After(algo_call)
                                  .WillOnce(Return(0));
    Expectation pre_ws_call =
            EXPECT_CALL(mock, get_preprocess_workspace_in_bytes(_, _, _))
                    .After(algo_call)
                    .WillOnce(Return(233));
    {
        ::testing::InSequence seq;

        // exec_preprocess should be called only once, with workspace allocated
        int salt = 0;
        EXPECT_CALL(mock, exec_preprocess(_, _, _, _, _))
                .After(ws_call, pre_ws_call)
                .WillOnce(Invoke([&](const TensorLayout&, _megdnn_tensor_in,
                                     const TensorLayout&, PF* pf,
                                     _megdnn_workspace workspace) {
                    ASSERT_EQ(workspace.size, 233);
                    ASSERT_NE(pf, nullptr);
                    pf->algorithm_id = &salt;
                    ASSERT_EQ(pf->tensors.size(), 2);
                    ASSERT_TRUE(pf->tensors[0].layout.eq_shape({1, 2, 3, 4}));
                    ASSERT_TRUE(pf->tensors[1].layout.eq_shape({5, 6, 7, 8}));
                    ASSERT_NE(pf->tensors[0].raw_ptr, nullptr);
                    ASSERT_NE(pf->tensors[1].raw_ptr, nullptr);
                    pf->tensors[0].ptr<float>()[0] = 114.514f;
                    pf->tensors[1].ptr<float>()[0] = 1926.0817f;
                }));
        // Run the graph multiple times.
        for (int i = 0; i < 3; i++) {
            if (i > 0) {
                EXPECT_CALL(mock, exec_preprocess(_, _, _, _, _)).Times(0);
            }
            EXPECT_CALL(mock, exec(_, _, _, _, _))
                    .WillOnce(Invoke([&](_megdnn_tensor_in, _megdnn_tensor_in,
                                         _megdnn_tensor_out, const PF* pf,
                                         _megdnn_workspace) {
                        ASSERT_NE(pf, nullptr);
                        ASSERT_EQ(pf->algorithm_id, &salt);
                        ASSERT_EQ(pf->tensors[0].ptr<float>()[0], 114.514f);
                        ASSERT_EQ(pf->tensors[1].ptr<float>()[0], 1926.0817f);
                    }));
            run();
        }
    }
}

2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
class TestNoWeightPreprocess : public TestWeightPreprocess {
    bool is_weight_preprocess() override { return false; }
};

TEST_F(TestNoWeightPreprocess, NoPreprocess) {
    using ::testing::_;
    using ::testing::Return;
    auto& mock = mock_conv();

    MockAlgorithm algo;
2572
    EXPECT_CALL(mock, get_algorithm_heuristic(_, _, _, _, _, _))
2573
            .WillRepeatedly(Return(&algo));
2574 2575
    EXPECT_CALL(mock, get_algorithm_from_desc(_))
            .WillRepeatedly(Return(&algo));
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
    EXPECT_CALL(mock, get_workspace_in_bytes(_, _, _, _))
            .WillRepeatedly(Return(0));
    EXPECT_CALL(mock, get_preprocess_workspace_in_bytes(_, _, _))
            .WillRepeatedly(Return(0));

    {
        ::testing::InSequence seq;
        // Return empty preprocess filters, indicating no need to preprocess
        EXPECT_CALL(mock, deduce_preprocessed_filter_layout(_, _, _)).Times(0);
        EXPECT_CALL(mock, exec_preprocess(_, _, _, _, _)).Times(0);
        EXPECT_CALL(mock, exec(_, _, _, nullptr, _));
        run();
    }
}

2591 2592
}  // anonymous namespace

2593 2594
#endif

2595
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}