tensorrt_runtime.cpp 10.1 KB
Newer Older
1 2 3 4
/**
 * \file src/tensorrt/test/tensorrt_runtime.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17
 */

#include "megbrain/comp_node_env.h"
#include "megbrain/test/autocheck.h"
#include "megbrain/test/helper.h"
#include "megbrain/test/megdnn_helper.h"
#include "megbrain/utils/debug.h"
18
#include "megbrain/opr/basic_arith.h"
19 20 21

#if MGB_ENABLE_TENSOR_RT

22
#include "make_trt_net.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#include "megbrain/tensorrt/tensorrt_opr.h"
#include "megbrain/tensorrt/tensorrt_runtime_opr.h"

#include <random>

using namespace mgb;
using namespace nvinfer1;

template <typename T>
using TensorRTUniquePtr = intl::TensorRTUniquePtr<T>;

TEST(TestOprTensorRT, RuntimeBasic) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
61
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
62 63
}

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
TEST(TestOprTensorRT, RuntimeBasicBatched) {
    REQUIRE_GPU(1);
    intl::BatchedTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
82 83 84
        auto nx = opr::Broadcast::make(
                net.x,
                {1, net.x.shape()[0], net.x.shape()[1], net.x.shape()[2]});
85 86 87 88 89 90 91 92 93 94 95 96
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {nx})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
}

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
TEST(TestOprTensorRT, ConcatRuntimeBasic) {
    REQUIRE_GPU(1);
    intl::ConcatConvTensorRTNetwork net;

    SymbolVar y2;
    {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(5);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        auto cuda_engine =
                builder->buildEngineWithConfig(*trt_net, *build_config);
#else
        auto cuda_engine = builder->buildCudaEngine(*trt_net);
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

        FILE* fout = fopen(output_file("trt_cuda_engine").c_str(), "wb");
        auto wr = fwrite(mem->data(), 1, mem->size(), fout);
        mgb_assert(wr == mem->size());
        fclose(fout);

        y2 = TensorRTRuntimeOpr::make(
                TensorRTRuntimeOpr::to_shared_ptr_engine(cuda_engine), {},
                {net.x0, net.x1})[0];
    }

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 1e-4);
}

TEST(TestOprTensorRT, RuntimeChangeBatchSize) {
    REQUIRE_GPU(1);
    intl::SimpleTensorRTNetwork net;
    auto make_trt = [&net]() {
        auto p = net.create_trt_network(false);
        TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}};
        TensorRTUniquePtr<IBuilder> builder{p.first, {}};
        builder->setMaxBatchSize(10);
#if NV_TENSOR_RT_VERSION >= 6001
        TensorRTUniquePtr<IBuilderConfig> build_config{
                builder->createBuilderConfig()};
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildEngineWithConfig(*trt_net, *build_config)};
#else
        TensorRTUniquePtr<ICudaEngine> cuda_engine{
                builder->buildCudaEngine(*trt_net)};
#endif
        TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};
        return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {net.x})[0];
    };
    auto y2 = make_trt();

    HostTensorND host_z1;
    HostTensorND host_z2;
    auto func = net.graph->compile({make_callback_copy(net.y, host_z1),
                                    make_callback_copy(y2, host_z2)});
    func->execute();
162
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
163 164
    *net.host_x = *net.gen({1, 23, 28, 28});
    func->execute();
165
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
166 167
    *net.host_x = *net.gen({10, 23, 28, 28});
    func->execute();
168
    MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4);
169 170
}

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
#if NV_TENSOR_RT_VERSION >= 6001
TEST(TestOprTensorRT, IOFormatFree) {
    size_t N = 1, C = 3, H = 7, W = 7;
    REQUIRE_GPU(1);
    TensorRTUniquePtr<IBuilder> builder{
            createInferBuilder(TensorRTOpr::Logger::instance()), {}};
    nvinfer1::NetworkDefinitionCreationFlags flags;
    ::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags));
    flags = 1 << static_cast<int>(
                    nvinfer1::NetworkDefinitionCreationFlag::kEXPLICIT_BATCH);
    TensorRTUniquePtr<INetworkDefinition> network{
            builder->createNetworkV2(flags), {}};
    auto cast = [](size_t i) { return static_cast<int>(i); };
    ITensor* data = network->addInput(
            "data", DataType::kINT8, Dims4{cast(N), cast(C), cast(H), cast(W)});
    TensorFormats formats = 1
                            << static_cast<int>(nvinfer1::TensorFormat::kCHW4);
    data->setAllowedFormats(formats);
    data->setDynamicRange(-127.f * 1.2f, 127.f * 1.2f);
    HostTensorGenerator<> fgen;
    auto mean = fgen({N, C, H, W});
    Weights mean_weights{DataType::kFLOAT, nullptr, 0};
    mean_weights.values = mean->raw_ptr();
    mean_weights.count = N * C * H * W;
    auto constant = network->addConstant(
            Dims4{cast(N), cast(C), cast(H), cast(W)}, mean_weights);
    auto out = network->addElementWise(*network->getInput(0),
                                       *constant->getOutput(0),
                                       ElementWiseOperation::kSUB);
    out->getOutput(0)->setDynamicRange(-127.f * 2.3f, 127.f * 2.3f);
    network->markOutput(*out->getOutput(0));
    network->getInput(0)->setType(DataType::kINT8);
    network->getOutput(0)->setType(DataType::kFLOAT);
    network->getOutput(0)->setAllowedFormats(
            1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR));
    TensorRTUniquePtr<IBuilderConfig> build_config{
            builder->createBuilderConfig()};
    build_config->setFlag(BuilderFlag::kINT8);
    build_config->setFlag(BuilderFlag::kSTRICT_TYPES);
    TensorRTUniquePtr<ICudaEngine> cuda_engine{
            builder->buildEngineWithConfig(*network, *build_config)};
    TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}};

    HostTensorGenerator<dtype::Int8> gen;
    auto graph = ComputingGraph::make();
    graph->options().graph_opt_level = 0;
    auto mkvar = [&](const char* name, const TensorShape& shp,
                     const DType& dtype) {
        return opr::TypeCvt::make(
                opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name),
                dtype);
    };
    auto x = mkvar("x", {N, C, H, W}, dtype::QuantizedS8(1.2f));
    auto fx = opr::TypeCvt::make(x, dtype::Float32());
    auto wval = opr::SharedDeviceTensor::make(*graph, *mean).rename("mean");
    auto z = fx - wval;
    HostTensorND y1;
    auto func1 = graph->compile({make_callback_copy(z, y1)});
    func1->execute();

    TensorShape shp{N, 1, H, W};
    auto host = std::make_shared<HostTensorND>(x.node()->comp_node(), x.node()->dtype());
    host->resize(shp);
    auto ptr = host->raw_ptr();
    size_t size_bytes = TensorLayout{shp, x.node()->dtype()}.span().dist_byte();
    std::memset(ptr, 0, size_bytes);
    auto padding = opr::ImmutableTensor::make(*graph, *host);
    x = opr::Concat::make({x, padding}, 1);

    auto nchw2nchw4 = [](SymbolVar x) {
        auto xshp = opr::GetVarShape::make(x);

        auto cv = [&x](int v) { return x.make_scalar(v); };
        auto sub = [&xshp, &cv](int idx) {
            return opr::IndexAt::make(xshp, {{0, cv(idx)}});
        };
        auto tshp = opr::Concat::make(
                {sub(0), sub(1) / 4, cv(4), sub(2), sub(3)}, 0);
        auto y0 = opr::Reshape::make(x, tshp);
        auto y1 = opr::Dimshuffle::make(y0, {0, 1, 3, 4, 2});
        return y1;
    };
    x = nchw2nchw4(x);
    auto trt = TensorRTRuntimeOpr::make(mem->data(), mem->size(), {x})[0];
    HostTensorND y2;
    auto func2 = graph->compile({make_callback_copy(trt, y2)});
    func2->execute();
    MGB_ASSERT_TENSOR_EQ(y1, y2);
}
#endif

262 263 264
#endif  // MGB_ENABLE_TENSOR_RT

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}