subgraph_detail.cpp 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/**
 * \file imperative/src/impl/subgraph_detail.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/imperative/subgraph_detail.h"
#include "megbrain/imperative/graph_builder.h"

#include "megbrain/opr/io.h"
#include "megbrain/imperative/ops/autogen.h"

#include "./op_trait.h"

namespace mgb {
namespace imperative {
namespace subgraph_detail {

VarNodeArray apply_on_var_node(
        const OpDef& def,
        const VarNodeArray& inputs) {
    SmallVector<LogicalTensorDesc> input_descs;
    for (auto&& input: inputs) {
        input_descs.push_back({TensorLayout{input->dtype()}, input->comp_node()});
    }
31 32
    auto apply_functor = [&](const std::shared_ptr<OpDef>& op, const VarNodeArray& inputs, size_t nr_outputs){
        op->set_scope(def.scope());
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        return OpDef::apply_on_var_node(*op, inputs);
    };
    auto const_functor = [&](const TensorPtr& value) {
        return opr::ImmutableTensor::make(*inputs[0]->owner_graph(), value->get_value()).node();
    };
    auto subgraph = def.trait()->make_forward_graph(def, input_descs);
    auto outputs = subgraph.apply(inputs, apply_functor, const_functor);
    return outputs;
}

std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible(
        const OpDef& def,
        const SmallVector<LogicalTensorDesc>& inputs) {
    auto subgraph = def.trait()->make_forward_graph(def, inputs);
    bool all_validated = true;
    auto apply_functor = [&](const std::shared_ptr<OpDef>& op, const SmallVector<LogicalTensorDesc>& inputs, size_t nr_outputs){
        auto [outputs, validated] = OpDef::infer_output_attrs_fallible(*op, inputs);
        all_validated = all_validated && validated;
        return outputs;
    };
    auto const_functor = [&](const TensorPtr& value) {
        return LogicalTensorDesc{value->layout(), value->comp_node(), value->get_value().proxy_to_default_cpu()};
    };
    auto outputs = subgraph.apply(inputs, apply_functor, const_functor);
    return { outputs, all_validated };
}


SmallVector<TensorPtr> apply_on_physical_tensor(
        const OpDef& def,
        SmallVector<TensorPtr> inputs) {
    SmallVector<LogicalTensorDesc> input_descs;
    for (auto&& input: inputs) {
        input_descs.push_back({input->layout(), input->comp_node()});
    }
    auto subgraph = def.trait()->make_forward_graph(def, input_descs);
    auto apply_functor = [](const std::shared_ptr<OpDef>& op, const SmallVector<TensorPtr>& inputs, size_t nr_outputs){
        return OpDef::apply_on_physical_tensor(*op, inputs);
    };
    auto const_functor = [&](const TensorPtr& value) {
        return value;
    };
    auto outputs = subgraph.apply(inputs, apply_functor, const_functor);
    return outputs;
}

static EncodedSubraph make_backward_graph_from_forward(
        const SmallVector<LogicalTensorDesc>& inputs,
        const SmallVector<bool>& input_requires_grad,
        const SmallVector<bool>& output_has_grad,
        EncodedSubraph forward_graph) {
    using namespace std::placeholders;
    using var_t = Subgraph::var_t;
    using vars_t = Subgraph::vars_t;
    Subgraph::Builder<LogicalTensorDesc> builder([](auto&& op, auto&& input_descs, size_t nr_outputs){
        auto [descs, _] = OpDef::infer_output_attrs_fallible(*op, input_descs);
        return descs;
    });
    auto accum_grad = [&](var_t lhs, var_t rhs) {
        return builder.write_expr(Elemwise::make(Elemwise::Mode::ADD), {lhs, rhs}, 1)[0];
    };
    GradContext<var_t> grad_context{accum_grad};
    auto input_vars = builder.write_inputs(inputs);
    auto outputs = forward_graph.apply(input_vars, std::bind(&decltype(builder)::write_expr, &builder, _1, _2, _3), [&](TensorPtr constant){
        return builder.write_constant(constant, {constant->layout(), constant->comp_node()});
    });
    size_t nr_outputs = outputs.size();
    auto apply_mask = [](auto&& values, SmallVector<bool> mask) {
        mgb_assert(mask.size() == values.size(), "");
        std::decay_t<decltype(values)> results;
        for (size_t i = 0; i < mask.size(); ++i) {
            if (mask[i]) {
                results.push_back(values[i]);
            }
        }
        return results;
    };
    grad_context.mark_require_grads(apply_mask(input_vars, input_requires_grad));
    builder.iterate([&](std::list<Subgraph::expr_t>::iterator iter){
        grad_context.record_expr(iter->op, iter->inputs, iter->outputs);
    });
    auto output_descs = builder.get_descs(outputs);
    auto computed_outputs = builder.write_inputs(output_descs);
    auto output_grads = builder.write_inputs(output_descs);

    grad_context.backward(
            apply_mask(outputs, output_has_grad),
            apply_mask(output_grads, output_has_grad),
            [&](Subgraph::expr_t expr, vars_t output_grads) {
                auto bg = OpDef::make_backward_graph(
                        *expr.op, builder.get_descs(expr.inputs),
                        grad_context.get_require_grads(expr.inputs),
                        grad_context.get_has_grads(expr.outputs));
                if (bg.graph.empty()) {
                    return vars_t(expr.inputs.size(), 0);
                }
                vars_t grad_inputs;
                grad_inputs.insert(grad_inputs.end(), expr.inputs.begin(),
                                   expr.inputs.end());
                grad_inputs.insert(grad_inputs.end(), expr.outputs.begin(),
                                   expr.outputs.end());
                grad_inputs.insert(grad_inputs.end(), output_grads.begin(),
                                   output_grads.end());
                auto apply_functor = std::bind(&decltype(builder)::write_expr,
                                               &builder, _1, _2, _3);
                auto const_functor = [&](TensorPtr constant) {
                    return builder.write_constant(constant, {constant->layout(),
                                                      constant->comp_node()});
                };
                return bg.apply(grad_inputs, apply_functor, const_functor);
            });
    builder.add_outputs(grad_context.get_grads(input_vars));
    for (size_t i = 0; i < nr_outputs; ++i) {
        builder.replace_var(outputs[i], computed_outputs[i]);
    }
    auto backward_graph = builder.encode();
    return backward_graph;
}

EncodedSubraph make_backward_graph(
        const OpDef& def, 
        const SmallVector<LogicalTensorDesc>& inputs,
        const SmallVector<bool>& input_requires_grad,
        const SmallVector<bool>& output_has_grad) {
    auto forward_graph = OpDef::make_forward_graph(def, inputs);
    return make_backward_graph_from_forward(inputs, input_requires_grad, output_has_grad, forward_graph);
}

std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> infer_output_mem_desc(
        const OpDef& def,
        const SmallVector<TensorPtr>& inputs_tensors,
        const SmallVector<MemoryDesc>& inputs_mems) {
    return {{}, {}};
}

}
}
}