grad_override.cpp 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/**
 * \file imperative/python/src/grad_override.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./grad.h"
#include "megbrain/imperative/ops/autogen.h"

namespace mgb::imperative::python {
namespace {

std::shared_ptr<Tensor> get_shape(Tensor* x) {
    static auto op = GetVarShape::make();
    return python::apply(op, x)[0];
}

std::shared_ptr<Tensor> reduce_to(Tensor* x, Tensor* s) {
    static auto op = Reduce::make();
    return python::apply(op, x, s)[0];
}

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
std::shared_ptr<Tensor> reshape_to(Tensor* x, Tensor* s) {
    static auto op = Reshape::make();
    return python::apply(op, x, s)[0];
}

std::shared_ptr<Tensor> broadcast_to(Tensor* x, Tensor* s) {
    static auto op = Broadcast::make();
    return python::apply(op, x, s)[0];
}

std::shared_ptr<Tensor> make_tensor(CompNode cn, Tensor* shape, float v = 0) {
    HostTensorND scalar{cn, {{1}, dtype::Float32()}};
    scalar.ptr<float>()[0] = v;
    interpreter::Interpreter::Handle handle = interpreter_for_py->put(scalar);
    auto&& t = std::make_shared<Tensor>(handle);
    auto&& res = broadcast_to(t.get(), shape);
    return res;
}

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
apply_result_t elemwise_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto& op = ctx.op->cast_final_safe<Elemwise>();
    if (op.mode == Elemwise::Mode::ADD) {
        mgb_assert(ctx.nargs == 2);
        std::array<std::shared_ptr<Tensor>, 2> input_shapes;
        for (size_t i = 0; i < 2; ++i) {
            if (input_requires_grad(ctx, i)) {
                input_shapes[i] = get_shape(ctx.args[i]);
            }
        }
        maker.output_size(1).output_captured(0, false);
        maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
            mgb_assert(ngrads == 1);
            Tensor* grad = grads[0];
            apply_result_t ret(2);
            for (size_t i = 0; i < 2; ++i) {
                if (shapes[i]) {
                    ret[i] = reduce_to(grad, shapes[i].get());
                }
            }
            return ret;
        });
        return apply(ctx);
    }
    throw GradRuleFallback();
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
apply_result_t reshape_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    mgb_assert(ctx.nargs == 2);
    std::array<std::shared_ptr<Tensor>, 2> input_shapes;
    for (size_t i = 0; i < 2; ++i) {
        if (input_requires_grad(ctx, i)) {
            input_shapes[i] = get_shape(ctx.args[i]);
        }
    }
    maker.output_size(1).output_captured(0, false);
    maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
        mgb_assert(ngrads == 1);
        Tensor* grad = grads[0];
        apply_result_t ret(2);
        for (size_t i = 0; i < 2; ++i) {
            if (shapes[i]) {
                ret[i] = reshape_to(grad, shapes[i].get());
            }
        }
        return ret;
    });
    return apply(ctx);
}

apply_result_t subtensor_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto&& op = ctx.op->cast_final_safe<Subtensor>();
    auto&& grad_op = SetSubtensor::make(op.items);
    SmallVector<std::shared_ptr<Tensor>> inputs;
    if (input_requires_grad(ctx, 0)) {
        inputs.push_back(get_shape(ctx.args[0]));
        for (size_t i = 1; i < ctx.nargs; ++i) {
            inputs.push_back(ctx.args[i]->copy());
        }
    }
    maker.output_size(1).output_captured(0, false);
    maker.backward([inputs=std::move(inputs), grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
        mgb_assert(ngrads == 1);
        apply_result_t ret(1);
        if (inputs[0]) {
            SmallVector<Tensor*> args_(inputs.size()+1);
            Tensor* grad = grads[0];
            auto&& zeros = make_tensor(grad->comp_node(), inputs[0].get());
            args_[0] = zeros.get();
            args_[1] = grad;
            for (size_t i = 1; i < inputs.size(); ++i) {
                args_[i+1] = inputs[i].get();
            }
            ret[0] = python::apply(grad_op_, args_)[0];
        }
        return ret;
    });
    return apply(ctx);
}

apply_result_t indexingMultiAxisVec_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto&& op = ctx.op->cast_final_safe<IndexingMultiAxisVec>();
    auto&& grad_op = IndexingSetMultiAxisVec::make(op.items);
    SmallVector<std::shared_ptr<Tensor>> inputs;
    if (input_requires_grad(ctx, 0)) {
        inputs.push_back(get_shape(ctx.args[0]));
        for (size_t i = 1; i < ctx.nargs; ++i) {
            inputs.push_back(ctx.args[i]->copy());
        }
    }
    maker.output_size(1).output_captured(0, false);
    maker.backward([inputs=std::move(inputs), grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
        mgb_assert(ngrads == 1);
        apply_result_t ret(1);
        if (inputs[0]) {
            SmallVector<Tensor*> args_(inputs.size()+1);
            Tensor* grad = grads[0];
            auto&& zeros = make_tensor(grad->comp_node(), inputs[0].get());
            args_[0] = zeros.get();
            args_[1] = grad;
            for (size_t i = 1; i < inputs.size(); ++i) {
                args_[i+1] = inputs[i].get();
            }
            ret[0] = python::apply(grad_op_, args_)[0];
        }
        return ret;
    });
    return apply(ctx);
}

apply_result_t reduce_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto& op = ctx.op->cast_final_safe<Reduce>();
    if (op.mode == Reduce::Mode::SUM) {
        mgb_assert(ctx.nargs == 1);
        std::array<std::shared_ptr<Tensor>, 1> input_shapes;
        if (input_requires_grad(ctx, 0)) {
            input_shapes[0] = get_shape(ctx.args[0]);
        }
        maker.output_size(1).output_captured(0, false);
        maker.backward([shapes=std::move(input_shapes)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
            mgb_assert(ngrads == 1);
            Tensor* grad = grads[0];
            apply_result_t ret(1);
            if (shapes[0]) {
                ret[0] = broadcast_to(grad, shapes[0].get());
            }
            return ret;
        });
        return apply(ctx);
    }
    throw GradRuleFallback();
}

180 181
apply_result_t addAxis_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto&& op = ctx.op->cast_final_safe<AddAxis>();
182
    mgb_assert(ctx.nargs == 1);
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    auto&& grad_op = RemoveAxis::make(op.axis);
    std::sort(grad_op->axis.begin(), grad_op->axis.end(), std::greater<int32_t>());
    maker.output_size(1).output_captured(0, false);
    maker.backward([grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
        mgb_assert(ngrads == 1);
        Tensor* grad = grads[0];
        apply_result_t ret(1);
        ret[0] = python::apply(grad_op_, grad)[0];
        return ret;
    });
    return apply(ctx);
}

apply_result_t removeAxis_grad_rule(ApplyContext& ctx, CustomBackward::Maker& maker) {
    auto&& op = ctx.op->cast_final_safe<RemoveAxis>();
    mgb_assert(ctx.nargs == 1);
    auto&& grad_op = AddAxis::make(op.axis);
    std::sort(grad_op->axis.begin(), grad_op->axis.end());
201 202 203 204 205 206 207 208 209 210 211
    maker.output_size(1).output_captured(0, false);
    maker.backward([grad_op_=std::move(grad_op)](BackwardContext&, Tensor*const* grads, size_t ngrads) {
        mgb_assert(ngrads == 1);
        Tensor* grad = grads[0];
        apply_result_t ret(1);
        ret[0] = python::apply(grad_op_, grad)[0];
        return ret;
    });
    return apply(ctx);
}

212 213 214 215
struct Init {
    Init() {
        auto& reg = grad_rule_registry();
        reg.emplace(Elemwise::typeinfo(), elemwise_grad_rule);
216 217 218 219
        reg.emplace(Reshape::typeinfo(), reshape_grad_rule);
        reg.emplace(Subtensor::typeinfo(), subtensor_grad_rule);
        reg.emplace(IndexingMultiAxisVec::typeinfo(), indexingMultiAxisVec_grad_rule);
        reg.emplace(Reduce::typeinfo(), reduce_grad_rule);
220 221
        reg.emplace(AddAxis::typeinfo(), addAxis_grad_rule);
        reg.emplace(RemoveAxis::typeinfo(), removeAxis_grad_rule);
222 223 224 225 226
    }
} _;

} // namespace
} // namespace mgb::imperative::python