interpreter_impl.cpp 55.9 KB
Newer Older
M
Megvii Engine Team 已提交
1
/**
2
 * \file imperative/src/impl/interpreter/interpreter_impl.cpp
M
Megvii Engine Team 已提交
3 4
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
M
Megvii Engine Team 已提交
6 7 8 9 10 11
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

12
#include "./interpreter_impl.h"
13

14 15
#include "range/v3/all.hpp"

16
#include "megbrain/common.h"
17 18
#include "megbrain/imperative/opr_utility.h"
#include "megbrain/imperative/ops/autogen.h"
19 20
#include "megbrain/imperative/ops/backward_graph.h"
#include "megbrain/imperative/ops/opr_attr.h"
21
#include "megbrain/imperative/ops/utility.h"
22 23
#include "megbrain/imperative/utils/to_string.h"

24
#include "../blob_manager_impl.h"
25 26 27
#include "../event_pool.h"
#include "../op_trait.h"

28 29 30 31 32
using namespace mgb;
using namespace imperative;
using namespace interpreter;
using namespace interpreter::intl;

33
namespace {
M
Megvii Engine Team 已提交
34 35 36 37 38 39 40 41
auto tinfo_to_tid(SmallVector<TensorInfo*> tinfo) {
    SmallVector<uint64_t> tid;
    for (auto* ptinfo : tinfo) {
        tid.push_back(ptinfo->id);
    }
    return tid;
};
}  // namespace
42

43
namespace mgb {
M
Megvii Engine Team 已提交
44
using namespace profiler;
45 46
}

47 48 49 50 51
#if defined(_WIN32) || defined(_WIN64)
#define SYMBOL_EXPORT __declspec(dllexport)
#else
#define SYMBOL_EXPORT __attribute__((visibility("default")))
#endif
52 53 54 55 56 57 58

namespace mgb {

/**
 * USAGE
 *
 *   header:
59
 *     namespace mgb { void imperative_log_profile(const char* message); }
60 61 62 63 64
 *
 *   code:
 *     mgb::imperative_log_profile("MY MESSAGE");
 *
 **/
65
SYMBOL_EXPORT
66
void imperative_log_profile_begin(const char* message) {
67
    MGB_RECORD_EVENT(CustomEvent, std::string{message});
68 69
}

70
SYMBOL_EXPORT
71
void imperative_log_profile_end(const char* message) {
72
    MGB_RECORD_EVENT(CustomFinishEvent, std::string{message});
73 74
}

75
SYMBOL_EXPORT
M
Megvii Engine Team 已提交
76
void imperative_log_profile(const char* message) {
77 78 79 80
    imperative_log_profile_begin(message);
    imperative_log_profile_end(message);
}

81 82 83 84
SYMBOL_EXPORT
void imperative_log_profile_begin(const char* message, const char* device) {
    auto comp_node = CompNode::load(device);
    MGB_RECORD_EVENT(CustomEvent, std::string{message}, {}, comp_node);
M
Megvii Engine Team 已提交
85 86
    MGB_RECORD_EVENT(
            RecordDeviceEvent, EventPool::with_timer().alloc_shared(comp_node));
87 88 89 90 91
}

SYMBOL_EXPORT
void imperative_log_profile_end(const char* message, const char* device) {
    auto comp_node = CompNode::load(device);
M
Megvii Engine Team 已提交
92 93
    MGB_RECORD_EVENT(
            RecordDeviceEvent, EventPool::with_timer().alloc_shared(comp_node));
94 95 96
    MGB_RECORD_EVENT(CustomFinishEvent, std::string{message}, {}, comp_node);
}

M
Megvii Engine Team 已提交
97
}  // namespace mgb
98

99 100 101 102 103 104 105 106 107 108 109 110 111 112
std::thread::id ChannelImpl::get_worker_tid() {
    return m_worker_state.tid;
}

ChannelImpl::ChannelState& ChannelImpl::get_channel_state() {
    assert_in_channel();
    return m_channel_state;
}

ChannelImpl::WorkerState& ChannelImpl::get_worker_state() {
    assert_in_worker();
    return m_worker_state;
}

113 114 115 116 117 118 119 120 121 122
void ChannelImpl::WorkQueue::on_async_queue_worker_thread_start() {
    sys::set_thread_name("worker");
    m_owner->m_worker_state.tid = std::this_thread::get_id();
    OpDef::set_allocator([&](CompNode device, size_t size) {
        auto blob = Blob::make(device, size);
        m_owner->alloc_tensor_with_evict(blob.get());
        return blob->storage();
    });
}

123
// Do not use m_xxx_state directly
124 125 126
#define m_channel_state
#define m_worker_state

127 128 129 130 131 132 133 134 135
std::unique_ptr<Interpreter::Channel> InterpreterImpl::create_channel() {
    return std::make_unique<ChannelImpl>();
}

Interpreter& Interpreter::inst() {
    static InterpreterImpl inst_;
    return inst_;
}

136
Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) {
137
    MGB_LOCK_GUARD(m_spin);
138
    mgb_assert(check_available(), "Channel already closed");
139
    auto& state = get_channel_state();
140
    auto _ = StackManager::Guard{"Put", &state.stack_manager};
141
    auto info = put_impl(value, no_cache);
M
Megvii Engine Team 已提交
142
    return reinterpret_cast<Handle>(info);
143 144 145
}

TensorInfo* ChannelImpl::put_impl(const HostTensorND& value, bool no_cache) {
146 147 148 149 150
    if (value.empty()) {
        auto layout = value.layout();
        layout.init_contiguous_stride();
        const_cast<HostTensorND&>(value).reset(value.storage(), layout);
    }
151
    auto info = alloc();
152
    init(info, {value.layout(), value.comp_node(), value.proxy_to_default_cpu()});
153
    info->mem_desc.id = StorageIdentifier::make(++m_storage_id);
154
    info->h_value = value;
155
    m_buffer.enqueue(Put{info, value, no_cache});
156
    if (m_async_level == 0) {
157
        sync_impl();
158 159
        info->desc.comp_node.sync();
    }
160 161 162
    return info;
}

163
Handle ChannelImpl::put(const DeviceTensorND& data, const HostTensorND& hvalue) {
164
    MGB_LOCK_GUARD(m_spin);
165
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
166
    return reinterpret_cast<Handle>(put_impl(data, hvalue));
167
}
M
Megvii Engine Team 已提交
168 169
TensorInfo* ChannelImpl::put_impl(
        const DeviceTensorND& data, const HostTensorND& hvalue) {
170
    auto& state = get_channel_state();
171
    auto _ = StackManager::Guard{"Put", &state.stack_manager};
M
Megvii Engine Team 已提交
172
    auto info = alloc();
173
    MGB_RECORD_EVENT(TensorCommandEvent, info->id, TensorCommandKind::Put);
174
    init(info, {data.layout(), data.comp_node()});
175
    info->mem_desc.id = StorageIdentifier::make(++m_storage_id);
176
    info->ptr = Tensor::make(data, hvalue);
M
Megvii Engine Team 已提交
177 178 179
    MGB_RECORD_EVENT(
            TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node,
            data.raw_ptr());
180
    info->status = TensorInfo::Produced;
181
    MGB_RECORD_EVENT(TensorCommandFinishEvent, info->id, TensorCommandKind::Put);
M
Megvii Engine Team 已提交
182 183 184
    return info;
}

185
void ChannelImpl::del(Handle handle) {
186
    MGB_LOCK_GUARD(m_spin);
M
Megvii Engine Team 已提交
187
    if (!check_available()) {
188 189
        return;
    }
190 191 192 193
    del_impl(handle);
}

void ChannelImpl::del_impl(Handle handle) {
194 195 196 197
    mgb_assert(m_valid_handle.count(handle), "invalid handle: %p", handle);
    auto* info = reinterpret_cast<TensorInfo*>(handle);
    m_valid_handle.erase(handle);
    m_buffer.enqueue(Del{info});
198 199
}

200
void ChannelImpl::drop(Handle handle) {
201
    MGB_LOCK_GUARD(m_spin);
202
    mgb_assert(check_available(), "Channel already closed");
203 204
    auto& state = get_channel_state();
    if (state.options.enable_drop) {
M
Megvii Engine Team 已提交
205 206
        mgb_assert(
                m_valid_handle.find(handle) != m_valid_handle.end(),
207
                "invalid handle: %p", handle);
208 209
        auto* info = reinterpret_cast<TensorInfo*>(handle);
        m_buffer.enqueue(Drop{info});
210 211 212
    }
}

213
void ChannelImpl::dispatch_default_cpu(
M
Megvii Engine Team 已提交
214
        std::shared_ptr<OpDef> op, const SmallVector<TensorInfo*>& input_infos,
215 216
        const SmallVector<LogicalTensorDesc>& input_descs,
        SmallVector<Handle>* outputs) {
217
    auto& state = get_channel_state();
218 219

    auto name = op->trait()->make_name(*op);
220
    auto _ = StackManager::Guard(name, &state.stack_manager);
221

M
Megvii Engine Team 已提交
222 223
    auto [output_descs, validated] =
            OpDef::infer_output_attrs_fallible(*op, input_descs);
224
    MGB_RECORD_EVENT(ShapeInferEvent, validated);
225

226 227 228
    SmallVector<DeviceTensorND> input_tensornds;
    input_tensornds.reserve(input_descs.size());
    CompNode output_cn;
229 230
    {
        MGB_LOCK_GUARD(m_mutex);
231
        for (auto&& info : input_infos) {
232
            auto input_cn = info->desc.comp_node;
233
            if (!output_cn.valid()) {
234 235 236 237 238 239
                output_cn = input_cn;
            } else {
                mgb_assert(output_cn == input_cn, "cannot decide output comp node");
            }

            if (info->ptr && info->ptr->try_get_value()) {
M
Megvii Engine Team 已提交
240 241
                input_tensornds.emplace_back(
                        info->ptr->get_value().proxy_to_default_cpu());
242
            } else {
243
                // We assign h_value before drop ptr
244 245
                mgb_assert(!info->h_value.empty(), "inp->h_value is empty!");
                input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu());
246 247 248 249 250 251 252 253 254 255 256
            }
        }
    }

    outputs->reserve(output_descs.size());
    SmallVector<DeviceTensorND> output_tensornds;
    output_tensornds.reserve(output_descs.size());
    for (auto&& desc : output_descs) {
        // TODO: may conflict with condtake, which need alloc inside
        mgb_assert(!desc.layout.is_empty());
        // use HostTensorND alloc_host for cuda pinned memory
M
Megvii Engine Team 已提交
257 258
        output_tensornds.emplace_back(
                HostTensorND(output_cn, desc.layout).proxy_to_default_cpu());
259 260
    }

261
    uint64_t op_id = Profiler::next_id();
262

263 264 265 266 267
    OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds);

    SmallVector<TensorInfo*> output_infos;
    output_infos.reserve(output_descs.size());
    for (auto&& tensornd : output_tensornds) {
M
Megvii Engine Team 已提交
268 269
        HostTensorND host_tensornd =
                HostTensorND::make_proxy(tensornd).proxy_to_comp_node(output_cn);
270
        // use `put` for consistency
271
        auto info = reinterpret_cast<TensorInfo*>(put_impl(host_tensornd, false));
272
        mgb_assert(info->desc.layout.ndim != 0);
273
        output_infos.push_back(info);
M
Megvii Engine Team 已提交
274
        outputs->push_back(reinterpret_cast<Handle>(info));
275
    }
M
Megvii Engine Team 已提交
276
    auto op_info_getter = [op] {
277 278
        std::unordered_map<std::string, std::string> op_info;
        auto props = OpDef::props(*op);
M
Megvii Engine Team 已提交
279
        for (auto&& [key, value] : props) {
280 281 282 283
            op_info[key] = value;
        }
        return op_info;
    };
M
Megvii Engine Team 已提交
284 285 286
    MGB_RECORD_EVENT(
            OpDispatchEvent, op_id, name, op_info_getter, tinfo_to_tid(input_infos),
            tinfo_to_tid(output_infos), state.stack_manager.dump());
287
}
288

289
void ChannelImpl::dispatch_kernel(
M
Megvii Engine Team 已提交
290
        std::shared_ptr<OpDef> op, const SmallVector<TensorInfo*>& input_infos,
291 292
        const SmallVector<LogicalTensorDesc>& input_descs,
        SmallVector<Handle>* outputs) {
293
    auto& state = get_channel_state();
294 295 296
    auto& options = state.options;

    auto name = op->trait()->make_name(*op);
M
Megvii Engine Team 已提交
297
    auto _ = StackManager::Guard{name, &state.stack_manager};
298

M
Megvii Engine Team 已提交
299 300
    auto [output_descs, validated] =
            OpDef::infer_output_attrs_fallible(*op, input_descs);
301
    MGB_RECORD_EVENT(ShapeInferEvent, validated);
302

303
    ApplyOp cmd{Profiler::next_id(), std::move(op)};
304
    cmd.inputs = std::move(input_infos);
305
    cmd.outputs.reserve(output_descs.size());
306
    outputs->reserve(output_descs.size());
307 308
    for (int i = 0; i < output_descs.size(); ++i) {
        auto&& desc = output_descs[i];
309
        auto info = alloc();
310
        init(info, desc);
311 312 313
        // make sure desc's value is consistent with h_value
        if (!info->desc.value.empty()) {
            info->h_value = HostTensorND::make_proxy(desc.value)
M
Megvii Engine Team 已提交
314
                                    .proxy_to_comp_node(desc.comp_node);
315
        }
316
        cmd.outputs.push_back(info);
M
Megvii Engine Team 已提交
317
        outputs->push_back(reinterpret_cast<Handle>(info));
318
    }
M
Megvii Engine Team 已提交
319
    auto op_info_getter = [op = cmd.op] {
320 321
        std::unordered_map<std::string, std::string> op_info;
        auto props = OpDef::props(*op);
M
Megvii Engine Team 已提交
322
        for (auto&& [key, value] : props) {
323 324 325 326
            op_info[key] = value;
        }
        return op_info;
    };
M
Megvii Engine Team 已提交
327 328 329
    MGB_RECORD_EVENT(
            OpDispatchEvent, cmd.id, name, op_info_getter, tinfo_to_tid(cmd.inputs),
            tinfo_to_tid(cmd.outputs), state.stack_manager.dump());
330
    m_buffer.enqueue(std::move(cmd));
331
    if (!validated && options.async_level == 1) {
332
        sync_impl();
333
    } else if (options.async_level == 0) {
334
        sync_impl();
335
        // check device error
336
        for (auto&& oup : *outputs) {
337 338
            auto info = reinterpret_cast<TensorInfo*>(oup);
            info->ptr->comp_node().sync();
339
        }
340
    }
341 342 343
}

SmallVector<Handle> ChannelImpl::apply_op(
M
Megvii Engine Team 已提交
344
        std::shared_ptr<OpDef> op, const SmallVector<Handle>& inputs) {
345
    MGB_LOCK_GUARD(m_spin);
346
    mgb_assert(check_available(), "Channel already closed");
347 348 349 350
    return apply_op_impl(std::move(op), inputs);
}

SmallVector<Handle> ChannelImpl::apply_op_impl(
M
Megvii Engine Team 已提交
351
        std::shared_ptr<OpDef> op, const SmallVector<Handle>& inputs) {
352
    auto& state = get_channel_state();
353
    for (auto i : inputs) {
M
Megvii Engine Team 已提交
354 355 356
        mgb_assert(
                m_valid_handle.find(i) != m_valid_handle.end(), "invalid handle: %p",
                i);
357 358 359 360 361 362 363 364 365
    }
    SmallVector<TensorInfo*> input_infos;
    input_infos.reserve(inputs.size());
    SmallVector<LogicalTensorDesc> input_descs;
    input_descs.reserve(inputs.size());
    {
        MGB_LOCK_GUARD(m_mutex);
        for (auto i : inputs) {
            auto info = reinterpret_cast<TensorInfo*>(i);
M
Megvii Engine Team 已提交
366 367 368
            mgb_assert(
                    !info->invalid,
                    "an input tensor is unusable due to previous error");
369 370 371 372 373 374
            input_infos.push_back(info);
            input_descs.push_back(info->desc);
        }
    }

    SmallVector<Handle> outputs;
375
    DispatchMode dispatch_mode = state.options.enable_host_compute
M
Megvii Engine Team 已提交
376 377
                                       ? OpDef::decide_dispatch_mode(*op, input_descs)
                                       : DispatchMode::KERNEL;
378
    switch (dispatch_mode) {
379 380 381 382 383 384 385 386 387
        case DEFAULT_CPU: {
            dispatch_default_cpu(op, input_infos, input_descs, &outputs);
            break;
        }
        case KERNEL: {
            dispatch_kernel(op, input_infos, input_descs, &outputs);
            break;
        }
    }
388 389 390
    return outputs;
}

391
HostTensorND ChannelImpl::get_value(Handle handle) {
392
    MGB_LOCK_GUARD(m_spin);
393
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
394 395 396
    mgb_assert(
            m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p",
            handle);
397
    auto info = reinterpret_cast<TensorInfo*>(handle);
398
    // donnot use info->value_fetched, it's unsafe
399
    mgb_assert(!info->invalid, "tensor is unusable due to previous error");
400
    return wait_tensor(info, TensorProp::HostValue)->get_value();
401 402
}

403
TensorShape ChannelImpl::get_shape(Handle handle) {
404
    MGB_LOCK_GUARD(m_spin);
405
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
406 407 408
    mgb_assert(
            m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p",
            handle);
409 410 411 412
    auto info = reinterpret_cast<TensorInfo*>(handle);
    if (info->desc.layout.ndim != 0) {
        return info->desc.layout;
    }
413
    TensorShape ret = wait_tensor(info, TensorProp::Shape)->layout();
414 415 416 417
    mgb_assert(ret.ndim != 0);
    return ret;
}

418
DType ChannelImpl::get_dtype(Handle handle) {
419
    MGB_LOCK_GUARD(m_spin);
420
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
421 422 423
    mgb_assert(
            m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p",
            handle);
424
    auto info = reinterpret_cast<TensorInfo*>(handle);
425
    MGB_RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::DType);
426 427 428 429 430
    auto ret = info->desc.layout.dtype;
    mgb_assert(ret.valid());
    return ret;
}

431
CompNode ChannelImpl::get_device(Handle handle) {
432
    MGB_LOCK_GUARD(m_spin);
433
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
434 435 436
    mgb_assert(
            m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p",
            handle);
437
    auto info = reinterpret_cast<TensorInfo*>(handle);
438
    MGB_RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::Device);
439 440 441 442 443
    auto ret = info->desc.comp_node;
    mgb_assert(ret.valid());
    return ret;
}

444
DeviceTensorND ChannelImpl::get_dev_tensor(Handle handle) {
445
    MGB_LOCK_GUARD(m_spin);
446
    mgb_assert(check_available(), "Channel already closed");
M
Megvii Engine Team 已提交
447 448 449
    mgb_assert(
            m_valid_handle.find(handle) != m_valid_handle.end(), "invalid handle: %p",
            handle);
450
    auto info = reinterpret_cast<TensorInfo*>(handle);
451
    return wait_tensor(info, TensorProp::DevValue)->dev_tensor();
452 453 454
}

void ChannelImpl::sync() {
455
    MGB_LOCK_GUARD(m_spin);
456
    mgb_assert(check_available(), "Channel already closed");
457 458 459 460
    sync_impl();
}

void ChannelImpl::sync_impl() {
461
    m_buffer.flush();
462 463 464 465 466 467
    m_worker.wait_all_task_finish();
    MGB_LOCK_GUARD(m_mutex);
    check_worker_exc_unsafe();
}

void ChannelImpl::close() {
468
    MGB_LOCK_GUARD(m_spin);
469 470 471 472
    if (!check_available()) {
        return;
    }
    std::vector<Handle> valid_handles(m_valid_handle.begin(), m_valid_handle.end());
M
Megvii Engine Team 已提交
473
    for (auto* handle : valid_handles) {
474
        del_impl(handle);
475 476 477
    }
    mgb_assert(m_valid_handle.empty());
    mgb_log_debug("%ld tensor exists before channel close", (long)valid_handles.size());
478
    sync_impl();
479
    m_closed = true;
480 481
}

482
size_t ChannelImpl::get_option(std::string name) {
483
    MGB_LOCK_GUARD(m_spin);
484
    mgb_assert(check_available(), "Channel already closed");
485 486
    auto& state = get_channel_state();
    return state.options.get_option(name);
487 488
}

489
void ChannelImpl::set_option(std::string name, size_t value) {
490
    MGB_LOCK_GUARD(m_spin);
491
    mgb_assert(check_available(), "Channel already closed");
492 493
    auto& state = get_channel_state();
    state.options.set_option(name, value);
494
    m_buffer.enqueue(SetOption{name, value});
495 496 497
}

TensorInfo* ChannelImpl::alloc() {
498
    auto& state = get_channel_state();
M
Megvii Engine Team 已提交
499
    auto info = [this] {
500 501 502 503 504
        MGB_LOCK_GUARD(m_mutex);
        return m_pool.alloc();
    }();
    info->id = Profiler::next_id();
    if (Profiler::is_profiling()) {
505
        size_t tensor_id = state.stack_manager.current()->next_id("tensor");
M
Megvii Engine Team 已提交
506 507
        info->name =
                state.stack_manager.dump().to_string() + ssprintf(":%zu", tensor_id);
508
    }
509
    return info;
510 511
}

512
void ChannelImpl::init(TensorInfo* info, LogicalTensorDesc desc) {
M
Megvii Engine Team 已提交
513
    m_valid_handle.insert(reinterpret_cast<Handle>(info));
514
    MGB_RECORD_EVENT(TensorDeclareEvent, info->id, info->name);
515 516
    info->status = TensorInfo::Allocated;
    info->desc = std::move(desc);
517 518 519
    info->mem_desc.layout = info->desc.layout;
    info->mem_desc.cn = info->desc.comp_node;
    info->mem_desc.offset = 0;
520 521
}

M
Megvii Engine Team 已提交
522
void ChannelImpl::do_drop(TensorInfo* ptr, bool user = false) {
523 524
    if (!ptr->producer) {
        if (user) {
M
Megvii Engine Team 已提交
525 526 527 528
            mgb_log_warn(
                    "the input that produced tensor %p has been deleted, this drop "
                    "operation will be ignored",
                    ptr);
529 530 531 532 533 534 535
        }
        return;
    }
    if (ptr->evict_type != EvictType::NONE) {
        return;
    }
    ptr->evict_type = EvictType::DROP;
536
    ptr->status = TensorInfo::Dropped;
537 538 539
    release_tensor(ptr);
}

540
void ChannelImpl::free(TensorInfo* ptr) {
541 542
    auto& state = get_worker_state();
    if (state.options.enable_dtr_auto_drop) {
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        // Evicting a tensor, rather than freeing it, can avoid pinning
        // potentially exploding amounts of memory and allow us to save
        // more memory.
        ptr->allow_delete = true;
        if (!ptr->ref_cnt) {
            recursive_free(ptr);
        } else {
            do_drop(ptr);
        }
    } else {
        real_free(ptr);
    }
}

void ChannelImpl::recursive_free(TensorInfo* ptr) {
558
    MGB_RECORD_EVENT(TensorCommandEvent, ptr->id, TensorCommandKind::RecFree);
559
    SmallVector<TensorInfo*> inps;
560 561 562 563 564 565 566 567 568 569 570 571 572
    if (ptr->producer) {
        for (auto i : ptr->producer->inputs) {
            if (i && --i->ref_cnt == 0) {
                inps.push_back(i);
            }
        }
    }
    real_free(ptr);
    for (auto i : inps) {
        if (i->allow_delete) {
            recursive_free(i);
        }
    }
573
    MGB_RECORD_EVENT(TensorCommandFinishEvent, ptr->id, TensorCommandKind::RecFree);
574 575 576
}

void ChannelImpl::real_free(TensorInfo* ptr) {
577 578
    auto& state = get_worker_state();
    if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) {
579 580 581 582
        m_dtr.erase_candidate(ptr);
    }
    detach_users(ptr);
    ptr->detach_producer();
583 584
    bool has_value = ptr->ptr != nullptr;
    if (has_value) {
585
        MGB_RECORD_EVENT(TensorReleaseEvent, ptr->id);
586
    }
587
    MGB_RECORD_EVENT(TensorEraseEvent, ptr->id, ptr->ptr_use_count);
588
    ptr->status = TensorInfo::Deleted;
589
    MGB_LOCK_GUARD(m_mutex);
590 591 592
    m_pool.free(ptr);
}

M
Megvii Engine Team 已提交
593
ChannelImpl::ChannelImpl() : m_worker(this), m_buffer(this) {}
594

595 596 597
ChannelImpl::~ChannelImpl() {
    close();
}
598

599
void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr) {
600
    auto& state = get_worker_state();
601
    MGB_LOCK_GUARD(m_mutex);
602
    m_dtr.update_used_time(dest);
M
Megvii Engine Team 已提交
603 604 605
    MGB_RECORD_EVENT(
            TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node(),
            ptr->dev_tensor().raw_ptr());
606 607 608
    // update tensor desc for static infer
    dest->desc.layout = ptr->layout();
    dest->desc.comp_node = ptr->comp_node();
609
    dest->memory = ptr->blob()->size();
610
    dest->ptr = std::move(ptr);
611
    dest->evict_type = EvictType::NONE;
612
    dest->status = TensorInfo::Produced;
613
    if (dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) {
614 615
        m_dtr.insert_candidate(dest);
    }
616
    notify_tensor_unsafe(dest);
617 618
}

619
void ChannelImpl::release_tensor(TensorInfo* dest) {
620
    MGB_RECORD_EVENT(TensorReleaseEvent, dest->id);
621 622
    MGB_LOCK_GUARD(m_mutex);
    dest->ptr.reset();
623 624 625 626
    auto& state = get_worker_state();
    if (dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) {
        m_dtr.erase_candidate(dest);
    }
627 628
}

629
void ChannelImpl::regenerate(TensorInfo* dest) {
630
    if (dest->evict_type == EvictType::DROP) {
M
Megvii Engine Team 已提交
631 632 633 634 635 636
        auto&& path = dest->producer;
        m_apply_stack.push(
                {ApplyOp{path->id, path->op, path->inputs, path->outputs, {}}, 0, dest,
                 "dtr"});
        if (!m_applying)
            flush_apply_stack();
637 638 639
    }
}

640
void ChannelImpl::do_apply_op(const ApplyOp& cmd, std::string reason) {
641 642
    using namespace ranges;
    using namespace ranges::views;
643
    auto& state = get_worker_state();
M
Megvii Engine Team 已提交
644 645
    bool profiling_device =
            Profiler::is_profiling() && Profiler::get_option("profile_device", 0);
646
    uint64_t apply_id = cmd.id;
647 648 649 650 651 652
    struct TensorWithDesc {
        TensorPtr tensor;
        MemoryDesc desc;
    };
    SmallVector<TensorWithDesc> inputs;
    inputs.reserve(cmd.inputs.size());
653 654 655
    // refcnt == 1, owners: [TensorInfo::ptr]
    for (auto i : cmd.inputs) {
        mgb_assert(i->ptr, "Invalid input tensor ptr!");
656
        // refcnt ++, owners: [i->ptr, tensor_inputs]
657 658
        // tensor_inputs.push_back(i->ptr);
        inputs.push_back({i->ptr, i->mem_desc});
659
    }
M
Megvii Engine Team 已提交
660 661
    if (state.options.enable_dtr_auto_drop &&
        state.options.dtr_eviction_threshold > 0) {
662 663
        auto_evict(0);
    }
M
Megvii Engine Team 已提交
664 665 666 667 668 669
    auto apply_on_physical_tensor =
            [&](auto&& self, const OpDef& def,
                SmallVector<TensorWithDesc> inputs) -> SmallVector<TensorWithDesc> {
        auto apply_functor = [&](std::shared_ptr<OpDef> op,
                                 SmallVector<TensorWithDesc> inputs,
                                 size_t nr_outputs) -> SmallVector<TensorWithDesc> {
670
            auto opname = op->trait()->make_name(*op);
671
            imperative_log_profile_begin(opname.c_str());
672
            auto outputs = self(self, *op, inputs);
673
            imperative_log_profile_end(opname.c_str());
674 675 676
            return outputs;
        };
        auto const_functor = [&](TensorPtr value) -> TensorWithDesc {
M
Megvii Engine Team 已提交
677 678 679
            return {value, MemoryDesc{
                                   value->layout(), 0, value->comp_node(),
                                   StorageIdentifier::make()}};
680 681 682 683
        };
        if (def.trait()->make_forward_graph) {
            // apply recursivily
            SmallVector<LogicalTensorDesc> input_descs;
M
Megvii Engine Team 已提交
684 685 686
            for (auto&& input : inputs) {
                input_descs.push_back(
                        {{{}, input.tensor->dtype()}, input.tensor->comp_node()});
687
            }
688 689 690 691 692 693
            auto forward_graph = OpDef::make_forward_graph(def, input_descs);
            auto outputs = forward_graph.apply(inputs, apply_functor, const_functor);
            return outputs;
        }
        SmallVector<TensorPtr> input_tensors;
        SmallVector<MemoryDesc> input_descs;
M
Megvii Engine Team 已提交
694
        for (auto&& input : inputs) {
695 696 697
            input_tensors.push_back(input.tensor);
            input_descs.push_back(input.desc);
        }
M
Megvii Engine Team 已提交
698 699
        auto [output_descs, output_tensors, workspaces] =
                init_output_and_workspace(def, input_tensors, input_descs);
700 701 702 703
        if (!output_descs.empty()) {
            OpDef::execute(def, input_tensors, output_tensors, workspaces);
        } else {
            output_tensors = OpDef::apply_on_physical_tensor(def, input_tensors);
M
Megvii Engine Team 已提交
704 705 706 707
            for (auto&& output_tensor : output_tensors) {
                output_descs.push_back(MemoryDesc{
                        output_tensor->layout(), 0, output_tensor->comp_node(),
                        StorageIdentifier::make()});
708 709
            }
        }
710
        SmallVector<TensorWithDesc> outputs;
M
Megvii Engine Team 已提交
711 712
        for (auto&& [output_tensor, output_desc] :
             ranges::zip_view(output_tensors, output_descs)) {
713 714 715 716
            outputs.push_back({output_tensor, output_desc});
        }
        return outputs;
    };
717
    MGB_RECORD_EVENT(OpExecuteEvent, apply_id, {}, reason);
718
    // Begin profiling operator
719 720 721 722
    SmallVector<std::pair<CompNode, uint64_t>> kernels;
    if (profiling_device) {
        // Collecting devices
        SmallVector<CompNode> devices;
723 724 725
        for (auto&& i : concat(cmd.inputs, cmd.outputs)) {
            if (i != nullptr && count(devices, i->desc.comp_node) == 0) {
                devices.push_back(i->desc.comp_node);
726
                kernels.push_back({i->desc.comp_node, Profiler::next_id()});
727 728 729
            }
        }
    }
M
Megvii Engine Team 已提交
730
    for (auto* input : cmd.inputs) {
731
        auto input_id = input->id;
732 733 734
        MGB_RECORD_EVENT(OpInputEvent, input_id);
        MGB_RECORD_EVENT(TensorUsageEvent, input_id);
        MGB_RECORD_EVENT(OpInputFinishEvent, input_id);
735 736
    }
    // Fused by command buffer. @see: CommandBuffer::fuse_del
M
Megvii Engine Team 已提交
737 738 739
    // Now if dest is inplacable, it's refcnt would be decreased to 1 and owned by
    // tensor_inputs after Del. Note for exprs like 'y = x op x', inplace is unsupported
    // yet but Del would be also fused.
740
    for (auto* del : cmd.dels) {
741
        // refcnt --, owners: [tensor_inputs]
M
Megvii Engine Team 已提交
742 743
        // if it's decreased to 1, would be detected at @see:
        // proxy_graph_detail::apply_on_physical_tensor
744
        uint64_t del_id = del->id;
745
        MGB_RECORD_EVENT(TensorCommandEvent, del_id, TensorCommandKind::Del);
746
        free(del);
747
        MGB_RECORD_EVENT(TensorCommandFinishEvent, del_id, TensorCommandKind::Del);
748
    }
749
    // Before wait
M
Megvii Engine Team 已提交
750
    // TODO: split operator wait and execute so that OpWait could be corrected recorded.
751
    // Before execute
M
Megvii Engine Team 已提交
752
    for (auto&& [device, kernel_id] : kernels) {
753
        MGB_RECORD_EVENT(KernelLaunchEvent, apply_id, kernel_id, device);
M
Megvii Engine Team 已提交
754 755 756
        MGB_RECORD_EVENT_IF(
                (Profiler::get_option("profile_device", 0)), RecordDeviceEvent,
                Timer::record_device(device));
757 758 759
    }
    // Apply op
    // Here std::move is REQUIRED for removing duplicated references.
760
    auto outputs = apply_on_physical_tensor(apply_on_physical_tensor, *cmd.op, inputs);
761
    // After execute
M
Megvii Engine Team 已提交
762 763 764 765
    for (auto&& [device, kernel_id] : kernels) {
        MGB_RECORD_EVENT_IF(
                (Profiler::get_option("profile_device", 0)), RecordDeviceEvent,
                Timer::record_device(device));
766
        MGB_RECORD_EVENT(KernelLaunchFinishEvent, apply_id, kernel_id, device);
767 768
    }
    // End profiling operator
769 770
    mgb_assert(outputs.size() == cmd.outputs.size());
    for (size_t i = 0; i < outputs.size(); ++i) {
771
        auto output = cmd.outputs[i];
772
        if (output == nullptr) {
773 774
            MGB_RECORD_EVENT(OpOutputEvent, 0);
            MGB_RECORD_EVENT(OpOutputFinishEvent, 0);
775
        } else if (output->ptr != nullptr) {
776 777
            MGB_RECORD_EVENT(OpOutputEvent, output->id);
            MGB_RECORD_EVENT(OpOutputFinishEvent, output->id);
778
        } else {
779
            MGB_RECORD_EVENT(OpOutputEvent, output->id);
780 781
            produce_tensor(output, outputs[i].tensor);
            output->mem_desc = outputs[i].desc;
782
            MGB_RECORD_EVENT(OpOutputFinishEvent, output->id);
783
            sample_on_device(output->desc.comp_node, false);
784 785 786 787 788 789 790 791
        }
    }

    if (state.options.enable_dtr_auto_drop) {
        double estimate_compute_time = 0;
        for (auto i : cmd.inputs) {
            estimate_compute_time += i->memory;
        }
792 793
        for (auto i : outputs) {
            estimate_compute_time += i.tensor->blob()->size();
794 795 796 797 798 799 800 801 802
        }
        m_dtr.estimate_timestamp += estimate_compute_time / 1e8;
        for (auto i : cmd.outputs) {
            if (i != nullptr) {
                i->compute_time = estimate_compute_time;
            }
        }
        m_dtr.unpin(cmd.inputs);
    }
803
    MGB_RECORD_EVENT(OpExecuteFinishEvent, apply_id, {}, reason);
804
    // End profiling operator
805
}
806

807 808
void ChannelImpl::flush_apply_stack() {
    m_applying = true;
809
    auto& state = get_worker_state();
810
    while (!m_apply_stack.empty()) {
M
Megvii Engine Team 已提交
811 812
        auto& [cmd, idx, recomp, reason] =
                m_apply_stack.top();  // cmd.inputs[0~idx-1] is in memory
813 814 815 816 817
        if (idx == 0) {
            if (state.options.enable_dtr_auto_drop) {
                m_dtr.pin(cmd.inputs);
            }
            if (recomp) {
M
Megvii Engine Team 已提交
818 819
                MGB_RECORD_EVENT(
                        TensorCommandEvent, recomp->id, TensorCommandKind::ReGen);
820 821 822
            }
        }
        bool regen = false;
M
Megvii Engine Team 已提交
823
        for (size_t i = idx; i < cmd.inputs.size(); i++) {
824 825 826 827 828 829
            auto&& p = cmd.inputs[i];
            if (state.options.enable_dtr_auto_drop) {
                m_dtr.update_used_time(p);
            }
            if (!p->ptr && p->evict_type != EvictType::NONE) {
                idx = i + 1;
M
Megvii Engine Team 已提交
830
                regenerate(p);  // add ApplyOp to the stack
831 832 833 834
                regen = true;
                break;
            }
        }
M
Megvii Engine Team 已提交
835 836
        if (regen)
            continue;
837
        // the required input tensors are already in memory
M
Megvii Engine Team 已提交
838 839
        auto [cmd_backup, recomp_backup, reason_backup] =
                std::make_tuple(cmd, recomp, reason);
840
        m_apply_stack.pop();
841
        do_apply_op(cmd_backup, reason_backup);
842
        if (recomp_backup) {
M
Megvii Engine Team 已提交
843 844 845
            MGB_RECORD_EVENT(
                    TensorCommandFinishEvent, recomp_backup->id,
                    TensorCommandKind::ReGen);
846 847
            for (auto o : cmd_backup.outputs) {
                if (o) {
848 849 850 851
                    m_dtr.update_dsu_after_recompute(o);
                }
            }
        }
852
    }
853
    m_applying = false;
854 855
}

856
bool ChannelImpl::auto_evict(size_t force_num) {
857
    auto& state = get_worker_state();
858
    if (!m_dtr.comp_node.valid()) {
859
        return false;
860 861
    }
    size_t current_memory = m_dtr.comp_node.get_used_memory();
862
    size_t flag = false;
M
Megvii Engine Team 已提交
863 864 865
    while ((state.options.dtr_eviction_threshold > 0 &&
            current_memory > state.options.dtr_eviction_threshold) ||
           force_num > 0) {
866
        MGB_RECORD_EVENT(AutoEvictEvent);
867
        sample_on_device(m_dtr.comp_node, false);
868
        auto best = m_dtr.find_best_tensor(state.options.enable_dtr_sqrt_sampling);
869
        if (!best) {
870
            MGB_RECORD_EVENT(AutoEvictFinishEvent);
871 872 873 874
            break;
        }
        if (best->ptr.unique() && best->ptr->blob().unique()) {
            current_memory -= best->memory;
875
            if (force_num > 0) {
M
Megvii Engine Team 已提交
876
                force_num--;
877 878
            }
            flag = true;
879 880 881 882
        }
        do_drop(best);
        if (best->evict_type == EvictType::DROP) {
            m_dtr.update_dsu_after_evict(best);
883
        }
884
        sample_on_device(m_dtr.comp_node, false);
885
        MGB_RECORD_EVENT(AutoEvictFinishEvent);
886
    }
887
    return flag;
888 889
}

890 891
void ChannelImpl::detach_users(TensorInfo* dest) {
    SmallVector<TensorInfo::ComputePath*> users = dest->users;
M
Megvii Engine Team 已提交
892
    for (auto* user : users) {
893 894
        SmallVector<TensorInfo*> outputs = user->outputs;
        SmallVector<TensorInfo*> inputs = user->inputs;
M
Megvii Engine Team 已提交
895 896 897 898 899
        for (auto* output : outputs) {
            // When a `ComputePath` is detach from it's input,
            // there is no need to reserve it,
            // so we detach all output of this path
            // to decrease it's `ref_cnt` to zero.
900 901 902 903 904
            if (output == nullptr) {
                continue;
            }
            regenerate(output);
            output->detach_producer();
M
Megvii Engine Team 已提交
905 906
            for (auto* input : inputs) {
                input->ref_cnt--;
907
            }
908
        }
909
        // now user is dead
910
    }
911
    mgb_assert(dest->users.empty(), "ComputePath leaking");
912 913
}

914 915 916 917
bool ChannelImpl::check_available() {
    return !m_closed;
}

918 919 920 921 922 923
TensorPtr ChannelImpl::wait_tensor(TensorInfo* info, TensorProp prop) {
    m_buffer.flush();
    std::unique_lock<decltype(m_mutex)> lock(m_mutex);
    mgb_assert(!m_waitee, "duplicate waitee");
    m_waitee = info;
    m_waitee_id = Profiler::next_id();
924
    MGB_RECORD_EVENT(TensorWaitPropEvent, info->id, m_waitee_id, prop);
925
    bool require_host = prop == TensorProp::HostValue;
M
Megvii Engine Team 已提交
926
    auto host_available = [&] { return info->ptr && info->ptr->value_fetched(); };
927 928 929 930 931 932 933
    if (require_host && !host_available()) {
        // avoid dead lock
        lock.unlock();
        m_buffer.enqueue(GetValue{info});
        m_buffer.flush();
        lock.lock();
    }
934 935
    m_cv.wait(lock, [&]() {
        check_worker_exc_unsafe();
936
        return require_host ? host_available() : static_cast<bool>(info->ptr);
937
    });
938
    MGB_RECORD_EVENT(TensorWaitPropFinishEvent, info->id, m_waitee_id, prop);
939
    m_waitee = nullptr;
940 941 942 943 944
    return info->ptr;
}

void ChannelImpl::notify_tensor_unsafe(TensorInfo* info) {
    if (info == m_waitee) {
945
        MGB_RECORD_EVENT(TensorNotifyPropEvent, info->id);
946
        m_cv.notify_all();
947
    }
948 949 950 951
}

std::unordered_set<TensorInfo*> ChannelImpl::collect_valid_tensors() {
    std::unordered_set<TensorInfo*> valid_tensors;
M
Megvii Engine Team 已提交
952
    for (auto* handle : m_valid_handle) {
953 954
        auto* info = reinterpret_cast<TensorInfo*>(handle);
        valid_tensors.insert(info);
955
    }
956
    return valid_tensors;
957 958
}

959
void ChannelImpl::alloc_tensor_with_evict(Blob* x) {
960 961 962 963 964 965
    auto reserve_size = [&](size_t size) {
        if (!m_dtr.comp_node.valid()) {
            return false;
        }
        while (size > m_dtr.comp_node.get_max_block_size_available()) {
            bool evict_suc = auto_evict(1);
M
Megvii Engine Team 已提交
966 967
            if (!evict_suc)
                return false;
968 969 970 971
        }
        return true;
    };
    auto pre_level = set_log_level(LogLevel::NO_LOG);
972 973
    reserve_size(x->size());
    MGB_TRY { BlobManager::inst()->alloc_direct(x, x->size()); }
974 975 976 977 978 979
    MGB_CATCH(MemAllocError&, {
        bool suc = false;
        while (!suc) {
            if (!auto_evict(1)) {
                break;
            }
980
            MGB_TRY { BlobManager::inst()->alloc_direct(x, x->size()); }
981 982 983 984 985
            MGB_CATCH(MemAllocError&, { continue; });
            suc = true;
        }
        if (!suc) {
            set_log_level(pre_level);
M
Megvii Engine Team 已提交
986 987 988
            mgb_log_warn(
                    "reallocating all cuda memory to alleviate fragmentation, the "
                    "performance may be affected");
989
            set_log_level(LogLevel::NO_LOG);
990
            imperative_log_profile_begin("defrag");
991
            BlobManager::inst()->defrag(x->comp_node());
992
            imperative_log_profile_end("defrag");
993
            BlobManager::inst()->alloc_direct(x, x->size());
994 995 996 997 998
        }
    });
    set_log_level(pre_level);
}

M
Megvii Engine Team 已提交
999 1000 1001
std::tuple<SmallVector<MemoryDesc>, SmallVector<TensorPtr>, SmallVector<TensorPtr>>
ChannelImpl::init_output_and_workspace(
        const OpDef& def, SmallVector<TensorPtr> inputs,
1002
        SmallVector<MemoryDesc> inputs_mem_desc) {
M
Megvii Engine Team 已提交
1003 1004
    auto [outputs_desc, workspaces_desc] =
            OpDef::infer_output_mem_desc(def, inputs, inputs_mem_desc);
1005 1006 1007 1008 1009 1010 1011 1012
    if (!outputs_desc.size()) {
        // failed to infer memplan
        return {{}, {}, {}};
    }
    // refine storage id to make it unique
    for (auto&& desc : outputs_desc) {
        if (desc.id->is_sys_alloc()) {
            // TODO: there may be some outputs sharing the same storage id
M
Megvii Engine Team 已提交
1013
            desc.id->id = ++m_storage_id;
1014 1015
        }
    }
1016
    auto& state = get_worker_state();
1017 1018
    auto alloc_storage = [&](SmallVector<MemoryDesc>& desc) {
        SmallVector<TensorPtr> tensors;
M
Megvii Engine Team 已提交
1019
        for (size_t i = 0; i < desc.size(); i++) {
1020 1021
            if (desc[i].id->is_sys_alloc()) {
                tensors.push_back(Tensor::make(desc[i].layout, desc[i].cn));
1022
                if (state.options.enable_dtr_auto_drop && !desc[i].layout.is_empty()) {
1023
                    alloc_tensor_with_evict(tensors.back()->blob().get());
1024
                }
1025
            } else if (desc[i].id->is_from_other()) {
M
Megvii Engine Team 已提交
1026
                for (size_t j = 0; j < inputs_mem_desc.size(); j++) {
1027
                    if (inputs_mem_desc[j].id->desc == desc[i].id->desc) {
M
Megvii Engine Team 已提交
1028 1029
                        tensors.push_back(
                                inputs[j]->sub(desc[i].offset, desc[i].layout));
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
                        break;
                    }
                }
            } else if (desc[i].id->is_device_ptr()) {
                tensors.push_back(desc[i].id->ptr);
            } else {
                mgb_assert(0, "not implemented");
            }
        }
        return tensors;
    };
1041

1042 1043 1044
    return {outputs_desc, alloc_storage(outputs_desc), alloc_storage(workspaces_desc)};
}

1045
void ChannelImpl::process_one_task(Command& icmd) {
1046 1047
    using namespace ranges;
    using namespace ranges::views;
1048
    auto& state = get_worker_state();
1049
    auto& options = state.options;
M
Megvii Engine Team 已提交
1050
    // TODO: remove std::visit for support osx 10.12
1051
    auto cmd_visitor = [&](const auto& cmd) {
M
Megvii Engine Team 已提交
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        using T = std::decay_t<decltype(cmd)>;
        if constexpr (std::is_same_v<T, Put>) {
            MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Put);
            MGB_RECORD_EVENT_IF(
                    (Profiler::get_option("profile_device", 0)), RecordDeviceEvent,
                    Timer::record_device(cmd.value.comp_node()));
            auto value = cmd.no_cache ? std::make_shared<Tensor>(cmd.value)
                                      : Tensor::make(cmd.value);
            MGB_RECORD_EVENT_IF(
                    (Profiler::get_option("profile_device", 0)), RecordDeviceEvent,
                    Timer::record_device(cmd.value.comp_node()));
            produce_tensor(cmd.dest, std::move(value));
            MGB_RECORD_EVENT(
                    TensorCommandFinishEvent, cmd.dest->id, TensorCommandKind::Put);
            sample_on_device(cmd.dest->desc.comp_node, false);
        } else if constexpr (std::is_same_v<T, ApplyOp>) {
            for (auto& i : cmd.inputs) {
                if (i->invalid) {
                    MGB_LOCK_GUARD(m_mutex);
                    for (auto& i : cmd.outputs) {
                        i->invalid = true;
1073
                    }
M
Megvii Engine Team 已提交
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
                    return;
                }
            }
            m_apply_stack.push({cmd, 0, nullptr, "cmd"});
            flush_apply_stack();
            for (size_t i = 0; i < cmd.outputs.size(); ++i) {
                auto output = cmd.outputs[i];
                if (output == nullptr) {
                    continue;
                }
                if (state.options.enable_dtr_auto_drop) {
                    output->dsu_ptr = std::make_shared<DsuNode>(output->compute_time);
1086
                }
M
Megvii Engine Team 已提交
1087 1088 1089 1090 1091 1092 1093
            }
            if (state.options.enable_drop && state.options.record_computing_path) {
                auto is_inplace = [](std::tuple<TensorInfo*, TensorInfo*> tuple2) {
                    auto& input = std::get<0>(tuple2);
                    auto& output = std::get<1>(tuple2);
                    if (!input->ptr || !output->ptr) {
                        return false;
1094
                    }
M
Megvii Engine Team 已提交
1095 1096 1097 1098 1099 1100 1101
                    return input->ptr->blob()->storage() ==
                           output->ptr->blob()->storage();
                };
                // FIXME: do not use opname as identifier
                auto get_name = [](const OpDef& opdef) {
                    if (auto attr = opdef.try_cast_final<OprAttr>()) {
                        return attr->type.c_str();
1102
                    }
M
Megvii Engine Team 已提交
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
                    return opdef.dyn_typeinfo()->name;
                };

                auto is_cross_cn = [comp_node = m_dtr.comp_node](TensorInfo* info) {
                    return info->desc.comp_node != comp_node;
                };

                bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn);
                bool inplace =
                        any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace);

                if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) {
                    TensorInfo::ComputePath::make(
                            cmd.id, cmd.op, cmd.inputs, cmd.outputs);
                    size_t detach_cnt = 0;
                    if (!strcmp(get_name(*cmd.op), "BatchNorm") &&
                        cmd.outputs.size() == 5) {
                        cmd.outputs[0]->detach_producer();  // detach running_mean
                        cmd.outputs[1]->detach_producer();  // detach running_var
1122
                        for (auto input : cmd.inputs) {
M
Megvii Engine Team 已提交
1123
                            input->ref_cnt -= 2;
1124 1125
                        }
                    }
M
Megvii Engine Team 已提交
1126 1127 1128 1129 1130 1131 1132
                    for (auto output : cmd.outputs) {
                        if (output->producer &&
                            !output->size_exceeds_thd(
                                    state.options.dtr_evictee_minimum_size)) {
                            output->detach_producer();
                            detach_cnt++;
                        }
1133
                    }
M
Megvii Engine Team 已提交
1134 1135
                    for (auto input : cmd.inputs) {
                        input->ref_cnt -= detach_cnt;
1136
                    }
1137
                }
1138
            }
M
Megvii Engine Team 已提交
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
        } else if constexpr (std::is_same_v<T, Del>) {
            MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Del);
            CompNode device = cmd.dest->desc.comp_node;
            uint64_t tensor_id = cmd.dest->id;
            free(cmd.dest);
            MGB_RECORD_EVENT(
                    TensorCommandFinishEvent, tensor_id, TensorCommandKind::Del);
            sample_on_device(device, false);
        } else if constexpr (std::is_same_v<T, GetValue>) {
            if (cmd.dest->invalid)
                return;
            imperative_log_profile_begin("GetValue");
            if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) {
                regenerate(cmd.dest);
            }
            cmd.dest->ptr->fetch_value();
1155
            MGB_LOCK_GUARD(m_mutex);
M
Megvii Engine Team 已提交
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
            notify_tensor_unsafe(cmd.dest);
            imperative_log_profile_end("GetValue");
        } else if constexpr (std::is_same_v<T, Drop>) {
            if (cmd.dest->invalid)
                return;
            MGB_RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandKind::Drop);
            do_drop(cmd.dest, true);
            MGB_RECORD_EVENT(
                    TensorCommandFinishEvent, cmd.dest->id, TensorCommandKind::Drop);
        } else if constexpr (std::is_same_v<T, SetOption>) {
            options.set_option(cmd.key, cmd.value);
        } else if constexpr (std::is_same_v<T, StartProfile>) {
            MGB_RECORD_EVENT(StartProfileEvent);
            CompNode::sync_all();
            for (auto* info : cmd.capture_tensors) {
                MGB_RECORD_EVENT(TensorDeclareEvent, info->id, info->name);
                if (info->status == TensorInfo::Produced) {
1173
                    // TODO: handle drop
M
Megvii Engine Team 已提交
1174 1175 1176
                    MGB_RECORD_EVENT(
                            TensorProduceEvent, info->id, info->desc.layout,
                            info->desc.comp_node, info->ptr->dev_tensor().raw_ptr());
1177 1178
                }
            }
M
Megvii Engine Team 已提交
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
            CompNode::foreach ([&](CompNode device) {
                sample_on_device(device, true);
                MGB_RECORD_EVENT_IF(
                        (Profiler::get_option("profile_device", 0)), RecordDeviceEvent,
                        Timer::record_device(device));
            });
            MGB_RECORD_EVENT(StartProfileFinishEvent);
        } else if constexpr (std::is_same_v<T, StopProfile>) {
            MGB_RECORD_EVENT(StopProfileEvent);
            for (auto* info : cmd.escape_tensors) {
                bool has_value = info->status == TensorInfo::Produced;
                if (has_value) {
                    MGB_RECORD_EVENT(TensorReleaseEvent, info->id);
                }
                MGB_RECORD_EVENT(TensorEraseEvent, info->id);
1194
            }
M
Megvii Engine Team 已提交
1195 1196 1197 1198 1199 1200 1201 1202 1203
            CompNode::foreach (
                    [&](CompNode device) { sample_on_device(device, true); });
            MGB_RECORD_EVENT(StopProfileFinishEvent);
        } else if constexpr (std::is_same_v<T, PushScope>) {
            MGB_RECORD_EVENT(ScopeEvent, cmd.scope_name);
        } else if constexpr (std::is_same_v<T, PopScope>) {
            MGB_RECORD_EVENT(ScopeFinishEvent, cmd.scope_name);
        } else {
            static_assert(!std::is_same_v<T, T>);
1204
        }
M
Megvii Engine Team 已提交
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
    };
    std::visit(
            [&](const auto& cmd) {
                using T = std::decay_t<decltype(cmd)>;
                if (!options.catch_worker_execption) {
                    cmd_visitor(cmd);
                    return;
                }
                try {
                    cmd_visitor(cmd);
                } catch (...) {
                    MGB_LOCK_GUARD(m_mutex);
                    if constexpr (std::is_same_v<T, ApplyOp>) {
                        for (auto oup : cmd.outputs) {
                            oup->invalid = true;
                        }
                    } else if constexpr (std::is_same_v<T, Put>) {
                        cmd.dest->invalid = true;
                    }
                    m_worker_exc = std::current_exception();
                    MGB_RECORD_EVENT(WorkerExceptionEvent);
                    if (m_waitee) {
                        notify_tensor_unsafe(m_waitee);
                    }
                }
            },
            icmd.data);
1232 1233 1234 1235
}

void ChannelImpl::check_worker_exc_unsafe() {
    if (m_worker_exc) {
1236 1237
        // for reuse interpreter_for_py after some exception tests
        m_waitee = nullptr;
1238 1239
        std::exception_ptr exc;
        std::swap(exc, m_worker_exc);
1240 1241 1242 1243 1244
        try {
            std::rethrow_exception(exc);
        } catch (...) {
            throw AsyncError();
        }
1245 1246
    }
}
1247

1248 1249
void ChannelImpl::CommandBuffer::enqueue(CommandData cmd) {
    auto& state = m_owner->get_channel_state();
1250 1251 1252
    if (std::get_if<Del>(&cmd) && fuse_del(std::get<Del>(cmd))) {
        return;
    }
M
Megvii Engine Team 已提交
1253 1254
    m_commands.push_back(
            {Profiler::next_id(), std::move(cmd), state.stack_manager.dump()});
1255 1256 1257 1258
    auto flush_pos = flush_pos_for(m_commands.back());
    flush(flush_pos);
}

1259 1260 1261 1262
void ChannelImpl::CommandBuffer::flush() {
    flush(m_commands.end());
}

1263 1264
void ChannelImpl::CommandBuffer::flush(Handle pos) {
    for (auto iter = m_commands.begin(); iter != pos; ++iter) {
1265 1266 1267
        if (Profiler::is_profiling()) {
            mgb_log_debug("%s Flushed", to_string(*iter).c_str());
        }
1268
        m_owner->m_worker.add_task(std::move(*iter));
1269 1270 1271 1272 1273
    }
    m_commands.erase(m_commands.begin(), pos);
}

auto ChannelImpl::CommandBuffer::flush_pos_for(const Command& cmd) -> Handle {
1274
    auto& state = m_owner->get_channel_state();
M
Megvii Engine Team 已提交
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    return std::visit(
            [this, &state](const auto& cmd) {
                using T = std::decay_t<decltype(cmd)>;
                if constexpr (std::is_same_v<T, ApplyOp>) {
                    auto* op_type = cmd.op->dyn_typeinfo();
                    if (op_type == RemoteRecv::typeinfo() ||
                        op_type == RemoteSend::typeinfo() ||
                        op_type == CollectiveComm::typeinfo() ||
                        op_type == opr::InputCallback::typeinfo() ||
                        op_type == opr::OutputCallback::typeinfo()) {
                        return m_commands.end();
                    }
                } else if constexpr (std::is_same_v<T, GetValue>) {
                    return m_commands.end();
                }
                size_t buffer_length = state.options.buffer_length;
                if (m_commands.size() > buffer_length) {
                    return m_commands.begin() + (m_commands.size() - buffer_length);
                }
                return m_commands.begin();
            },
            cmd.data);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
}

/**
 * 1. Find ApplyOp(dest) in buffered commands
 * 2. Check if there are other usages between ApplyOp and Del, return false if not
 * 3. Fuse Del into ApplyOp, return true
 */
bool ChannelImpl::CommandBuffer::fuse_del(const Del& cmd) {
    auto* dest = cmd.dest;
    // TODO: eliminate Puts
    auto begin = m_commands.begin(), end = m_commands.end();
M
Megvii Engine Team 已提交
1308
    auto apply_iter = std::find_if(begin, end, [dest](const Command& cmd) {
1309
        if (auto* apply = std::get_if<ApplyOp>(&cmd.data)) {
1310 1311 1312 1313
            return std::count(apply->inputs.begin(), apply->inputs.end(), dest) > 0;
        }
        return false;
    });
M
Megvii Engine Team 已提交
1314
    if (apply_iter == end || find_last_usage(dest, {apply_iter + 1, end}) != end) {
1315 1316
        return false;
    }
1317
    std::get<ApplyOp>(apply_iter->data).dels.push_back(dest);
1318 1319 1320 1321 1322 1323 1324
    return true;
}

auto ChannelImpl::CommandBuffer::find_last_usage(TensorInfo* dest, Range range)
        -> Handle {
    auto found = range[1];
    for (auto iter = range[0]; iter != range[1]; ++iter) {
M
Megvii Engine Team 已提交
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
        std::visit(
                [&](const auto& cmd) {
                    using T = std::decay_t<decltype(cmd)>;
                    if constexpr (std::is_same_v<T, ApplyOp>) {
                        if (std::count(cmd.inputs.begin(), cmd.inputs.end(), dest) >
                            0) {
                            found = iter;
                        }
                    } else if constexpr (std::is_same_v<T, GetValue>) {
                        if (cmd.dest == dest) {
                            found = iter;
                        }
1337
                    } else if constexpr (std::is_same_v<T, Drop>) {
M
Megvii Engine Team 已提交
1338 1339 1340 1341 1342 1343 1344
                        // TODO: ignore swap-like commands, just remove them from buffer
                        if (cmd.dest == dest) {
                            found = iter;
                        }
                    }
                },
                iter->data);
1345 1346 1347 1348
    };
    return found;
}

M
Megvii Engine Team 已提交
1349
auto ChannelImpl::CommandBuffer::find_produce(TensorInfo* dest, Range range) -> Handle {
1350
    return std::find_if(range[0], range[1], [dest](auto& cmd) {
M
Megvii Engine Team 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
        return std::visit(
                [dest](const auto& cmd) {
                    using T = std::decay_t<decltype(cmd)>;
                    if constexpr (std::is_same_v<T, ApplyOp>) {
                        return std::count(
                                       cmd.outputs.begin(), cmd.outputs.end(), dest) >
                               0;
                    } else if constexpr (std::is_same_v<T, Put>) {
                        return cmd.dest == dest;
                    }
                    return false;
                },
                cmd.data);
1364 1365
    });
}
1366

1367
void ChannelImpl::start_profile() {
1368
    MGB_LOCK_GUARD(m_spin);
1369
    mgb_assert(check_available(), "Channel already closed");
1370 1371 1372 1373
    auto capture_tensors = collect_valid_tensors();
    if (capture_tensors.size() > 0) {
        m_buffer.enqueue(StartProfile{std::move(capture_tensors)});
    }
1374 1375
}

1376
void ChannelImpl::stop_profile() {
1377
    MGB_LOCK_GUARD(m_spin);
1378
    mgb_assert(check_available(), "Channel already closed");
1379
    m_buffer.flush();
1380 1381 1382 1383
    auto escape_tensors = collect_valid_tensors();
    if (escape_tensors.size() > 0) {
        m_buffer.enqueue(StopProfile{std::move(escape_tensors)});
    }
1384 1385 1386
}

void ChannelImpl::push_scope(std::string name) {
1387
    MGB_LOCK_GUARD(m_spin);
1388
    mgb_assert(check_available(), "Channel already closed");
1389
    auto& state = get_channel_state();
1390
    state.stack_manager.enter(name);
1391
    MGB_RECORD_EVENT(ScopeEvent, name);
1392
    m_buffer.enqueue(PushScope{name});
1393 1394 1395
}

void ChannelImpl::pop_scope(std::string name) {
1396
    MGB_LOCK_GUARD(m_spin);
1397
    mgb_assert(check_available(), "Channel already closed");
1398
    auto& state = get_channel_state();
1399
    state.stack_manager.exit(name);
1400
    MGB_RECORD_EVENT(ScopeFinishEvent, name);
1401
    m_buffer.enqueue(PopScope{name});
1402 1403
}

1404
void ChannelImpl::assert_in_channel() {
M
Megvii Engine Team 已提交
1405 1406 1407
    mgb_assert(
            get_worker_tid() != std::this_thread::get_id(),
            "this method cannot be called in worker thread");
1408 1409 1410
}

void ChannelImpl::assert_in_worker() {
M
Megvii Engine Team 已提交
1411 1412 1413
    mgb_assert(
            get_worker_tid() == std::this_thread::get_id(),
            "this method can only be called in worker thread");
1414 1415
}

1416 1417 1418
void ChannelImpl::sample_on_device(CompNode device, bool force) {
    if (!force) {
        thread_local int last_sample_id = 0;
M
Megvii Engine Team 已提交
1419 1420
        int sample_rate =
                Profiler::is_profiling() ? Profiler::get_option("sample_rate", 0) : 0;
1421 1422 1423 1424
        if (!sample_rate || ((++last_sample_id) % sample_rate != 0)) {
            return;
        }
    }
1425
    MGB_RECORD_EVENT(SampleDeviceEvent, device);
1426
    auto [total, free] = device.get_mem_status_bytes();
1427
    MGB_RECORD_EVENT(SampleDeviceFinishEvent, device, total, free);
1428 1429
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484
void ChannelImpl::DynamicSublinear::pin(const SmallVector<TensorInfo*>& vec) {
    for (auto i : vec) {
        i->pin();
    }
}

void ChannelImpl::DynamicSublinear::unpin(const SmallVector<TensorInfo*>& vec) {
    for (auto i : vec) {
        i->unpin();
    }
}

void ChannelImpl::DynamicSublinear::update_dsu_after_recompute(TensorInfo* ptr) {
    auto&& dsu_fa = find_father(ptr->dsu_ptr);
    dsu_fa->t -= ptr->compute_time;
    ptr->dsu_ptr->parent.reset();
    ptr->dsu_ptr->t = ptr->compute_time;
}

void ChannelImpl::DynamicSublinear::update_dsu_after_evict(TensorInfo* ptr) {
    for (auto i : ptr->producer->inputs) {
        if (i->evict_type == EvictType::DROP) {
            merge(i->dsu_ptr, ptr->dsu_ptr);
        }
    }
    for (auto i : ptr->producer->outputs) {
        if (i && i->evict_type == EvictType::DROP) {
            merge(ptr->dsu_ptr, i->dsu_ptr);
        }
    }
}

double ChannelImpl::DynamicSublinear::estimate_neighbor_cost(TensorInfo* ptr) {
    double cost = 0;
    for (auto i : ptr->producer->inputs) {
        if (i->evict_type == EvictType::DROP) {
            double t = find_father(i->dsu_ptr)->t;
            if (t < i->compute_time) {
                t = i->compute_time;
            }
            cost += t;
        }
    }
    for (auto i : ptr->producer->outputs) {
        if (i && i->evict_type == EvictType::DROP) {
            double t = find_father(i->dsu_ptr)->t;
            if (t < i->compute_time) {
                t = i->compute_time;
            }
            cost += t;
        }
    }
    return cost;
}

M
Megvii Engine Team 已提交
1485 1486
TensorInfo* ChannelImpl::DynamicSublinear::find_best_tensor(
        bool enable_dtr_sqrt_sampling = false) {
1487 1488 1489
    if (candidates.empty())
        return nullptr;

1490 1491
    double min_msps = -1;
    TensorInfo* best = nullptr;
1492 1493
    size_t sz = 1;
    if (enable_dtr_sqrt_sampling) {
M
Megvii Engine Team 已提交
1494 1495
        while (sz * sz <= candidates.size())
            sz++;
1496
        sz--;
1497 1498 1499
    } else {
        sz = candidates.size();
    }
1500 1501 1502 1503 1504 1505 1506

    size_t ti = rand() % sz;
    for (size_t vi = 0; vi < sz; vi++) {
        if (!enable_dtr_sqrt_sampling) {
            ti = vi;
        }
        auto i = candidates[ti];
1507 1508
        if (i->producer && i->ptr && !i->pinned && i->evict_type == EvictType::NONE) {
            double neighbor_cost = estimate_neighbor_cost(i);
M
Megvii Engine Team 已提交
1509 1510 1511 1512
            size_t begin_ptr =
                    reinterpret_cast<size_t>(i->ptr->blob()->storage().get());
            auto side_info = i->ptr->comp_node().get_free_left_and_right(
                    begin_ptr, begin_ptr + i->ptr->blob()->size());
1513
            double free_mem = side_info.first + side_info.second;
M
Megvii Engine Team 已提交
1514 1515
            double msps = i->eval_func(
                    neighbor_cost, free_mem, estimate_timestamp, 1.0, 1.0, 1.0, 1.0001);
1516 1517 1518 1519 1520
            if (min_msps < 0 || msps < min_msps) {
                min_msps = msps;
                best = i;
            }
        }
1521 1522 1523 1524 1525
        if (enable_dtr_sqrt_sampling) {
            ti += rand() % sz;
            if (ti > candidates.size())
                break;
        }
1526 1527 1528 1529
    }
    return best;
}

M
Megvii Engine Team 已提交
1530 1531
void ChannelImpl::DynamicSublinear::merge(
        std::shared_ptr<DsuNode>& x, std::shared_ptr<DsuNode>& y) {
1532 1533 1534 1535 1536 1537 1538 1539 1540
    auto&& f_x = find_father(x);
    auto&& f_y = find_father(y);
    if (f_x.get() == f_y.get()) {
        return;
    }
    f_y->t += f_x->t;
    f_x->parent = f_y;
}

M
Megvii Engine Team 已提交
1541 1542
std::shared_ptr<DsuNode> ChannelImpl::DynamicSublinear::find_father(
        std::shared_ptr<DsuNode>& x) {
1543 1544 1545 1546 1547 1548 1549 1550 1551
    if (x->is_root()) {
        return x;
    } else {
        auto&& fa = find_father(x->parent);
        return x->parent = fa;
    }
}

void ChannelImpl::DynamicSublinear::insert_candidate(TensorInfo* ptr) {
1552 1553 1554 1555 1556 1557
    // tensor to be inserted must be brand new
    mgb_assert(
            ptr->cand_index == UINT_MAX, "got wrong candidate index : %lu",
            ptr->cand_index);
    ptr->cand_index = candidates.size();
    candidates.push_back(ptr);
1558 1559 1560 1561 1562 1563
    if (!comp_node.valid()) {
        comp_node = ptr->ptr->comp_node();
    }
}

void ChannelImpl::DynamicSublinear::erase_candidate(TensorInfo* ptr) {
1564 1565 1566 1567 1568 1569 1570
    // some tensors may be erased already, so just skip them
    if (ptr->cand_index != UINT_MAX) {
        std::swap(candidates[ptr->cand_index], candidates.back());
        candidates[ptr->cand_index]->cand_index = ptr->cand_index;
        candidates.pop_back();
        ptr->cand_index = UINT_MAX;
    }
1571 1572 1573 1574 1575
}

void ChannelImpl::DynamicSublinear::update_used_time(TensorInfo* ptr) {
    ptr->last_used_time = estimate_timestamp;
}