test_nn.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
import numpy as np

import megengine as mge
import megengine.functional as F
import megengine.jit as jit
import megengine.tensor as tensor
from megengine import autodiff
from megengine.autodiff.grad_manager import GradManager


def test_conv2d():
    np.random.seed(123)
    mge.random.seed(123)

    def tester(x_shape, w_shape, b_shape, stride, padding, groups, dtype=None):
        dtype = dtype or np.float32
        x = tensor(0.1 * np.random.rand(*x_shape), dtype=dtype)
        w = tensor(0.1 * np.random.rand(*w_shape), dtype=dtype)
        b = tensor(0.1 * np.random.rand(*b_shape), dtype=dtype) if b_shape else None
        y = F.conv2d(x, w, b, stride=stride, padding=padding, groups=groups)
        dy = tensor(0.1 * np.random.rand(*y.shape), dtype=dtype)

        gm = GradManager()

        if b is not None:

            @jit.trace(without_host=True, use_xla=True)
            def func(x, w, b, dy):
                gm.attach([x, w, b])
                with gm:
                    y = F.conv2d(x, w, b, stride=stride, padding=padding, groups=groups)
                    gm.backward(y, dy)
                return [y, x.grad, w.grad, b.grad]

            mge_rsts = func(x, w, b, dy)
            xla_rsts = func(x, w, b, dy)
        else:

            @jit.trace(without_host=True, use_xla=True)
            def func(x, w, dy):
                gm.attach([x, w])
                with gm:
                    y = F.conv2d(x, w, stride=stride, padding=padding, groups=groups)
                    gm.backward(y, dy)
                return [y, x.grad, w.grad]

            mge_rsts = func(x, w, dy)
            xla_rsts = func(x, w, dy)

        for mge_rst, xla_rst in zip(mge_rsts, xla_rsts):
            np.testing.assert_allclose(mge_rst.numpy(), xla_rst.numpy(), atol=1e-5)

    tester(
        (4, 16, 24, 24), (32, 16, 3, 3), (1, 32, 1, 1), stride=1, padding=1, groups=1
    )
    tester(
        (4, 16, 24, 24),
        (32, 16, 3, 3),
        (1, 32, 1, 1),
        stride=(2, 3),
        padding=(2, 1),
        groups=1,
    )
    tester(
        (4, 16, 24, 24),
        (16, 1, 1, 3, 3),
        None,
        stride=(2, 3),
        padding=(2, 1),
        groups=16,
    )

    tester((4, 16, 24, 24), (32, 16, 1, 1), None, stride=1, padding=1, groups=1)
    tester(
        (4, 16, 1, 1),
        (32, 16, 1, 1),
        (1, 32, 1, 1),
        stride=(2, 3),
        padding=(2, 1),
        groups=1,
    )
    tester(
        (4, 16, 24, 24),
        (16, 1, 1, 1, 1),
        (1, 16, 1, 1),
        stride=(2, 3),
        padding=(2, 1),
        groups=16,
    )


def test_adaptive_pooling():
    def tester(fpool, ishape, oshape, dtype=None):
        oshape = (oshape, oshape) if isinstance(oshape, int) else oshape
        dtype = dtype or np.float32

        x = tensor(np.random.randn(*ishape), dtype=dtype)
        dy = tensor(np.random.randn(*ishape[:-2], *oshape), dtype=dtype)
        gm = autodiff.GradManager()

        @jit.trace(without_host=True, use_xla=True)
        def func(x, dy):
            gm.attach([x])
            with gm:
                y = fpool(x, oshape)
                gm.backward(y, dy)
            return y, x.grad

        mge_rsts = func(x, dy)
        xla_rsts = func(x, dy)

        for mge_rst, xla_rst in zip(mge_rsts, xla_rsts):
            np.testing.assert_allclose(mge_rst.numpy(), xla_rst.numpy(), atol=1e-5)

    for fpool in [F.adaptive_avg_pool2d, F.adaptive_max_pool2d]:
        for oshape in [(1, 1), (2, 2), 3, (4, 4), (2, 4), (5, 5), (5, 7)]:
            tester(fpool, (32, 16, 24, 24), oshape)
            tester(fpool, (32, 16, 17, 13), oshape)


def test_pooling():
    def tester(fpool, ishape, kernel, stride, padding, dtype=None, **kwargs):
        oshape = fpool(
            tensor(np.random.randn(*ishape).astype("float32")), kernel, stride, padding
        ).shape
        x = tensor(np.random.randn(*ishape).astype("float32"))
        dy = tensor(np.random.randn(*oshape).astype("float32"))

        gm = autodiff.GradManager()

        @jit.trace(without_host=True, use_xla=True)
        def func(x, dy):
            gm.attach([x])
            with gm:
                y = fpool(x, kernel, stride, padding, **kwargs)
                gm.backward(y, dy)
            return y, x.grad

        mge_rsts = func(x, dy)
        xla_rsts = func(x, dy)

        for mge_rst, xla_rst in zip(mge_rsts, xla_rsts):
            np.testing.assert_allclose(mge_rst.numpy(), xla_rst.numpy(), atol=1e-5)

    tester(F.max_pool2d, [32, 16, 8, 13], (3, 3), 2, 1)
    tester(F.avg_pool2d, [32, 16, 8, 13], (3, 1), (2, 1), (1, 0), mode="average")
    tester(F.avg_pool2d, [32, 16, 8, 2], (3, 3), 2, 1)


def test_softmax():
    def tester(ishape, axis, dtype=None):
        dtype = dtype or np.float32
        x = tensor(np.random.randn(*ishape), dtype=dtype)
        dy = tensor(np.random.randn(*ishape), dtype=dtype)

        gm = autodiff.GradManager()

        @jit.trace(without_host=True, use_xla=True)
        def func(x, dy):
            gm.attach([x])
            with gm:
                y = F.softmax(x, axis=axis)
                gm.backward(y, dy)
            return y, x.grad

        mge_rsts = func(x, dy)
        xla_rsts = func(x, dy)

        for mge_rst, xla_rst in zip(mge_rsts, xla_rsts):
            np.testing.assert_allclose(mge_rst.numpy(), xla_rst.numpy(), atol=1e-5)

    tester((32, 16, 8, 8), 1)
    tester((1, 16, 17, 128), [0, 2])
    tester((32, 16, 5), -2)
    tester((32, 16, 5), 0)
    tester((1, 16, 5), -1)
    tester((14, 1, 13, 5), 1)


if __name__ == "__main__":
    test_conv2d()
    test_adaptive_pooling()
    test_pooling()
    test_softmax()