opr_impl.cpp 12.2 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/naive/conv_bias/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#include "src/naive/conv_bias/opr_impl.h"
#include "src/naive/convolution/helper.h"

#include <cstring>
#include "megdnn/dtype.h"
#include "src/common/utils.h"
#include "src/naive/handle.h"
#include "src/naive/lowbit_utils.h"
#include "src/common/conv_bias.h"
20
#include "src/common/opr_delegate.h"
21 22 23 24 25 26 27

#include "midout.h"
MIDOUT_DECL(megdnn_naive_conv_bias_fwd)

namespace megdnn {
namespace naive {

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
//! Only used for naive implementation. DO NOT use the following function in
//! other backends.
void handle_z_inp_and_activation_naive(
        param::ConvBias::NonlineMode nonline_mode,
        const TensorND& conv_bias_tensor, const TensorND& z_tensor,
        const TensorND& dst_tensor, dt_byte* workspace_ptr) {
    auto res = dst_tensor, z_float = z_tensor;
    //!create naive inplace handle
    auto handle = inplace_cpu_handle(2);
    if (z_tensor.layout.ndim > 0 &&
        z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
        dt_byte *res_float_workspace_ptr = nullptr,
                *z_float_workspace_ptr = nullptr;
        megdnn_assert(z_tensor.layout.eq_shape(dst_tensor.layout));
        res_float_workspace_ptr = workspace_ptr;
        z_float_workspace_ptr = res_float_workspace_ptr +
                                TensorLayout{z_tensor.layout, dtype::Float32()}
                                        .span()
                                        .dist_byte();
        res = TensorND{res_float_workspace_ptr,
                       TensorLayout{dst_tensor.layout, dtype::Float32()}};
        z_float = TensorND{z_float_workspace_ptr,
                           TensorLayout{z_tensor.layout, dtype::Float32()}};
    }
    // ====================sfb + z_tensor=====================
    if (z_tensor.layout.ndim > 0) {
        if (z_tensor.layout.dtype.category() != DTypeCategory::FLOAT) {
            auto&& type_cvt = handle->create_operator<TypeCvt>();
            type_cvt->exec(conv_bias_tensor, res);
            type_cvt->exec(z_tensor, z_float);
        }
        auto add_opr = handle->create_operator<ElemwiseForward>();
        add_opr->param().mode = Elemwise::Param::Mode::ADD;
        add_opr->exec({res, z_float}, res);
    } else {
        res = conv_bias_tensor;
    }

    using NonlineMode = param::ConvBias::NonlineMode;

    switch (nonline_mode) {
#define cb(_mode)                                                          \
    case NonlineMode::_mode: {                                             \
        if (res.layout.dtype.category() != DTypeCategory::QUANTIZED) {     \
            auto nonlinear = handle->create_operator<ElemwiseForward>();   \
            nonlinear->param().mode = Elemwise::Param::Mode::_mode;        \
            if (res.layout.dtype == dst_tensor.layout.dtype) {             \
                nonlinear->exec({res}, dst_tensor);                        \
            } else {                                                       \
                nonlinear->exec({res}, res);                               \
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor); \
            }                                                              \
        } else {                                                           \
            auto nonlinear = handle->create_operator<ElemwiseMultiType>(); \
            nonlinear->param().mode =                                      \
                    ElemwiseMultiType::Param::Mode::Q##_mode;              \
            nonlinear->exec({res}, dst_tensor);                            \
        }                                                                  \
        break;                                                             \
    }
        cb(RELU);
        cb(H_SWISH);
#undef cb
        case NonlineMode::SIGMOID: {
            megdnn_assert(res.layout.dtype.category() !=
                          DTypeCategory::QUANTIZED);
            auto nonlinear = handle->create_operator<ElemwiseForward>();
            nonlinear->param().mode = Elemwise::Param::Mode::SIGMOID;
            nonlinear->exec({res}, res);
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        case NonlineMode::IDENTITY: {
            if (res.raw_ptr != dst_tensor.raw_ptr) {
                handle->create_operator<TypeCvt>()->exec(res, dst_tensor);
            }
            break;
        }
        default:
            megdnn_assert(false);
    }
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
namespace convolution {

template <>
void forward_bias<dt_quint4, dt_quint4, dt_qint32, dt_qint32>(
        _megdnn_tensor_in src, _megdnn_tensor_in filter, _megdnn_tensor_in bias,
        _megdnn_tensor_out dst, dt_byte* workspace_ptr,
        const ConvBiasForward::CanonizedFilterMeta& filter_meta) {
    auto convert_layout = [](const TensorLayout& layout) {
        auto ret = layout;
        auto param = layout.dtype.param<dtype::Quantized4Asymm>();
        ret.dtype = dtype::Quantized8Asymm(param.scale, param.zero_point);
        return ret;
    };
    TensorND new_src = {workspace_ptr, convert_layout(src.layout)};
    TensorND new_flt = {workspace_ptr + new_src.layout.span().dist_byte(),
                        convert_layout(filter.layout)};

    uint4_to_uint8(src, new_src);
    uint4_to_uint8(filter, new_flt);
    auto new_filter_meta = filter_meta;
    new_filter_meta.dtype = new_flt.layout.dtype;
    forward_bias<dt_quint8, dt_quint8, dt_qint32, dt_qint32>(
            new_src, new_flt, bias, dst, nullptr, new_filter_meta);
}
}  // namespace convolution

size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
                                                   const TensorLayout& flt,
                                                   const TensorLayout& bias,
                                                   const TensorLayout& z,
143 144
                                                   const TensorLayout& dst,
                                                   const PreprocessedFilter*) {
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    size_t float_workspace_size = 0;

    if (z.ndim > 0 && z.dtype.category() != DTypeCategory::FLOAT) {
        megdnn_assert(z.eq_shape(dst));
        // (w * f + b).astype(float) + (z).astype(float)
        float_workspace_size =
                2 * TensorLayout{z, dtype::Float32()}.span().dist_byte();
    }

    if (bias.dtype.enumv() != dst.dtype.enumv()) {
        return float_workspace_size +
               TensorLayout{dst, bias.dtype}.span().dist_byte();
    } else if (src.dtype.enumv() == DTypeEnum::Quantized4Asymm &&
               dst.dtype.enumv() == DTypeEnum::QuantizedS32) {
        return float_workspace_size +
               (src.span().dist_elem() + flt.span().dist_elem()) *
                       sizeof(uint8_t);
    }
    return float_workspace_size;
}

void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
                               _megdnn_tensor_in bias, _megdnn_tensor_in z,
                               _megdnn_tensor_out dst,
169
                               const PreprocessedFilter* preprocessed_filter,
170 171 172 173 174
                               _megdnn_workspace workspace) {
    MIDOUT_BEGIN(megdnn_naive_conv_bias_fwd) {
        dt_byte *workspace_ptr = workspace.raw_ptr;
        // ============================w * f + b================================

175 176 177
        auto filter_meta =
                check_exec(src.layout, filter.layout, bias.layout, z.layout,
                           dst.layout, workspace.size, preprocessed_filter);
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        auto sfb = dst;
        if (bias.layout.dtype.enumv() != dst.layout.dtype.enumv()) {
            // intermediate result
            sfb = TensorND{workspace_ptr,
                           TensorLayout{dst.layout, bias.layout.dtype}};
            workspace_ptr += sfb.layout.span().dist_byte();
        }
#define DISPATCH_RAW(in_dt, bias_dt, out_dt, cmode, func)                      \
    else if (src.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv &&    \
             filter.layout.dtype.enumv() == DTypeTrait<dtype::in_dt>::enumv && \
             bias.layout.dtype.enumv() == DTypeTrait<dtype::bias_dt>::enumv && \
             sfb.layout.dtype.enumv() == DTypeTrait<dtype::out_dt>::enumv &&   \
             param().compute_mode == Param::ComputeMode::cmode) {              \
        MEGDNN_DISPATCH_CPU_KERN_OPR(                                          \
                func(src, filter, bias, sfb, workspace_ptr, filter_meta));     \
    }
#define DISPATCH(in_dt, out_dt)                                          \
    DISPATCH_RAW(                                                        \
            in_dt, out_dt, out_dt, DEFAULT,                              \
            (convolution::forward_bias<DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::in_dt>::ctype,  \
                                       DTypeTrait<dtype::out_dt>::ctype, \
                                       DTypeTrait<dtype::out_dt>::ctype>))
        if (0) {}
        DISPATCH(Float32, Float32)
        DISPATCH(Int8, Int16)
        DISPATCH(Int8, Int32)
        DISPATCH(QuantizedS8, QuantizedS32)
206
        DISPATCH(QuantizedS8, Float32)
207 208
        DISPATCH(Quantized8Asymm, QuantizedS32)
        DISPATCH(Quantized4Asymm, QuantizedS32)
209 210 211
        DISPATCH_RAW(QuantizedS8, QuantizedS32, QuantizedS32, FLOAT32,
                     (convolution::forward_bias<dt_int8, dt_int8, dt_int32,
                                                dt_int32>))
212 213 214 215 216
#if !MEGDNN_DISABLE_FLOAT16
        DISPATCH(Float16, Float16)
        DISPATCH_RAW(Float16, Float16, Float16, FLOAT32,
                     (convolution::forward_bias<dt_float16, dt_float16,
                                                dt_float16, dt_float32>))
217 218 219
        DISPATCH_RAW(BFloat16, BFloat16, BFloat16, FLOAT32,
                     (convolution::forward_bias<dt_bfloat16, dt_bfloat16,
                                                dt_bfloat16, dt_float32>))
220 221 222 223 224 225 226 227 228 229
#endif
        else {
            megdnn_throw(ssprintf(
                    "unsupported naive ConvBias(%s, %s, %s, %s) -> %s",
                    src.layout.dtype.name(), filter.layout.dtype.name(),
                    bias.layout.dtype.name(), z.layout.dtype.name(),
                    dst.layout.dtype.name()));
        }
#undef DISPATCH
#undef DISPATCH_RAW
230 231
        MEGDNN_DISPATCH_CPU_KERN_OPR(handle_z_inp_and_activation_naive(
                param().nonlineMode, sfb, z, dst, workspace_ptr));
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
    }
    MIDOUT_END();
}

std::vector<ConvBiasForward::Algorithm*>
ConvBiasForwardImpl::get_all_algorithms(const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&,
                                        const TensorLayout&) {
    return {static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo()};
}

ConvBiasForward::Algorithm* ConvBiasForwardImpl::get_algorithm_heuristic(
        const TensorLayout& /* src */, const TensorLayout& /* filter */,
        const TensorLayout& /* bias */, const TensorLayout& /* z */,
        const TensorLayout& /* dst */, size_t /* workspace_limit_in_bytes */,
        bool reproducible) {
    auto algo =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
    if (reproducible) {
        megdnn_assert(algo->is_reproducible(),
                      "require reproducible algorithm, but heuristic "
                      "algorithm(%s) is not "
                      "reproducible",
                      algo->name());
    }
    return algo;
}

262 263 264 265 266 267 268 269 270
ConvBiasForward::Algorithm*
ConvBiasForwardImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
    Algorithm* ret =
            static_cast<HandleImpl*>(handle())->default_conv_bias_fwd_algo();
    megdnn_assert(desc == ret->info().desc);
    return ret;
}

271 272 273 274 275 276 277 278
const char* ConvBiasForwardImpl::get_algorithm_set_name() const {
    return "DEFAULT";
}

}  // namespace naive
}  // namespace megdnn

// vim: syntax=cpp.doxygen