opr_impl.cpp 30.2 KB
Newer Older
1 2 3 4
/**
 * \file dnn/src/naive/pooling/opr_impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17
 */
#include "src/naive/pooling/opr_impl.h"

#include <cstring>
#include "megdnn/dtype.h"
#include "src/common/utils.h"
#include "src/naive/handle.h"
18
#include "src/naive/lowbit_utils.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

#include "midout.h"
MIDOUT_DECL(megdnn_naive_pooling)

namespace {

using namespace megdnn;

template <typename ctype_>
struct MaxPooler {
    using ctype = ctype_;
    ctype answer;
    bool fed;
    MaxPooler(size_t, DType) : answer(DTypeTrait<ctype>::min()) {}
    void init() {
        answer = DTypeTrait<ctype>::min();
        fed = false;
    }
    void feed(ctype x) {
        answer = answer > x ? answer : x;
        fed = true;
    }
    ctype get_ans() {
        if (!fed) {
            megdnn_throw("The pooling window lies outside completely");
        }
        return answer;
    }
};

template <typename stype_, typename ctype_>
struct MeanIncludePoolerBase {
    using stype = stype_;
    using ctype = ctype_;
    ctype sum;
    const ctype count;
    MeanIncludePoolerBase(size_t count, DType) : count(ctype(count)) {}
    void init() { sum = ctype(0); }
    void feed(stype x) { sum += x; }
};

template <typename T>
struct MeanIncludePooler : public MeanIncludePoolerBase<T, T> {
    using MeanIncludePoolerBase<T, T>::MeanIncludePoolerBase;
    using ctype = typename MeanIncludePoolerBase<T, T>::ctype;
    ctype get_ans() { return this->sum / this->count; }
};

template <>
struct MeanIncludePooler<int8_t>
        : public MeanIncludePoolerBase<int8_t, int32_t> {
    using MeanIncludePoolerBase::MeanIncludePoolerBase;
    ctype get_ans() {
        return std::min<int32_t>(
                std::max<int32_t>(std::numeric_limits<int8_t>::min(),
                                  sum / count),
                std::numeric_limits<int8_t>::max());
    }
};

template <>
struct MeanIncludePooler<dt_quint8> {
    int32_t sum;
    size_t feed_count;
    const int32_t count;
    const int32_t zero_point;

    MeanIncludePooler(size_t count, DType dtype)
            : count(int32_t(count)),
              zero_point(dtype.param<dtype::Quantized8Asymm>().zero_point) {}

    void init() {
        sum = 0;
        feed_count = 0;
    }

    void feed(dt_quint8 x) {
        sum += x.as_uint8();
        ++feed_count;
    }

    dt_quint8 get_ans() {
        int32_t summie = sum + (count - feed_count) * zero_point;
        int32_t rounded = std::round(static_cast<float>(summie) / count);
        return dt_quint8(std::min<int32_t>(
                std::max<int32_t>(rounded, std::numeric_limits<uint8_t>::min()),
                std::numeric_limits<uint8_t>::max()));
    }
};

/*!
 * \brief Average pooling operation within a single window.
 *        Works on integers. Rounds toward +INF.
 * \tparam T input data type
 * \tparam U convert input data type to U before accumulating
 * \tparam ICType data type for intermediate result
 */
template <typename T, typename U = T, typename ICType = int32_t>
struct MeanIncludeRoundedPooler {
    ICType sum;
    const int32_t count;

    MeanIncludeRoundedPooler(size_t count, DType) : count(ICType(count)) {}
    void init() { sum = 0; }
    void feed(T x) { sum += static_cast<ICType>(static_cast<U>(x)); }
    T get_ans() { return T(std::round(static_cast<float>(sum) / count)); }
};

template <>
struct MeanIncludePooler<dt_qint32>
        : MeanIncludeRoundedPooler<dt_qint32, int32_t> {
    using MeanIncludeRoundedPooler::MeanIncludeRoundedPooler;
};
template <>
struct MeanIncludePooler<dt_qint8>
        : MeanIncludeRoundedPooler<dt_qint8, int8_t> {
    using MeanIncludeRoundedPooler::MeanIncludeRoundedPooler;
};

struct NCHWIdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w,
                          size_t /* N */, size_t C, size_t H, size_t W) {
        return ((n * C + c) * H + h) * W + w;
    }
};

struct NHWCIdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w,
                          size_t /* N */, size_t C, size_t H, size_t W) {
        return ((n * H + h) * W + w) * C + c;
    }
};

struct NHWCD4IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w,
                          size_t /* N */, size_t C, size_t H, size_t W) {
        return (((n * H + h) * (C >> 2) + (c >> 2)) * W + w) * 4 + (c & 0x3);
    }
};

struct NCHW4IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
                          size_t C, size_t H, size_t W) {
        return (((n * (C >> 2) + (c >> 2)) * H + h) * W + w) * 4 + (c & 0b11);
    }
};
struct NCHW88IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
                          size_t C, size_t H, size_t W) {
        size_t id =
                (((n * (C >> 3) + (c >> 3)) * H + h) * W + w) * 8 + (c & 0b111);
        return id;
    }
};
173 174 175 176 177 178 179
struct NCHW44IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
                          size_t C, size_t H, size_t W) {
        size_t id = (((n * (C >> 2) + (c >> 2)) * H + h) * W + w) * 4 + (c % 4);
        return id;
    }
};
180 181 182 183 184 185 186 187 188 189 190 191 192 193

struct CHWN4IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t N,
                          size_t, size_t H, size_t W) {
        return ((((c >> 2) * H + h) * W + w) * N + n) * 4 + (c & 0b11);
    }
};

struct NCHW32IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
                          size_t C, size_t H, size_t W) {
        return (((n * (C >> 5) + (c >> 5)) * H + h) * W + w) * 32 + (c & 0x1f);
    }
};
194 195 196 197 198 199
struct NCHW64IdxGetter {
    static size_t get_idx(size_t n, size_t c, size_t h, size_t w, size_t,
                          size_t C, size_t H, size_t W) {
        return (((n * (C >> 6) + (c >> 6)) * H + h) * W + w) * 64 + (c & 0x3f);
    }
};
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/*!
 * Pooler for AVERAGE_COUNT_EXCLUDE_PADDING mode
 */
template <typename ctype>
struct MeanExcludePooler {
    ctype sum;
    size_t count;
    MeanExcludePooler(size_t, DType) {}
    void init() {
        sum = 0.0f;
        count = 0u;
    }
    void feed(ctype x) {
        sum += x;
        ++count;
    }
    ctype get_ans() {
        if (count == 0u) {
            megdnn_throw("The pooling window lies outside completely");
        }
        return sum / static_cast<ctype>(count);
    }
};

/*!
 * \brief Average pooling operation within a single window.
 *        Works on integers. Rounds toward +INF.
 * \tparam T input data type
 * \tparam U convert input data type to U before accumulating
 * \tparam ICType data type for intermediate result
 */
template <typename T, typename U, typename ICType = U>
struct MeanExcludeRoundedPooler {
    ICType sum;
    size_t count;

    MeanExcludeRoundedPooler(size_t, DType) {}

    void init() {
        sum = 0;
        count = 0;
    }
    void feed(T x) {
        sum += U(x);
        ++count;
    }
    T get_ans() {
        if (count == 0u) {
            megdnn_throw("The pooling window lies outside completely");
        }
        return T(std::round(static_cast<float>(sum) / count));
    }
};

template <>
struct MeanExcludePooler<dt_quint8>
        : MeanExcludeRoundedPooler<dt_quint8, uint8_t, uint32_t> {
    using MeanExcludeRoundedPooler::MeanExcludeRoundedPooler;
};

template <>
struct MeanExcludePooler<dt_qint32>
        : MeanExcludeRoundedPooler<dt_qint32, int32_t> {
    using MeanExcludeRoundedPooler::MeanExcludeRoundedPooler;
};

template <>
struct MeanExcludePooler<dt_qint8>
        : MeanExcludeRoundedPooler<dt_qint8, int8_t, int32_t> {
    using MeanExcludeRoundedPooler::MeanExcludeRoundedPooler;
};

template <typename Pooler, typename IdxGetter,
          typename ctype = typename Pooler::ctype>
void pooling_forward_impl(const ctype* __restrict src, ctype* __restrict dst,
                          DType src_dtype, size_t N, size_t C, size_t IH,
                          size_t IW, size_t OH, size_t OW, size_t PH, size_t PW,
                          size_t SH, size_t SW, size_t FH, size_t FW) {
    rep(n, N) rep(c, C) rep(oh, OH) rep(ow, OW) {
        Pooler pooler(FH * FW, src_dtype);
        pooler.init();
        rep(fh, FH) rep(fw, FW) {
            size_t ih = -PH + oh * SH + fh;
            size_t iw = -PW + ow * SW + fw;
            if (ih < IH && iw < IW) {
                size_t idx = IdxGetter::get_idx(n, c, ih, iw, N, C, IH, IW);
                pooler.feed(src[idx]);
            }
        }
        size_t idx = IdxGetter::get_idx(n, c, oh, ow, N, C, OH, OW);
        dst[idx] = pooler.get_ans();
    }
}

template <typename ctype, typename IdxGetter>
void pooling_backward_avg_impl(const ctype* __restrict /* src */,
                               const ctype* __restrict /* dst */,
                               const ctype* __restrict diff,
                               ctype* __restrict grad, size_t N, size_t C,
                               size_t IH, size_t IW, size_t OH, size_t OW,
                               size_t PH, size_t PW, size_t SH, size_t SW,
                               size_t FH, size_t FW, bool is_include = true) {
    std::memset(grad, 0, sizeof(ctype) * (N * C * IH * IW));
    rep(n, N) rep(c, C) rep(oh, OH) rep(ow, OW) {
        size_t count = 0u;
        rep(fh, FH) rep(fw, FW) {
            size_t ih = -PH + oh * SH + fh;
            size_t iw = -PW + ow * SW + fw;
            if (ih < IH && iw < IW)
                ++count;
        }
        if (is_include)
            count = FH * FW;
        if (count == 0u) {
            megdnn_throw("The pooling window lies outside completely");
        }
        rep(fh, FH) rep(fw, FW) {
            size_t ih = -PH + oh * SH + fh;
            size_t iw = -PW + ow * SW + fw;
            if (ih < IH && iw < IW) {
                size_t gi = IdxGetter::get_idx(n, c, ih, iw, N, C, IH, IW);
                size_t di = IdxGetter::get_idx(n, c, oh, ow, N, C, OH, OW);
                auto& gval = grad[gi];
                auto dval = diff[di];
                gval += dval / ctype(count);
            }
        }
    }
}

template <typename ctype, typename IdxGetter>
void pooling_backward_avg_expd_impl(const ctype* __restrict src,
                                    const ctype* __restrict dst,
                                    const ctype* __restrict diff,
                                    ctype* __restrict grad, size_t N, size_t C,
                                    size_t IH, size_t IW, size_t OH, size_t OW,
                                    size_t PH, size_t PW, size_t SH, size_t SW,
                                    size_t FH, size_t FW) {
    pooling_backward_avg_impl<ctype, IdxGetter>(src, dst, diff, grad, N, C, IH,
                                                IW, OH, OW, PH, PW, SH, SW, FH,
                                                FW, false);
}

template <typename ctype, typename IdxGetter>
void pooling_backward_max_impl(const ctype* __restrict src,
                               const ctype* __restrict dst,
                               const ctype* __restrict diff,
                               ctype* __restrict grad, size_t N, size_t C,
                               size_t IH, size_t IW, size_t OH, size_t OW,
                               size_t PH, size_t PW, size_t SH, size_t SW,
                               size_t FH, size_t FW) {
    std::memset(grad, 0, sizeof(ctype) * (N * C * IH * IW));
    rep(n, N) rep(c, C) rep(oh, OH) rep(ow, OW) {
        size_t count = 0u;
        rep(fh, FH) rep(fw, FW) {
            size_t ih = -PH + oh * SH + fh;
            size_t iw = -PW + ow * SW + fw;
            if (ih < IH && iw < IW)
                ++count;
        }
        if (count == 0u) {
            megdnn_throw("The pooling window lies outside completely");
        }
        rep(fh, FH) rep(fw, FW) {
            size_t ih = -PH + oh * SH + fh;
            size_t iw = -PW + ow * SW + fw;
            if (ih < IH && iw < IW) {
                size_t si = IdxGetter::get_idx(n, c, ih, iw, N, C, IH, IW);
                size_t di = IdxGetter::get_idx(n, c, oh, ow, N, C, OH, OW);
                auto sval = src[si];
                auto& gval = grad[si];
                auto dst_val = dst[di];
                auto diff_val = diff[di];
                if (sval == dst_val)
                    gval += diff_val;
            }
        }
    }
}

380
}  // namespace
381 382 383 384

namespace megdnn {
namespace naive {

385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
WorkspaceBundle PoolingForwardImpl::get_workspace_bundle(
        void* ptr, const TensorLayout& src, const TensorLayout& dst) const {
    SmallVector<size_t> sizes;
    TensorLayout fsrc = src;
    TensorLayout fdst = dst;
    auto get_workspace = [&sizes](TensorLayout& layout) {
        if (layout.dtype.enumv() == DTypeEnum::Quantized4Asymm ||
            layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
            layout.dtype = dtype::Int8();
            layout.format = TensorLayout::Format(layout.dtype);
            sizes.push_back(layout.span().dist_byte());
        }
    };
    get_workspace(fsrc);
    get_workspace(fdst);
    return {ptr, std::move(sizes)};
};

size_t PoolingForwardImpl::get_workspace_in_bytes(const TensorLayout& src,
                                                  const TensorLayout& dst) {
    return get_workspace_bundle(nullptr, src, dst).total_size_in_bytes();
}
namespace {

M
Megvii Engine Team 已提交
409
void post_process(const TensorND& dst, TensorND& comp_dst) {
410 411 412 413 414 415 416 417 418
    if (dst.layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
        int8_to_int4(comp_dst, dst);
    } else if (dst.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
        uint8_to_uint4(comp_dst, dst);
    }
}

}  // namespace

419 420
void PoolingForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst,
                              _megdnn_workspace workspace) {
421
    check_exec(src.layout, dst.layout, workspace.size);
422 423 424 425 426 427 428 429
    TensorND comp_src = src;
    TensorND comp_dst = dst;

    auto wsb = get_workspace_bundle(workspace.raw_ptr, src.layout, dst.layout);
    if (src.layout.dtype.enumv() == DTypeEnum::QuantizedS4) {
        float scale = src.layout.dtype.param<dtype::QuantizedS4>().scale;
        comp_src.layout.dtype = dtype::QuantizedS8(scale);
        comp_src.layout.format = TensorLayout::Format(comp_src.layout.dtype);
M
Megvii Engine Team 已提交
430
        comp_src.layout.init_contiguous_stride();
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
        comp_src.raw_ptr = wsb.get(0);
        comp_dst.layout.dtype = dtype::QuantizedS8(scale);
        comp_dst.layout.format = TensorLayout::Format(comp_dst.layout.dtype);
        comp_dst.layout.init_contiguous_stride();
        comp_dst.raw_ptr = wsb.get(1);
        int4_to_int8(src, comp_src);
    } else if (src.layout.dtype.enumv() == DTypeEnum::Quantized4Asymm) {
        float scale = src.layout.dtype.param<dtype::Quantized4Asymm>().scale;
        uint8_t zero_point =
                src.layout.dtype.param<dtype::Quantized4Asymm>().zero_point;
        comp_src.layout.dtype = dtype::Quantized8Asymm(scale, zero_point);
        comp_src.layout.format = TensorLayout::Format(comp_src.layout.dtype);
        comp_src.layout.init_contiguous_stride();
        comp_src.raw_ptr = wsb.get(0);
        comp_dst.layout.dtype = dtype::Quantized8Asymm(scale, zero_point);
        comp_dst.layout.format = TensorLayout::Format(comp_dst.layout.dtype);
        comp_dst.layout.init_contiguous_stride();
        comp_dst.raw_ptr = wsb.get(1);
        uint4_to_uint8(src, comp_src);
    }

452 453 454 455 456
    size_t c_pos, spatial_pos, batch_pos = 0;
    if (param().format == Param::Format::NCHW ||
        param().format == Param::Format::NCHW4 ||
        param().format == Param::Format::NCHW88 ||
        param().format == Param::Format::NCHW44 ||
457 458
        param().format == Param::Format::NCHW32 ||
        param().format == Param::Format::NCHW64) {
459 460 461 462 463 464 465 466 467 468 469 470 471 472
        c_pos = 1;
        spatial_pos = 2;
    } else if (param().format == Param::Format::NHWC) {
        c_pos = 3;
        spatial_pos = 1;
    } else if (param().format == Param::Format::CHWN4) {
        c_pos = 0;
        spatial_pos = 1;
        batch_pos = 3;
    } else {
        megdnn_assert(param().format == Param::Format::NHWCD4);
        c_pos = 2;
        spatial_pos = 1;
    }
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    size_t N = comp_src.layout.shape[batch_pos],
           C = comp_src.layout.shape[c_pos],
           IH = comp_src.layout.shape[spatial_pos + 0],
           IW = comp_src.layout.shape[spatial_pos + 1];
    size_t OH = comp_dst.layout.shape[spatial_pos + 0],
           OW = comp_dst.layout.shape[spatial_pos + 1];
    switch (param().format) {
        case Param::Format::NHWCD4:
            C *= 4;
            IW = comp_src.layout.shape[spatial_pos + 2];
            OW = comp_dst.layout.shape[spatial_pos + 2];
            break;
        case Param::Format::NCHW4:
        case Param::Format::NCHW44:
        case Param::Format::CHWN4:
            C *= 4;
            break;
        case Param::Format::NCHW88:
            C *= 8;
            break;
        case Param::Format::NCHW32:
            C *= 32;
            break;
        case Param::Format::NCHW64:
            C *= 64;
            break;
        default:;
500
    }
501

502 503 504 505 506 507 508 509
    size_t PH = param().pad_h, PW = param().pad_w;
    size_t FH = param().window_h, FW = param().window_w;
    size_t SH = param().stride_h, SW = param().stride_w;
#define DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, IdxGetter)                 \
    MIDOUT_BEGIN(megdnn_naive_pooling, midout_iv(#Pooler #IdxGetter##_hash)) { \
        MEGDNN_DISPATCH_CPU_KERN(                                              \
                static_cast<naive::HandleImpl*>(handle()),                     \
                pooling_forward_impl<Pooler MEGDNN_COMMA IdxGetter>(           \
510 511
                        sptr, dptr, comp_src.layout.dtype, N, C, IH, IW, OH,   \
                        OW, PH, PW, SH, SW, FH, FW));                          \
512 513
    }                                                                          \
    MIDOUT_END();
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

#define DISPATCH_WITH_POOLER(Pooler)                                      \
    switch (param().format) {                                             \
        case Param::Format::NCHW:                                         \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHWIdxGetter);   \
            break;                                                        \
        case Param::Format::NHWC:                                         \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NHWCIdxGetter);   \
            break;                                                        \
        case Param::Format::NHWCD4:                                       \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NHWCD4IdxGetter); \
            break;                                                        \
        case Param::Format::NCHW4:                                        \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW4IdxGetter);  \
            break;                                                        \
        case Param::Format::NCHW88:                                       \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW88IdxGetter); \
            break;                                                        \
532 533 534
        case Param::Format::NCHW44:                                       \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW44IdxGetter); \
            break;                                                        \
535 536 537
        case Param::Format::NCHW32:                                       \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW32IdxGetter); \
            break;                                                        \
538 539 540
        case Param::Format::NCHW64:                                       \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, NCHW64IdxGetter); \
            break;                                                        \
541 542 543 544 545 546 547
        case Param::Format::CHWN4:                                        \
            DISPATCH_WITH_POOLER_AND_IDX_GETTER(Pooler, CHWN4IdxGetter);  \
            break;                                                        \
        default:                                                          \
            megdnn_throw("invalid pooling format");                       \
    }

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
#define cb(DType)                                                    \
    if (comp_src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \
        using ctype = typename DTypeTrait<DType>::ctype;             \
        switch (param().mode) {                                      \
            case Mode::MAX: {                                        \
                auto sptr = comp_src.ptr<ctype>();                   \
                auto dptr = comp_dst.ptr<ctype>();                   \
                DISPATCH_WITH_POOLER(MaxPooler<ctype>);              \
                break;                                               \
            }                                                        \
            case Mode::AVERAGE: {                                    \
                auto sptr = comp_src.ptr<ctype>();                   \
                auto dptr = comp_dst.ptr<ctype>();                   \
                DISPATCH_WITH_POOLER(MeanIncludePooler<ctype>);      \
                break;                                               \
            }                                                        \
            case Mode::AVERAGE_COUNT_EXCLUDE_PADDING: {              \
                auto sptr = comp_src.ptr<ctype>();                   \
                auto dptr = comp_dst.ptr<ctype>();                   \
                DISPATCH_WITH_POOLER(MeanExcludePooler<ctype>);      \
                break;                                               \
            }                                                        \
            default:                                                 \
                megdnn_assert(0, "not support mode");                \
        }                                                            \
M
Megvii Engine Team 已提交
573
        post_process(dst, comp_dst);                                 \
574
        return;                                                      \
575
    }
576

577 578
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
    MEGDNN_FOREACH_QUANTIZED_DTYPE(cb)
579 580 581
#undef cb
#undef DISPATCH_WITH_POOLER_AND_IDX_GETTER
#undef DISPATCH_WITH_POOLER
582
    megdnn_assert_internal(0);
583 584
}

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
PoolingForward::Algorithm* PoolingForwardImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
    Algorithm* ret =
            static_cast<HandleImpl*>(handle())->default_pooling_fwd_algo();
    megdnn_assert(desc == ret->info().desc);
    return ret;
}

std::vector<Algorithm*> PoolingForwardImpl::get_all_algorithms(
        const TensorLayout&, const TensorLayout&) {
    return {static_cast<HandleImpl*>(handle())->default_pooling_fwd_algo()};
}

Algorithm* PoolingForwardImpl::get_algorithm_heuristic(
        const TensorLayout& /*src*/, const TensorLayout& /*dst*/,
        size_t /*workspace_limit_in_bytes*/, const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
    auto algo = static_cast<HandleImpl*>(handle())->default_pooling_fwd_algo();
    algo->check_attribute(positive_attr, negative_attr);
    return algo;
}

Algorithm* PoolingBackwardImpl::get_algorithm_from_desc(
        const AlgorithmDesc& desc) {
    Algorithm* ret =
            static_cast<HandleImpl*>(handle())->default_pooling_bwd_algo();
    megdnn_assert(desc == ret->info().desc);
    return ret;
}

std::vector<Algorithm*> PoolingBackwardImpl::get_all_algorithms(
        const TensorLayout& /*src*/, const TensorLayout& /*dst*/,
        const TensorLayout& /*diff*/, const TensorLayout& /*grad*/) {
    return {static_cast<HandleImpl*>(handle())->default_pooling_bwd_algo()};
}

Algorithm* PoolingBackwardImpl::get_algorithm_heuristic(
        const TensorLayout& /*src*/, const TensorLayout& /*dst*/,
        const TensorLayout& /*diff*/, const TensorLayout& /*grad*/,
        size_t /*workspace_limit_in_bytes*/, const AlgoAttribute& positive_attr,
        const AlgoAttribute& negative_attr) {
    auto algo = static_cast<HandleImpl*>(handle())->default_pooling_bwd_algo();
    algo->check_attribute(positive_attr, negative_attr);
    return algo;
}

631 632 633 634 635 636 637 638 639
WorkspaceBundle PoolingBackwardImpl::get_workspace_bundle(
        void* ptr, const TensorLayout& src, const TensorLayout& dst,
        const TensorLayout& diff, const TensorLayout& grad) const {
    SmallVector<size_t> sizes;
    TensorLayout fsrc = src;
    TensorLayout fdst = dst;
    TensorLayout fdiff = diff;
    TensorLayout fgrad = grad;
    auto get_workspace = [&sizes](TensorLayout& layout) {
M
Megvii Engine Team 已提交
640
        if (DNN_FLOAT16_SELECT(layout.dtype == dtype::BFloat16(), false)) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
            layout.dtype = dtype::Float32();
            sizes.push_back(layout.span().dist_byte());
        }
    };
    get_workspace(fsrc);
    get_workspace(fdst);
    get_workspace(fdiff);
    get_workspace(fgrad);
    return {ptr, std::move(sizes)};
}

size_t PoolingBackwardImpl::get_workspace_in_bytes(
        const TensorLayout& src, const TensorLayout& dst,
        const TensorLayout& diff, const TensorLayout& grad) {
    return get_workspace_bundle(nullptr, src, dst, diff, grad)
            .total_size_in_bytes();
}

void PoolingBackwardImpl::exec(_megdnn_tensor_in ssrc, _megdnn_tensor_in sdst,
                               _megdnn_tensor_in sdiff,
                               _megdnn_tensor_out sgrad,
662
                               _megdnn_workspace workspace) {
663
    check_exec(ssrc.layout, sdst.layout, sdiff.layout, sgrad.layout,
664
               workspace.size);
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
    TensorND src = ssrc;
    TensorND dst = sdst;
    TensorND diff = sdiff;
    TensorND grad = sgrad;
#if !MEGDNN_DISABLE_FLOAT16
    auto wsb = get_workspace_bundle(workspace.raw_ptr, ssrc.layout, sdst.layout,
                                    sdiff.layout, sgrad.layout);
    auto ctypecvt = CompTypeCvter<dtype::BFloat16, dtype::Float32>(
            static_cast<HandleImpl*>(handle()), &wsb);
    if (ssrc.layout.dtype.enumv() == DTypeTrait<dtype::BFloat16>::enumv) {
        ctypecvt.src_to_comp_type(ssrc, src)
                .src_to_comp_type(sdst, dst)
                .src_to_comp_type(sdiff, diff)
                .src_to_comp_type(sgrad, grad);
    }
#endif
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
    size_t c_pos, spatial_pos;
    if (param().format == Param::Format::NCHW) {
        c_pos = 1;
        spatial_pos = 2;
    } else {
        megdnn_assert(param().format == Param::Format::NHWC);
        c_pos = 3;
        spatial_pos = 1;
    }
    size_t N = src.layout.shape[0], C = src.layout.shape[c_pos],
           IH = src.layout.shape[spatial_pos + 0],
           IW = src.layout.shape[spatial_pos + 1];
    size_t OH = dst.layout.shape[spatial_pos + 0],
           OW = dst.layout.shape[spatial_pos + 1];
    size_t PH = param().pad_h, PW = param().pad_w;
    size_t FH = param().window_h, FW = param().window_w;
    size_t SH = param().stride_h, SW = param().stride_w;
#define DISPATCH_WITH_FUNC_AND_IDX_GETTER(Func, ctype, IdxGetter)            \
    MEGDNN_DISPATCH_CPU_KERN(static_cast<naive::HandleImpl*>(handle()),      \
                             Func<ctype MEGDNN_COMMA IdxGetter>(             \
                                     sptr, dptr, diffptr, gradptr, N, C, IH, \
702
                                     IW, OH, OW, PH, PW, SH, SW, FH, FW));   \
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723

#define DISPATCH_WITH_FUNC(Func, ctype)                                    \
    switch (param().format) {                                              \
        case Param::Format::NCHW:                                          \
            DISPATCH_WITH_FUNC_AND_IDX_GETTER(Func, ctype, NCHWIdxGetter); \
            break;                                                         \
        case Param::Format::NHWC:                                          \
            DISPATCH_WITH_FUNC_AND_IDX_GETTER(Func, ctype, NHWCIdxGetter); \
            break;                                                         \
        default:                                                           \
            megdnn_throw("invalid pooling format");                        \
    }

#define cb(DType)                                                              \
    if (src.layout.dtype == DType()) {                                         \
        using ctype = typename DTypeTrait<DType>::ctype;                       \
        switch (param().mode) {                                                \
            case Mode::AVERAGE: {                                              \
                auto sptr = src.ptr<ctype>(), dptr = dst.ptr<ctype>(),         \
                     diffptr = diff.ptr<ctype>(), gradptr = grad.ptr<ctype>(); \
                DISPATCH_WITH_FUNC(pooling_backward_avg_impl, ctype);          \
724
                break;                                                         \
725 726 727 728 729
            }                                                                  \
            case Mode::AVERAGE_COUNT_EXCLUDE_PADDING: {                        \
                auto sptr = src.ptr<ctype>(), dptr = dst.ptr<ctype>(),         \
                     diffptr = diff.ptr<ctype>(), gradptr = grad.ptr<ctype>(); \
                DISPATCH_WITH_FUNC(pooling_backward_avg_expd_impl, ctype);     \
730
                break;                                                         \
731 732 733 734 735
            }                                                                  \
            case Mode::MAX: {                                                  \
                auto sptr = src.ptr<ctype>(), dptr = dst.ptr<ctype>(),         \
                     diffptr = diff.ptr<ctype>(), gradptr = grad.ptr<ctype>(); \
                DISPATCH_WITH_FUNC(pooling_backward_max_impl, ctype);          \
736
                break;                                                         \
737
            }                                                                  \
738 739
            default:                                                           \
                megdnn_assert_internal(0);                                     \
740 741 742 743 744 745
        }                                                                      \
    }
    MEGDNN_FOREACH_COMPUTING_DTYPE(cb)
#undef cb
#undef DISPATCH_WITH_FUNC_AND_IDX_GETTER
#undef DISPATCH_WITH_FUNC
746 747 748 749 750
#if !MEGDNN_DISABLE_FLOAT16
    if (sgrad.layout.dtype.enumv() == DTypeTrait<dtype::BFloat16>::enumv) {
        ctypecvt.comp_to_dst_type(grad, sgrad);
    }
#endif
751 752 753 754 755
}

}  // namespace naive
}  // namespace megdnn
// vim: syntax=cpp.doxygen