test_network.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# -*- coding: utf-8 -*-

import os
import unittest

import numpy as np

from megenginelite import *

set_log_level(2)


def test_version():
    print("Lite verson: {}".format(version))


17 18 19 20 21 22
def test_config():
    config = LiteConfig()
    config.bare_model_cryption_name = "nothing"
    print(config)


23 24 25 26 27 28 29 30 31 32 33
def test_network_io():
    input_io1 = LiteIO("data1", is_host=False, io_type=LiteIOType.LITE_IO_VALUE)
    input_io2 = LiteIO(
        "data2",
        is_host=True,
        io_type=LiteIOType.LITE_IO_SHAPE,
        layout=LiteLayout([2, 4, 4]),
    )
    io = LiteNetworkIO()
    io.add_input(input_io1)
    io.add_input(input_io2)
34
    io.add_input("data3", False)
35 36 37 38 39 40 41

    output_io1 = LiteIO("out1", is_host=False)
    output_io2 = LiteIO("out2", is_host=True, layout=LiteLayout([1, 1000]))

    io.add_output(output_io1)
    io.add_output(output_io2)

42
    assert len(io.inputs) == 3
43 44 45 46 47 48 49
    assert len(io.outputs) == 2

    assert io.inputs[0] == input_io1
    assert io.outputs[0] == output_io1

    c_io = io._create_network_io()

50
    assert c_io.input_size == 3
51 52
    assert c_io.output_size == 2

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    ins = [["data1", True], ["data2", False, LiteIOType.LITE_IO_SHAPE]]
    outs = [["out1", True], ["out2", False, LiteIOType.LITE_IO_VALUE]]

    io2 = LiteNetworkIO(ins, outs)
    assert len(io2.inputs) == 2
    assert len(io2.outputs) == 2

    io3 = LiteNetworkIO([input_io1, input_io2], [output_io1, output_io2])
    assert len(io3.inputs) == 2
    assert len(io3.outputs) == 2

    test_io = LiteIO("test")
    assert test_io.name == "test"
    test_io.name = "test2"
    assert test_io.name == "test2"

69 70

class TestShuffleNet(unittest.TestCase):
M
Megvii Engine Team 已提交
71
    source_dir = os.getenv("LITE_TEST_RESOURCE")
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    input_data_path = os.path.join(source_dir, "input_data.npy")
    correct_data_path = os.path.join(source_dir, "output_data.npy")
    model_path = os.path.join(source_dir, "shufflenet.mge")
    correct_data = np.load(correct_data_path).flatten()
    input_data = np.load(input_data_path)

    def check_correct(self, out_data, error=1e-4):
        out_data = out_data.flatten()
        assert np.isfinite(out_data.sum())
        assert self.correct_data.size == out_data.size
        for i in range(out_data.size):
            assert abs(out_data[i] - self.correct_data[i]) < error

    def do_forward(self, network, times=3):
        input_name = network.get_input_name(0)
        input_tensor = network.get_io_tensor(input_name)
        output_name = network.get_output_name(0)
        output_tensor = network.get_io_tensor(output_name)

        input_tensor.set_data_by_copy(self.input_data)
        for i in range(times):
            network.forward()
            network.wait()

        output_data = output_tensor.to_numpy()
        self.check_correct(output_data)


class TestNetwork(TestShuffleNet):
    def test_decryption(self):
        model_path = os.path.join(self.source_dir, "shufflenet_crypt_aes.mge")
        config = LiteConfig()
        config.bare_model_cryption_name = "AES_default".encode("utf-8")
        network = LiteNetwork(config)
        network.load(model_path)
        self.do_forward(network)

    def test_pack_model(self):
        model_path = os.path.join(self.source_dir, "test_packed_model_rc4.lite")
        network = LiteNetwork()
        network.load(model_path)
        self.do_forward(network)

115 116 117 118 119 120 121
    def test_disable_model_config(self):
        model_path = os.path.join(self.source_dir, "test_packed_model_rc4.lite")
        network = LiteNetwork()
        network.extra_configure(LiteExtraConfig(True))
        network.load(model_path)
        self.do_forward(network)

M
Megvii Engine Team 已提交
122 123 124 125 126 127
    def test_pack_cache_to_model(self):
        model_path = os.path.join(self.source_dir, "test_pack_cache_to_model.lite")
        network = LiteNetwork()
        network.load(model_path)
        self.do_forward(network)

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    def test_network_basic(self):
        network = LiteNetwork()
        network.load(self.model_path)

        input_name = network.get_input_name(0)
        input_tensor = network.get_io_tensor(input_name)
        output_name = network.get_output_name(0)
        output_tensor = network.get_io_tensor(output_name)

        assert input_tensor.layout.shapes[0] == 1
        assert input_tensor.layout.shapes[1] == 3
        assert input_tensor.layout.shapes[2] == 224
        assert input_tensor.layout.shapes[3] == 224
        assert input_tensor.layout.data_type == LiteDataType.LITE_FLOAT
        assert input_tensor.layout.ndim == 4

        self.do_forward(network)

    def test_network_shared_data(self):
        network = LiteNetwork()
        network.load(self.model_path)

        input_name = network.get_input_name(0)
        input_tensor = network.get_io_tensor(input_name)
        output_name = network.get_output_name(0)
        output_tensor = network.get_io_tensor(output_name)

        input_tensor.set_data_by_share(self.input_data)
        for i in range(3):
            network.forward()
            network.wait()

        output_data = output_tensor.to_numpy()
        self.check_correct(output_data)

    def test_network_get_name(self):
        network = LiteNetwork()
        network.load(self.model_path)

        input_names = network.get_all_input_name()
        assert input_names[0] == "data"
        output_names = network.get_all_output_name()
        assert output_names[0] == network.get_output_name(0)

        self.do_forward(network)

    def test_network_set_device_id(self):
        network = LiteNetwork()
        assert network.device_id == 0

        network.device_id = 1
        network.load(self.model_path)
        assert network.device_id == 1

        with self.assertRaises(RuntimeError):
            network.device_id = 1

        self.do_forward(network)

    def test_network_set_stream_id(self):
        network = LiteNetwork()
        assert network.stream_id == 0

        network.stream_id = 1
        network.load(self.model_path)
        assert network.stream_id == 1

        with self.assertRaises(RuntimeError):
            network.stream_id = 1

        self.do_forward(network)

    def test_network_set_thread_number(self):
        network = LiteNetwork()
        assert network.threads_number == 1

        network.threads_number = 2
        network.load(self.model_path)
        assert network.threads_number == 2

        with self.assertRaises(RuntimeError):
            network.threads_number = 2

        self.do_forward(network)

    def test_network_cpu_inplace(self):
        network = LiteNetwork()
        assert network.is_cpu_inplace_mode() == False

        network.enable_cpu_inplace_mode()
        network.load(self.model_path)
        assert network.is_cpu_inplace_mode() == True

        with self.assertRaises(RuntimeError):
            network.enable_cpu_inplace_mode()

        self.do_forward(network)

    def test_network_option(self):
        option = LiteOptions()
        option.weight_preprocess = 1
        option.var_sanity_check_first_run = 0

        config = LiteConfig(option=option)
        network = LiteNetwork(config=config)
        network.load(self.model_path)

        self.do_forward(network)

    def test_network_reset_io(self):
        option = LiteOptions()
        option.var_sanity_check_first_run = 0
        config = LiteConfig(option=option)

        input_io = LiteIO("data")
        ios = LiteNetworkIO()
        ios.add_input(input_io)
        network = LiteNetwork(config=config, io=ios)
        network.load(self.model_path)

        input_tensor = network.get_io_tensor("data")
        assert input_tensor.device_type == LiteDeviceType.LITE_CPU

        self.do_forward(network)

    def test_network_by_share(self):
        network = LiteNetwork()
        network.load(self.model_path)

        input_name = network.get_input_name(0)
        input_tensor = network.get_io_tensor(input_name)
        output_name = network.get_output_name(0)
        output_tensor = network.get_io_tensor(output_name)

        assert input_tensor.device_type == LiteDeviceType.LITE_CPU
        layout = LiteLayout(self.input_data.shape, self.input_data.dtype)
        tensor_tmp = LiteTensor(layout=layout)
        tensor_tmp.set_data_by_share(self.input_data)
        input_tensor.share_memory_with(tensor_tmp)

        for i in range(3):
            network.forward()
            network.wait()

        output_data = output_tensor.to_numpy()
        self.check_correct(output_data)

    def test_network_share_weights(self):
        option = LiteOptions()
        option.var_sanity_check_first_run = 0
        config = LiteConfig(option=option)

        src_network = LiteNetwork(config=config)
        src_network.load(self.model_path)

        new_network = LiteNetwork()
        new_network.enable_cpu_inplace_mode()
        new_network.share_weights_with(src_network)

        self.do_forward(src_network)
        self.do_forward(new_network)

    def test_network_share_runtime_memory(self):
        option = LiteOptions()
        option.var_sanity_check_first_run = 0
        config = LiteConfig(option=option)

        src_network = LiteNetwork(config=config)
        src_network.load(self.model_path)

        new_network = LiteNetwork()
        new_network.enable_cpu_inplace_mode()
        new_network.share_runtime_memroy(src_network)
        new_network.load(self.model_path)

        self.do_forward(src_network)
        self.do_forward(new_network)

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def test_network_async(self):
        count = 0
        finished = False

        def async_callback():
            nonlocal finished
            finished = True
            return 0

        option = LiteOptions()
        option.var_sanity_check_first_run = 0
        config = LiteConfig(option=option)

        network = LiteNetwork(config=config)
        network.load(self.model_path)

        network.async_with_callback(async_callback)

        input_tensor = network.get_io_tensor(network.get_input_name(0))
        output_tensor = network.get_io_tensor(network.get_output_name(0))

        input_tensor.set_data_by_share(self.input_data)
        network.forward()

        while not finished:
            count += 1

        assert count > 0
        output_data = output_tensor.to_numpy()
        self.check_correct(output_data)

    def test_network_start_callback(self):
        network = LiteNetwork()
        network.load(self.model_path)
        start_checked = False

        def start_callback(ios):
            nonlocal start_checked
            start_checked = True
            assert len(ios) == 1
            for key in ios:
                io = key
                data = ios[key].to_numpy().flatten()
                input_data = self.input_data.flatten()
                assert data.size == input_data.size
351
                assert io.name == "data"
352
                for i in range(data.size):
353
                    assert abs(data[i] - input_data[i]) < 1e-5
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
            return 0

        network.set_start_callback(start_callback)
        self.do_forward(network, 1)
        assert start_checked == True

    def test_network_finish_callback(self):
        network = LiteNetwork()
        network.load(self.model_path)
        finish_checked = False

        def finish_callback(ios):
            nonlocal finish_checked
            finish_checked = True
            assert len(ios) == 1
            for key in ios:
                io = key
                data = ios[key].to_numpy().flatten()
                output_data = self.correct_data.flatten()
                assert data.size == output_data.size
                for i in range(data.size):
375
                    assert abs(data[i] - output_data[i]) < 1e-5
376 377 378 379 380
            return 0

        network.set_finish_callback(finish_callback)
        self.do_forward(network, 1)
        assert finish_checked == True
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

    def test_enable_profile(self):
        network = LiteNetwork()
        network.load(self.model_path)
        network.enable_profile_performance("./profile.json")

        self.do_forward(network)

        fi = open("./profile.json", "r")
        fi.close()
        os.remove("./profile.json")

    def test_io_txt_dump(self):
        network = LiteNetwork()
        network.load(self.model_path)
        network.io_txt_dump("./io_txt.txt")
        self.do_forward(network)

    def test_io_bin_dump(self):
        import shutil

        folder = "./out"
        network = LiteNetwork()
        network.load(self.model_path)
        if not os.path.exists(folder):
            os.mkdir(folder)
        network.io_bin_dump(folder)
        self.do_forward(network)
        shutil.rmtree(folder)

    def test_algo_workspace_limit(self):
        network = LiteNetwork()
        network.load(self.model_path)
        print("modify the workspace limit.")
        network.set_network_algo_workspace_limit(10000)
        self.do_forward(network)

    def test_network_algo_policy(self):
        network = LiteNetwork()
        network.load(self.model_path)
        network.set_network_algo_policy(
            LiteAlgoSelectStrategy.LITE_ALGO_PROFILE
            | LiteAlgoSelectStrategy.LITE_ALGO_REPRODUCIBLE
        )
        self.do_forward(network)

    def test_network_algo_policy_ignore_batch(self):
        network = LiteNetwork()
        network.load(self.model_path)
        network.set_network_algo_policy(
            LiteAlgoSelectStrategy.LITE_ALGO_PROFILE,
            shared_batch_size=1,
            binary_equal_between_batch=True,
        )
        self.do_forward(network)
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

    def test_device_tensor_no_copy(self):
        # construct LiteOption
        net_config = LiteConfig()
        net_config.options.force_output_use_user_specified_memory = True

        network = LiteNetwork(config=net_config)
        network.load(self.model_path)

        input_tensor = network.get_io_tensor("data")
        # fill input_data with device data
        input_tensor.set_data_by_share(self.input_data)

        output_tensor = network.get_io_tensor(network.get_output_name(0))
        out_array = np.zeros(output_tensor.layout.shapes, output_tensor.layout.dtype)

        output_tensor.set_data_by_share(out_array)

        # inference
        for i in range(2):
            network.forward()
            network.wait()

        self.check_correct(out_array)
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476

    def test_enable_global_layout_transform(self):
        network = LiteNetwork()
        network.enable_global_layout_transform()
        network.load(self.model_path)
        self.do_forward(network)

    def test_dump_layout_transform_model(self):
        network = LiteNetwork()
        network.enable_global_layout_transform()
        network.load(self.model_path)
        network.dump_layout_transform_model("./model_afer_layoutTrans.mgb")
        self.do_forward(network)

        fi = open("./model_afer_layoutTrans.mgb", "r")
        fi.close()
        os.remove("./model_afer_layoutTrans.mgb")
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

    def test_fast_run_and_global_layout_transform(self):

        config_ = LiteConfig()
        network = LiteNetwork(config_)
        fast_run_cache = "./algo_cache"
        global_layout_transform_model = "./model_afer_layoutTrans.mgb"
        network.set_network_algo_policy(
            LiteAlgoSelectStrategy.LITE_ALGO_PROFILE
            | LiteAlgoSelectStrategy.LITE_ALGO_OPTIMIZED
        )
        network.enable_global_layout_transform()
        network.load(self.model_path)
        self.do_forward(network)
        network.dump_layout_transform_model(global_layout_transform_model)
        LiteGlobal.dump_persistent_cache(fast_run_cache)
        fi = open(fast_run_cache, "r")
        fi.close()
        fi = open(global_layout_transform_model, "r")
        fi.close()

        LiteGlobal.set_persistent_cache(path=fast_run_cache)
        self.do_forward(network)

        os.remove(fast_run_cache)
        os.remove(global_layout_transform_model)
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    def test_network_basic_mem(self):
        network = LiteNetwork()
        with open(self.model_path, "rb") as file:
            network.load(file)

            input_name = network.get_input_name(0)
            input_tensor = network.get_io_tensor(input_name)
            output_name = network.get_output_name(0)
            output_tensor = network.get_io_tensor(output_name)

            assert input_tensor.layout.shapes[0] == 1
            assert input_tensor.layout.shapes[1] == 3
            assert input_tensor.layout.shapes[2] == 224
            assert input_tensor.layout.shapes[3] == 224
            assert input_tensor.layout.data_type == LiteDataType.LITE_FLOAT
            assert input_tensor.layout.ndim == 4

            self.do_forward(network)

523 524 525

class TestDiscreteInputNet(unittest.TestCase):
    source_dir = os.getenv("LITE_TEST_RESOURCE")
526
    data_path = os.path.join(source_dir, "data_b3.npy")
527 528 529
    data0_path = os.path.join(source_dir, "data0.npy")
    data1_path = os.path.join(source_dir, "data1.npy")
    data2_path = os.path.join(source_dir, "data2.npy")
530
    roi_path = os.path.join(source_dir, "roi.npy")
531
    model_path = os.path.join(source_dir, "test_discrete_input.mge")
532
    data = np.load(data_path)
533 534 535
    data0 = np.load(data0_path)
    data1 = np.load(data1_path)
    data2 = np.load(data2_path)
536
    roi = np.load(roi_path)
537

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
    def check_correct(self, out_data, error=1e-4):
        out_data = out_data.flatten()

        config = LiteConfig()
        net = LiteNetwork(config)
        net.load(self.model_path)
        input_tensor = net.get_io_tensor("data")
        input_tensor.set_data_by_share(self.data)
        roi_tensor = net.get_io_tensor("roi")
        roi_tensor.set_data_by_share(self.roi)
        output_name = net.get_output_name(0)
        output_tensor = net.get_io_tensor(output_name)
        net.forward()
        net.wait()

        correct_data = output_tensor.to_numpy().flatten()
        assert correct_data.size == out_data.size
        for i in range(out_data.size):
            assert abs(out_data[i] - correct_data[i]) < error

    def do_forward(self, network, times=1):
559 560
        data_name = network.get_input_name(1)
        datas = []
561 562 563 564 565 566 567 568 569 570 571
        datas.append(network.get_discrete_tensor(data_name, 0))
        datas.append(network.get_discrete_tensor(data_name, 1))
        datas.append(network.get_discrete_tensor(data_name, 2))

        datas[0].set_data_by_share(self.data0)
        datas[1].set_data_by_share(self.data1)
        datas[2].set_data_by_share(self.data2)
        roi_tensor = network.get_io_tensor("roi")
        roi_tensor.set_data_by_share(self.roi)
        out_name = network.get_output_name(0)
        out_tensor = network.get_io_tensor(out_name)
572 573 574 575
        for i in range(times):
            network.forward()
            network.wait()

576 577 578
        out_data = out_tensor.to_numpy()
        self.check_correct(out_data)

579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594

class TestDiscreteInput(TestDiscreteInputNet):
    def test_discrete_input(self):
        config = LiteConfig()
        config.discrete_input_name = "data".encode("utf-8")
        input_io = LiteIO(
            "data",
            is_host=True,
            io_type=LiteIOType.LITE_IO_VALUE,
            layout=LiteLayout([3, 3, 224, 224]),
        )
        ios = LiteNetworkIO()
        ios.add_input(input_io)
        network = LiteNetwork(config, ios)
        network.load(self.model_path)
        self.do_forward(network)