test_distributed.py 2.7 KB
Newer Older
1 2 3 4 5 6 7 8 9
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import multiprocessing as mp
10
import platform
11 12 13 14
import subprocess
import sys

import numpy as np
15
import pytest
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71


def worker(master_ip, master_port, world_size, rank, dev, trace):
    import megengine.distributed as dist
    import megengine.functional as F
    from megengine import is_cuda_available
    from megengine import jit
    from megengine.module import Linear, Module
    from megengine.optimizer import SGD

    if not is_cuda_available():
        return

    class MLP(Module):
        def __init__(self):
            super().__init__()
            self.fc0 = Linear(3 * 224 * 224, 500)
            self.fc1 = Linear(500, 10)

        def forward(self, x):
            x = self.fc0(x)
            x = F.relu(x)
            x = self.fc1(x)
            return x

    dist.init_process_group(
        master_ip=master_ip, master_port=3456, world_size=world_size, rank=rank, dev=dev
    )
    net = MLP()

    opt = SGD(net.parameters(requires_grad=True), lr=0.02)

    data = np.random.random((64, 3 * 224 * 224)).astype(np.float32)
    label = np.random.randint(0, 10, size=(64,)).astype(np.int32)

    jit.trace.enabled = trace

    @jit.trace()
    def train_func(data, label):
        pred = net(data)
        loss = F.cross_entropy_with_softmax(pred, label)
        opt.backward(loss)
        return loss

    for i in range(5):
        opt.zero_grad()
        loss = train_func(data, label)
        opt.step()


def start_workers(worker, world_size, trace=False):
    def run_subproc(rank):
        cmd = "from test.integration.test_distributed import worker\n"
        cmd += "worker('localhost', 3456, {}, {}, {}, {})".format(
            world_size, rank, rank, "True" if trace else "False"
        )
72
        cmd = [sys.executable, "-c", cmd]
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        ret = subprocess.run(
            cmd, stdout=sys.stdout, stderr=sys.stderr, universal_newlines=True
        )
        assert ret.returncode == 0, "subprocess failed"

    procs = []
    for rank in range(world_size):
        p = mp.Process(target=run_subproc, args=(rank,))
        p.start()
        procs.append(p)

    for p in procs:
        p.join()
        assert p.exitcode == 0


89 90 91
@pytest.mark.skipif(
    platform.system() == "Darwin", reason="do not imp GPU mode at macos now"
)
92 93 94
def test_distributed():
    start_workers(worker, 2, trace=True)
    start_workers(worker, 2, trace=False)