algos.cpp 10.4 KB
Newer Older
1 2 3 4 5 6 7 8
/**
 * \file dnn/src/fallback/conv_bias/conv1x1/algos.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15 16 17 18 19 20 21 22 23 24
 */

#include "src/fallback/conv_bias/conv1x1/algos.h"
#include "src/common/opr_delegate.h"
#include "src/fallback/conv_bias/common.h"
#include "src/fallback/conv_bias/conv1x1/conv1x1_dispatcher.h"
#include "src/fallback/conv_bias/conv1x1/conv1x1_strategy.h"
#include "src/fallback/conv_bias/opr_impl.h"

#include "megdnn/opr_param_defs.h"
#include "src/naive/convolution/helper.h"

#if MEGDNN_X86
#include "src/x86/conv_bias/postprocess_helper.h"
25 26
#elif (MEGDNN_ARMV7 || MEGDNN_AARCH64)
#include "src/arm_common/conv_bias/postprocess_helper.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#endif

#include "midout.h"
MIDOUT_DECL(megdnn_fallback_conv1x1)

using namespace megdnn;
using namespace fallback;
#if MEGDNN_X86
using namespace x86;
#endif
using namespace conv1x1;

size_t ConvBiasImpl::AlgoConv1x1::get_oc_tile_size_heuristic(
        const NCBKernSizeParam& param) const {
    size_t OH = param.osz[0];
    size_t OW = param.osz[1];
    size_t OC = param.filter_meta.ocpg;
    if (OH * OW >= 56 * 56 || OC >= 64)
        return m_oc_block_size;
46 47
    size_t oc_block_size_one_thread = div_ceil(OC, param.nr_threads);
    return round_up<size_t>(oc_block_size_one_thread, 24);
48 49 50 51 52 53 54 55 56 57
}

size_t ConvBiasImpl::AlgoConv1x1::get_workspace(
        ConvBiasImpl*, const NCBKernSizeParam& param) const {
    size_t OH = param.osz[0];
    size_t OW = param.osz[1];
    size_t compt_oc_block_size = get_oc_tile_size_heuristic(param);

    auto matmul_param =
            get_matmul_kern_param(param, OH * OW, compt_oc_block_size);
58

59 60 61 62 63 64 65 66 67 68 69 70
    auto pack_mode = m_matmul_algo->packmode();
    if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::DEFAULT) {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 0, 0) {
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::DEFAULT> dispatcher;
            return dispatcher
                    .get_bundle(param, matmul_param, m_matmul_algo,
                                compt_oc_block_size)
                    .total_size_in_bytes();
        }
        MIDOUT_END();
    } else if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA) {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 0, 1) {
71 72
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA>
                    dispatcher;
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            return dispatcher
                    .get_bundle(param, matmul_param, m_matmul_algo,
                                compt_oc_block_size)
                    .total_size_in_bytes();
        }
        MIDOUT_END();
    } else {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 0, 2) {
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::NO_PACK> dispatcher;
            return dispatcher
                    .get_bundle(param, matmul_param, m_matmul_algo,
                                compt_oc_block_size)
                    .total_size_in_bytes();
        }
        MIDOUT_END();
    }
    return 0;
}

SmallVector<ConvBiasImpl::NCBKern> ConvBiasImpl::AlgoConv1x1::dispatch_kerns(
        ConvBiasImpl* opr, const NCBKernSizeParam& param) const {
    SmallVector<ConvBiasImpl::NCBKern> ret_kern;

    size_t OH = param.osz[0];
    size_t OW = param.osz[1];
    size_t OC = param.filter_meta.ocpg;
    size_t compt_oc_block_size = get_oc_tile_size_heuristic(param);
    size_t GROUP = param.filter_meta.group;
    size_t BATCH = param.n;
    size_t oc_blocks_per_group = div_ceil(OC, compt_oc_block_size);

    auto matmul_param =
            get_matmul_kern_param(param, OH * OW, compt_oc_block_size);
    WorkspaceBundle whole_bundle = {nullptr, {}};
    WorkspaceBundle thread_bundle = {nullptr, {}};
    WorkspaceBundle matmul_bundle = {nullptr, {}};

    auto pack_mode = m_matmul_algo->packmode();
    if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::DEFAULT) {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 1, 0) {
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::DEFAULT> dispatcher;
            whole_bundle = dispatcher.get_bundle(
                    param, matmul_param, m_matmul_algo, compt_oc_block_size);
            matmul_bundle = m_matmul_algo->get_bundle(matmul_param);
        }
        MIDOUT_END();
    } else if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA) {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 1, 1) {
121 122
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA>
                    dispatcher;
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
            whole_bundle = dispatcher.get_bundle(
                    param, matmul_param, m_matmul_algo, compt_oc_block_size);
            matmul_bundle = m_matmul_algo->get_bundle(matmul_param);
        }
        MIDOUT_END();
    } else {
        MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 1, 2) {
            Conv1x1Kerns<MatrixMulImpl::AlgoBase::PackMode::NO_PACK> dispatcher;
            whole_bundle = dispatcher.get_bundle(
                    param, matmul_param, m_matmul_algo, compt_oc_block_size);
            matmul_bundle = {
                    nullptr,
                    {0, 0, m_matmul_algo->get_workspace(matmul_param)}};
        }
        MIDOUT_END();
    }

    //! get thread bundle
    thread_bundle = get_thread_bundle(param, matmul_bundle.get_size(2),
                                      compt_oc_block_size);

    Conv1x1StrategyBase* conv1x1_strategy =
            Conv1x1Factory::make_conv1x1_strategy(param, pack_mode,
146
                                                  opr->param().format);
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

    auto kern_packA = [this, whole_bundle, matmul_bundle, param,
                       compt_oc_block_size, conv1x1_strategy](
                              const NCBKernParam& ncb_param,
                              const NCBKernIndex& ncb_index) mutable {
        conv1x1_strategy->packA(whole_bundle, matmul_bundle,
                                compt_oc_block_size, this->m_matmul_algo, param,
                                ncb_param, std::move(ncb_index));
    };
    auto kern_packB = [this, whole_bundle, matmul_bundle, param,
                       conv1x1_strategy](
                              const NCBKernParam& ncb_param,
                              const NCBKernIndex& ncb_index) mutable {
        conv1x1_strategy->packB(whole_bundle, matmul_bundle,
                                this->m_matmul_algo, param, ncb_param,
                                std::move(ncb_index));
    };
    auto kern_compt = [this, whole_bundle, matmul_bundle, thread_bundle, param,
                       compt_oc_block_size, conv1x1_strategy](
                              const NCBKernParam& ncb_param,
                              const NCBKernIndex& ncb_index) mutable {
        conv1x1_strategy->exec(whole_bundle, matmul_bundle, thread_bundle,
                               compt_oc_block_size, this->m_matmul_algo, param,
                               ncb_param, std::move(ncb_index));
    };

    if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::DEFAULT ||
        pack_mode == MatrixMulImpl::AlgoBase::PackMode::ONLY_PACKA) {
        ret_kern.push_back({kern_packA, {GROUP, oc_blocks_per_group}});
        if (pack_mode == MatrixMulImpl::AlgoBase::PackMode::DEFAULT) {
177 178
            ret_kern.push_back({kern_packB, {1}});
        }
179 180 181 182 183 184 185 186 187 188
    }
    ret_kern.push_back({kern_compt, {BATCH, GROUP, oc_blocks_per_group}});

    return ret_kern;
}

bool ConvBiasImpl::AlgoConv1x1::usable(ConvBiasImpl* opr,
                                       const NCBKernSizeParam& param,
                                       AlgoSelectionStrategy) const {
    MIDOUT_BEGIN(megdnn_fallback_conv1x1, 0, 2) {
189
        if (opr->param().format != param::ConvBias::Format::NCHW &&
190 191
            opr->param().format != param::ConvBias::Format::NCHW44 &&
            opr->param().format != param::ConvBias::Format::NCHW44_DOT)
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
            return false;

        size_t FH = param.filter_meta.spatial[0],
               FW = param.filter_meta.spatial[1];
        size_t PH = param.filter_meta.padding[0],
               PW = param.filter_meta.padding[1];
        size_t SH = param.filter_meta.stride[0],
               SW = param.filter_meta.stride[1];

        if (FH != 1 || FW != 1 || PH || PW || SH != 1 || SW != 1)
            return false;

        //! make sure 8x8x16 and 8x8x32 biasmode is nobias and nonlineMode
        //! is identity otherwise return false mean that 8x8x32 and 8x8x16
        //! not support PostProcess
        if (param.src_type.enumv() == param.filter_type.enumv() &&
            (param.src_type.enumv() == DTypeEnum::Int8 &&
             (param.dst_type.enumv() == DTypeEnum::Int16 ||
              param.dst_type.enumv() == DTypeEnum::Int32)) &&
            param.bias_mode != megdnn::BiasMode::NO_BIAS &&
            param.nonlineMode != megdnn::NonlineMode::IDENTITY)
            return false;

        if (param.src_type.enumv() == param.filter_type.enumv() &&
            ((param.src_type.enumv() == DTypeEnum::QuantizedS8 ||
              param.src_type.enumv() == DTypeEnum::Quantized8Asymm) &&
             param.dst_type.enumv() == DTypeEnum::QuantizedS32) &&
            param.bias_mode != megdnn::BiasMode::NO_BIAS &&
            param.nonlineMode != megdnn::NonlineMode::IDENTITY)
            return false;

223 224
        if (opr->param().format == param::ConvBias::Format::NCHW44 ||
            opr->param().format == param::ConvBias::Format::NCHW44_DOT) {
225 226 227 228 229 230
            if (param.filter_meta.icpg < 4_z || param.filter_meta.icpg == 1 ||
                param.filter_meta.ocpg == 1) {
                return false;
            }
        }

231 232
        size_t OH = param.osz[0];
        size_t OW = param.osz[1];
233 234
        MatrixMulImpl::KernSizeParam matmul_param = get_matmul_kern_param(
                param, OH * OW, get_oc_tile_size_heuristic(param));
235 236
        bool matmul_usable = m_matmul_algo->usable(matmul_param);

237 238 239 240 241
        auto pack_mode = m_matmul_algo->packmode();
        bool strategy_usable = Conv1x1Factory::can_make_conv1x1_strategy(
                param, pack_mode, opr->param().format);

        return matmul_usable && strategy_usable &&
242 243 244 245 246 247 248 249
               (param.filter_meta.dilation[0] ==
                        param.filter_meta.dilation[1] &&
                param.filter_meta.dilation[0] == 1) &&
               param.compute_mode == param::ConvBias::ComputeMode::DEFAULT;
    }
    MIDOUT_END();
    return false;
}