conv_test_utils.cpp 22.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
/**
 * \file dnn/test/cuda/conv_test_utils.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#include "megdnn/oprs/nn.h"

#include "src/common/utils.h"
#include "src/cuda/cudnn_with_check.h"
#include "test/common/checker.h"
#include "test/common/conv_bias.h"
#include "test/common/tensor.h"
#include "test/common/workspace_wrapper.h"
#include "test/cuda/benchmark.h"
#include "test/cuda/conv_test_utils.h"
#include "test/cuda/fixture.h"
#include "test/cuda/utils.h"

#define V1(x) #x
#define V(x) V1(x)

namespace megdnn {
namespace test {
namespace conv {

#if MEGDNN_WITH_BENCHMARK

std::vector<BenchArgs> get_resnet50_bench_args(size_t batch) {
    std::vector<BenchArgs> args;
    args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1});
    args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2});
    args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2});

    args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 1, 1});
    args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 1, 1});
    args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2});
    args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2});

    args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2});
    args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2});
    args.emplace_back(BenchArgs{batch, 512, 28, 28, 128, 1, 1});
    args.emplace_back(BenchArgs{batch, 128, 28, 28, 128, 3, 1});
    args.emplace_back(BenchArgs{batch, 128, 28, 28, 512, 1, 1});

    args.emplace_back(BenchArgs{batch, 512, 28, 28, 1024, 1, 2});
    args.emplace_back(BenchArgs{batch, 512, 28, 28, 256, 1, 2});
    args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1});
    args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1});
    args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1});
    args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 2});

    args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2});
    args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2});
    args.emplace_back(BenchArgs{batch, 2048, 7, 7, 512, 1, 1});
    args.emplace_back(BenchArgs{batch, 512, 7, 7, 512, 3, 1});
    args.emplace_back(BenchArgs{batch, 512, 7, 7, 2048, 1, 1});
    return args;
}

std::vector<BenchArgs> get_detection_bench_args(size_t batch) {
    std::vector<BenchArgs> args;
    args.emplace_back(BenchArgs{batch, 4, 736, 1280, 8, 3, 2});
    args.emplace_back(BenchArgs{batch, 32, 184, 320, 16, 3, 1});
    args.emplace_back(BenchArgs{batch, 16, 184, 320, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 8, 184, 320, 16, 3, 1});
    args.emplace_back(BenchArgs{batch, 8, 184, 320, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 32, 184, 320, 64, 3, 2});
    args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 2});
    args.emplace_back(BenchArgs{batch, 32, 92, 160, 64, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 92, 160, 8, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 92, 160, 128, 3, 2});
    args.emplace_back(BenchArgs{batch, 128, 46, 80, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 128, 46, 80, 256, 3, 2});
    args.emplace_back(BenchArgs{batch, 128, 46, 80, 8, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 92, 160, 32, 3, 2});
    args.emplace_back(BenchArgs{batch, 32, 46, 80, 128, 3, 1});
    args.emplace_back(BenchArgs{batch, 8, 46, 80, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 64, 23, 40, 256, 3, 1});
    args.emplace_back(BenchArgs{batch, 256, 23, 40, 64, 3, 1});
    args.emplace_back(BenchArgs{batch, 128, 46, 80, 64, 3, 2});
    args.emplace_back(BenchArgs{batch, 256, 23, 40, 8, 3, 1});
    args.emplace_back(BenchArgs{batch, 8, 23, 40, 32, 3, 2});
    args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 1});
    args.emplace_back(BenchArgs{batch, 8, 12, 20, 8, 3, 2});
    args.emplace_back(BenchArgs{batch, 8, 6, 10, 8, 3, 1});
    return args;
}

std::vector<BenchArgs> get_det_first_bench_args(size_t batch) {
    std::vector<BenchArgs> args;
    args.emplace_back(BenchArgs{batch, 4, 736, 1280, 16, 3, 2});
    args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1});
103 104 105
    args.emplace_back(BenchArgs{batch, 16, 384, 640, 32, 3, 2});
    args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 1});
    args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 1, 1});
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    return args;
}

void benchmark_target_algo(Handle* handle, const std::vector<BenchArgs>& args,
                           DType src_dtype, DType filter_dtype,
                           DType bias_dtype, DType dst_dtype, const char* algo,
                           param::ConvBias::Format format) {
    megdnn_assert(src_dtype.enumv() == filter_dtype.enumv());
    CUBenchmarker<ConvBiasForward> benchmarker(handle);
    CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
    size_t RUNS = 1000;
    benchmarker.set_display(false).set_times(RUNS);
    benchmarker_cudnn.set_display(false).set_times(RUNS);

#define CUDNN_VERSION_STRING \
    "v" V(CUDNN_MAJOR) "." V(CUDNN_MINOR) "." V(CUDNN_PATCHLEVEL)
    benchmarker_cudnn.set_before_exec_callback(
            conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
                    "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_FWD_"
                    "ALGO_IMPLICIT_PRECOMP_"
                    "GEMM" CUDNN_VERSION_STRING));

    benchmarker.set_dtype(0, src_dtype)
            .set_dtype(1, filter_dtype)
            .set_dtype(2, bias_dtype)
            .set_dtype(3, dst_dtype)
            .set_dtype(4, dst_dtype);
    benchmarker_cudnn.set_dtype(0, src_dtype)
            .set_dtype(1, filter_dtype)
            .set_dtype(2, bias_dtype)
            .set_dtype(3, dst_dtype)
            .set_dtype(4, dst_dtype);

    using Param = ConvBias::Param;
    using Format = Param::Format;
    // helper function to change format
    auto get_tensor_shape = [](TensorShape shape,
                               Format format) -> TensorShape {
        TensorShape ret;
        if (format == Format::NCHW4) {
            ret = static_cast<TensorShape>(
                    TensorLayout{shape, dtype::Int8()}
                            .reshape({shape[0], shape[1] / 4, 4, shape[2],
                                      shape[3]})
                            .dimshuffle({0, 1, 3, 4, 2}));
        } else if (format == Format::CHWN4) {
            ret = static_cast<TensorShape>(
                    TensorLayout{shape, dtype::Int8()}
                            .reshape({shape[0], shape[1] / 4, 4, shape[2],
                                      shape[3]})
                            .dimshuffle({1, 3, 4, 0, 2}));
        }
        return ret;
    };

    for (auto&& arg : args) {
        Param param;
        param.pad_h = param.pad_w = arg.f / 2;
        param.stride_h = param.stride_w = arg.s;
        param.format = format;

        size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
        size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);

        benchmarker.set_param(param);
        if (!algo) {
            benchmarker.proxy()->target_execution_policy.algo.reset();
        }
        TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
                filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
                z{arg.n, arg.co, ho, wo}, dst = z;
        float time_in_ms = 0.f;
        if (algo) {
            time_in_ms =
                    algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
                                   CUTimer>(benchmarker,
                                            {get_tensor_shape(src, format),
                                             get_tensor_shape(filter, format),
                                             get_tensor_shape(bias, format),
                                             {},
                                             {}},
                                            algo) /
                    RUNS;
        } else {
            time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
                                            get_tensor_shape(filter, format),
                                            get_tensor_shape(bias, format),
                                            {},
                                            {}}) /
                         RUNS;
        }
        Format format_cudnn = Format::NCHW4;
        param.format = format_cudnn;
        benchmarker_cudnn.set_param(param);
        auto time_in_ms_cudnn =
                benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
                                         get_tensor_shape(filter, format_cudnn),
                                         get_tensor_shape(bias, format_cudnn),
                                         {},
                                         {}}) /
                RUNS;
        float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f /
                    (1e12);
        printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
               "time(cudnn)=%.2f %.2fTops, "
               "perf(algo=%s)/perf(cudnn)=%.2f\n",
               src.to_string().c_str(), filter.to_string().c_str(),
               dst.to_string().c_str(), algo, time_in_ms,
               (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
               (flo / (time_in_ms_cudnn * 1e-3)), algo,
               time_in_ms_cudnn / time_in_ms);
        printf("bench with z tensor\n");
        if (algo) {
            time_in_ms =
                    algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
                                   CUTimer>(benchmarker,
                                            {get_tensor_shape(src, format),
                                             get_tensor_shape(filter, format),
                                             get_tensor_shape(bias, format),
                                             get_tensor_shape(z, format),
                                             {}},
                                            algo) /
                    RUNS;
        } else {
            time_in_ms = benchmarker.execs({get_tensor_shape(src, format),
                                            get_tensor_shape(filter, format),
                                            get_tensor_shape(bias, format),
                                            get_tensor_shape(z, format),
                                            {}}) /
                         RUNS;
        }
        time_in_ms_cudnn =
                benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn),
                                         get_tensor_shape(filter, format_cudnn),
                                         get_tensor_shape(bias, format_cudnn),
                                         get_tensor_shape(z, format_cudnn),
                                         {}}) /
                RUNS;
        printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
               "time(cudnn)=%.2f %.2fTops, "
               "perf(algo=%s)/perf(cudnn)=%.2f\n",
               src.to_string().c_str(), filter.to_string().c_str(),
               dst.to_string().c_str(), algo, time_in_ms,
               (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
               (flo / (time_in_ms_cudnn * 1e-3)), algo,
               time_in_ms_cudnn / time_in_ms);
    }
}

void benchmark_target_algo_with_cudnn_tsc(
        Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype,
        DType filter_dtype, DType bias_dtype, DType dst_dtype, const char* algo,
        param::ConvBias::Format format, bool with_cudnn,
        const char* change_cudnn_algo,
        param::ConvBias::Format change_cudnn_format,
        DType change_cudnn_src_dtype, DType change_cudnn_filter_dtype,
        DType change_cudnn_bias_dtype, DType change_cudnn_dst_dtype) {
263 264 265
    megdnn_assert((src_dtype.enumv() == filter_dtype.enumv()) ||
                  (src_dtype.enumv() == DTypeEnum::Quantized4Asymm &&
                   filter_dtype.enumv() == DTypeEnum::QuantizedS4));
266 267
    CUBenchmarker<ConvBiasForward> benchmarker(handle);
    CUBenchmarker<ConvBiasForward> benchmarker_cudnn(handle);
268
    size_t RUNS = 200;
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
    benchmarker.set_display(false).set_times(RUNS);
    benchmarker.set_dtype(0, src_dtype)
            .set_dtype(1, filter_dtype)
            .set_dtype(2, bias_dtype)
            .set_dtype(3, dst_dtype)
            .set_dtype(4, dst_dtype);

    benchmarker_cudnn.set_display(false).set_times(RUNS);

    std::unique_ptr<OprProxy<ConvBiasForward>> proxy{
            new OprProxy<ConvBiasForward>{true}};

    if (!algo) {
        benchmarker.set_proxy(proxy);
    }
    if (change_cudnn_algo) {
        benchmarker_cudnn.set_dtype(0, change_cudnn_src_dtype)
                .set_dtype(1, change_cudnn_filter_dtype)
                .set_dtype(2, change_cudnn_bias_dtype)
                .set_dtype(3, change_cudnn_dst_dtype)
                .set_dtype(4, change_cudnn_dst_dtype);
    } else {
        benchmarker_cudnn.set_dtype(0, src_dtype)
                .set_dtype(1, filter_dtype)
                .set_dtype(2, bias_dtype)
                .set_dtype(3, dst_dtype)
                .set_dtype(4, dst_dtype);
        benchmarker_cudnn.set_before_exec_callback(
                conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(
                        "DEFAULT:CUDNN:ConvBiasActivation:CUDNN_CONVOLUTION_"
                        "FWD_"
                        "ALGO_IMPLICIT_PRECOMP_GEMM" CUDNN_VERSION_STRING));
    }
#undef CUDNN_VERSION_STRING

    using Param = ConvBias::Param;
    using Format = Param::Format;
    // helper function to change format
307
    auto get_tensor_shape = [](TensorShape shape, DType dtype,
308 309 310 311
                               Format format) -> TensorShape {
        TensorShape ret;
        if (format == Format::NCHW4) {
            ret = static_cast<TensorShape>(
312
                    TensorLayout{shape, dtype}
313 314 315 316 317
                            .reshape({shape[0], shape[1] / 4, 4, shape[2],
                                      shape[3]})
                            .dimshuffle({0, 1, 3, 4, 2}));
        } else if (format == Format::NCHW32) {
            ret = static_cast<TensorShape>(
318
                    TensorLayout{shape, dtype}
319 320 321 322 323
                            .reshape({shape[0], shape[1] / 32, 32, shape[2],
                                      shape[3]})
                            .dimshuffle({0, 1, 3, 4, 2}));
        } else if (format == Format::NCHW64) {
            ret = static_cast<TensorShape>(
324
                    TensorLayout{shape, dtype}
325 326 327 328 329
                            .reshape({shape[0], shape[1] / 64, 64, shape[2],
                                      shape[3]})
                            .dimshuffle({0, 1, 3, 4, 2}));
        } else if (format == Format::CHWN4) {
            ret = static_cast<TensorShape>(
330
                    TensorLayout{shape, dtype}
331 332 333
                            .reshape({shape[0], shape[1] / 4, 4, shape[2],
                                      shape[3]})
                            .dimshuffle({1, 3, 4, 0, 2}));
334 335 336
        } else if (format == Format::NHWC) {
            ret = static_cast<TensorShape>(
                    TensorLayout{shape, dtype}.dimshuffle({0, 2, 3, 1}));
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        }
        return ret;
    };

    for (auto&& arg : args) {
        Param param;
        param.pad_h = param.pad_w = arg.f / 2;
        param.stride_h = param.stride_w = arg.s;
        param.format = format;

        size_t ho = infer_conv_shape(arg.hi, arg.f, arg.s, arg.f / 2);
        size_t wo = infer_conv_shape(arg.wi, arg.f, arg.s, arg.f / 2);

        benchmarker.set_param(param);
        if (!algo) {
            benchmarker.proxy()->target_execution_policy.algo.reset();
        }
        TensorShape src{arg.n, arg.ci, arg.hi, arg.wi},
                filter{arg.co, arg.ci, arg.f, arg.f}, bias{1, arg.co, 1, 1},
                z{arg.n, arg.co, ho, wo}, dst = z;
        // skip testcase which cannot enable nchw32 tensorcore
        if (format == Format::NCHW32 && (arg.co % 32 != 0 || arg.ci % 32 != 0))
            continue;
        // skip testcase which cannot enable nchw32 tensorcore
        if (format == Format::NCHW64 && (arg.co % 64 != 0 || arg.ci % 64 != 0))
            continue;
        // skip testcase which cannot enable nchw4/chwn4 tensorcore
        if ((format == Format::CHWN4 || format == Format::NCHW4) &&
            (arg.ci % 16 != 0))
            continue;
367 368 369
        // skip testcase which cannot enable nhwc tensorcore
        if ((format == Format::NHWC) && (arg.ci % 4 != 0 || arg.co % 4 != 0))
            continue;
370 371 372 373 374 375 376 377 378 379 380 381 382 383
        Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0
                                      ? Format::NCHW32
                                      : Format::NCHW4;
        if (change_cudnn_algo) {
            format_cudnn = change_cudnn_format;
        }

        param.format = format_cudnn;
        benchmarker_cudnn.set_param(param);

        float time_in_ms = 0.f;
        if (algo) {
            time_in_ms =
                    algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
384 385 386 387 388 389 390 391
                                   CUTimer>(
                            benchmarker,
                            {get_tensor_shape(src, src_dtype, format),
                             get_tensor_shape(filter, filter_dtype, format),
                             get_tensor_shape(bias, bias_dtype, format),
                             {},
                             {}},
                            algo) /
392 393
                    RUNS;
        } else {
394 395 396 397 398 399 400 401
            time_in_ms =
                    benchmarker.execs(
                            {get_tensor_shape(src, src_dtype, format),
                             get_tensor_shape(filter, filter_dtype, format),
                             get_tensor_shape(bias, bias_dtype, format),
                             {},
                             {}}) /
                    RUNS;
402 403 404
        }
        float time_in_ms_cudnn = 0;
        if (with_cudnn) {
405 406 407 408 409
            if (change_cudnn_algo) {
                time_in_ms_cudnn =
                        algo_benchmark<ConvBiasForward,
                                       OprProxy<ConvBiasForward>, CUTimer>(
                                benchmarker_cudnn,
410 411 412 413 414
                                {get_tensor_shape(src, src_dtype, format_cudnn),
                                 get_tensor_shape(filter, filter_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(bias, bias_dtype,
                                                  format_cudnn),
415 416 417 418 419 420 421
                                 {},
                                 {}},
                                change_cudnn_algo) /
                        RUNS;
            } else {
                time_in_ms_cudnn =
                        benchmarker_cudnn.execs(
422 423 424 425 426
                                {get_tensor_shape(src, src_dtype, format_cudnn),
                                 get_tensor_shape(filter, filter_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(bias, bias_dtype,
                                                  format_cudnn),
427 428 429 430
                                 {},
                                 {}}) /
                        RUNS;
            }
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
        }

        float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f /
                    (1e12);
        printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
               "time(cudnn)=%.2f %.2fTops, "
               "perf(algo=%s)/perf(cudnn)=%.2f\n",
               src.to_string().c_str(), filter.to_string().c_str(),
               dst.to_string().c_str(), algo, time_in_ms,
               (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
               (flo / (time_in_ms_cudnn * 1e-3)), algo,
               time_in_ms_cudnn / time_in_ms);
        printf("bench with z tensor\n");
        if (algo) {
            time_in_ms =
                    algo_benchmark<ConvBiasForward, OprProxy<ConvBiasForward>,
447 448 449 450 451 452 453 454
                                   CUTimer>(
                            benchmarker,
                            {get_tensor_shape(src, src_dtype, format),
                             get_tensor_shape(filter, filter_dtype, format),
                             get_tensor_shape(bias, bias_dtype, format),
                             get_tensor_shape(z, src_dtype, format),
                             {}},
                            algo) /
455 456
                    RUNS;
        } else {
457 458 459 460 461 462 463 464
            time_in_ms =
                    benchmarker.execs(
                            {get_tensor_shape(src, src_dtype, format),
                             get_tensor_shape(filter, filter_dtype, format),
                             get_tensor_shape(bias, bias_dtype, format),
                             get_tensor_shape(z, src_dtype, format),
                             {}}) /
                    RUNS;
465 466 467
        }
        time_in_ms_cudnn = 0;
        if (with_cudnn) {
468 469 470 471 472
            if (change_cudnn_algo) {
                time_in_ms_cudnn =
                        algo_benchmark<ConvBiasForward,
                                       OprProxy<ConvBiasForward>, CUTimer>(
                                benchmarker_cudnn,
473 474 475 476 477 478
                                {get_tensor_shape(src, src_dtype, format_cudnn),
                                 get_tensor_shape(filter, filter_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(bias, bias_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(z, src_dtype, format_cudnn),
479 480 481 482 483 484
                                 {}},
                                change_cudnn_algo) /
                        RUNS;
            } else {
                time_in_ms_cudnn =
                        benchmarker_cudnn.execs(
485 486 487 488 489 490
                                {get_tensor_shape(src, src_dtype, format_cudnn),
                                 get_tensor_shape(filter, filter_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(bias, bias_dtype,
                                                  format_cudnn),
                                 get_tensor_shape(z, src_dtype, format_cudnn),
491 492 493
                                 {}}) /
                        RUNS;
            }
494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        }
        printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, "
               "time(cudnn)=%.2f %.2fTops, "
               "perf(algo=%s)/perf(cudnn)=%.2f\n",
               src.to_string().c_str(), filter.to_string().c_str(),
               dst.to_string().c_str(), algo, time_in_ms,
               (flo / (time_in_ms * 1e-3)), time_in_ms_cudnn,
               (flo / (time_in_ms_cudnn * 1e-3)), algo,
               time_in_ms_cudnn / time_in_ms);
    }
}
#endif
}  // namespace conv
}  // namespace test
}  // namespace megdnn
#undef V1
#undef V