convolution_operation.h 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
/***************************************************************************************************
 * Copyright (c) 2017-2020, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 *modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright notice,
 *this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *notice, this list of conditions and the following disclaimer in the
 *documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the names of its
 *contributors may be used to endorse or promote products derived from this
 *software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 *AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 *IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 *DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY DIRECT,
 *INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 *DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 *OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TOR (INCLUDING
 *NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 *EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 **************************************************************************************************/
/**
 * \file dnn/src/cuda/cutlass/convolution_operation.h
 *
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 */

#pragma once

#include "cutlass/convolution/device/convolution.h"
#include "src/cuda/cutlass/library_internal.h"

///////////////////////////////////////////////////////////////////////////////////////////////////

namespace cutlass {
namespace library {

///////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Operator_>
class ConvolutionOperationBase : public Operation {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementFilter = typename Operator::ElementFilter;
    using LayoutFilter = typename Operator::LayoutFilter;
    using ElementDst = typename Operator::ElementDst;
    using LayoutDst = typename Operator::LayoutDst;
    using ElementBias = typename Operator::ElementBias;
    using LayoutBias = typename Operator::LayoutBias;
    using ElementAccumulator = typename Operator::ElementAccumulator;

    ConvolutionOperationBase(char const* name = "unknown_convolution") {
        m_description.name = name;
        m_description.provider = Provider::kCUTLASS;
        m_description.kind = OperationKind::kConvolution;
        m_description.conv_op = Operator::kConvolutionalOperator;

        m_description.tile_description.threadblock_shape = make_Coord(
                Operator::ThreadblockShape::kM, Operator::ThreadblockShape::kN,
                Operator::ThreadblockShape::kK);

        m_description.tile_description.threadblock_stages = Operator::kStages;

        m_description.tile_description.warp_count =
                make_Coord(Operator::ConvolutionKernel::WarpCount::kM,
                           Operator::ConvolutionKernel::WarpCount::kN,
                           Operator::ConvolutionKernel::WarpCount::kK);

        m_description.tile_description.math_instruction.instruction_shape =
                make_Coord(Operator::InstructionShape::kM,
                           Operator::InstructionShape::kN,
                           Operator::InstructionShape::kK);

        m_description.tile_description.math_instruction.element_accumulator =
                NumericTypeMap<ElementAccumulator>::kId;

        m_description.tile_description.math_instruction.opcode_class =
                OpcodeClassMap<typename Operator::OperatorClass>::kId;

        m_description.tile_description.math_instruction.math_operation =
                MathOperationMap<typename Operator::Operator>::kId;

        m_description.tile_description.minimum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMin;

        m_description.tile_description.maximum_compute_capability =
                ArchMap<typename Operator::ArchTag,
                        typename Operator::OperatorClass>::kMax;

        m_description.src = make_TensorDescription<ElementSrc, LayoutSrc>(
                Operator::kAlignmentSrc);
        m_description.filter =
                make_TensorDescription<ElementFilter, LayoutFilter>(
                        Operator::kAlignmentFilter);
        m_description.dst = make_TensorDescription<ElementDst, LayoutDst>(
                Operator::kAlignmentDst);
        m_description.bias = make_TensorDescription<ElementBias, LayoutBias>(
                Operator::kAlignmentDst);

        m_description.convolution_type = Operator::kConvolutionType;
        m_description.arch_tag = ArchTagMap<typename Operator::ArchTag>::kId;

        m_description.epilogue_type = Operator::EpilogueOutputOp::kType;
        m_description.epilogue_count = Operator::EpilogueOutputOp::kCount;

        m_description.threadblock_swizzle = ThreadblockSwizzleMap<
                typename Operator::ThreadblockSwizzle>::kId;

122 123
        m_description.special_optimization =
                Operator::kSpecialOpt;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        m_description.gemm_mode = Operator::kGemmMode;
        m_description.without_shared_load = Operator::kWithoutSharedLoad;
    }

    virtual OperationDescription const& description() const {
        return m_description;
    }

protected:
    ConvolutionDescription m_description;
};

///////////////////////////////////////////////////////////////////////////////////////////////////

namespace detail {

template <typename EpilogueOp, epilogue::EpilogueType type>
struct init_epilogue_param_;

template <typename EpilogueOp>
struct init_epilogue_param_<EpilogueOp,
                            epilogue::EpilogueType::kBiasAddLinearCombination> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->delta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationClamp> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->delta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationRelu> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->threshold),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp,
        epilogue::EpilogueType::kBiasAddLinearCombinationReluClamp> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->threshold),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp, epilogue::EpilogueType::kBiasAddLinearCombinationHSwish> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->scale),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

template <typename EpilogueOp>
struct init_epilogue_param_<
        EpilogueOp,
        epilogue::EpilogueType::kBiasAddLinearCombinationHSwishClamp> {
    using ElementCompute = typename EpilogueOp::ElementCompute;
    typename EpilogueOp::Params get(ConvolutionArguments const* conv_args) {
        return {*static_cast<ElementCompute const*>(conv_args->alpha),
                *static_cast<ElementCompute const*>(conv_args->beta),
                *static_cast<ElementCompute const*>(conv_args->gamma),
                *static_cast<ElementCompute const*>(conv_args->scale),
                *static_cast<ElementCompute const*>(conv_args->delta),
                *static_cast<ElementCompute const*>(conv_args->theta)};
    }
};

}  // namespace detail

template <typename EpilogueOp>
struct init_epilogue_param
        : public detail::init_epilogue_param_<EpilogueOp, EpilogueOp::kType> {};

///////////////////////////////////////////////////////////////////////////////////////////////////

template <typename Operator_>
class ConvolutionOperation : public ConvolutionOperationBase<Operator_> {
public:
    using Operator = Operator_;
    using ElementSrc = typename Operator::ElementSrc;
    using LayoutSrc = typename Operator::LayoutSrc;
    using ElementFilter = typename Operator::ElementFilter;
    using LayoutFilter = typename Operator::LayoutFilter;
    using ElementBias = typename Operator::ElementBias;
    using LayoutBias = typename Operator::LayoutBias;
    using ElementDst = typename Operator::ElementDst;
    using LayoutDst = typename Operator::LayoutDst;
    using ElementAccumulator = typename Operator::ElementAccumulator;
    using ElementCompute = typename Operator::EpilogueOutputOp::ElementCompute;

    using OperatorArguments = typename Operator::Arguments;

    ConvolutionOperation(char const* name = "unknown_gemm")
            : ConvolutionOperationBase<Operator_>(name) {}

    virtual Status run(void const* arguments_ptr,
                       void* device_workspace = nullptr,
                       cudaStream_t stream = nullptr) const {
        cutlass::conv::Operator conv_op = this->m_description.conv_op;
        ConvolutionArguments const* conv_args =
                reinterpret_cast<ConvolutionArguments const*>(arguments_ptr);
        const auto& ps = conv_args->problem_size;

        OperatorArguments args;
        args.problem_size = ps;
        args.ref_src = {
                static_cast<ElementSrc*>(const_cast<void*>(conv_args->src)),
                LayoutSrc::packed(implicit_gemm_tensor_a_extent(conv_op, ps))};
        args.ref_filter = {static_cast<ElementFilter*>(
                                   const_cast<void*>(conv_args->filter)),
                           LayoutFilter::packed(
                                   implicit_gemm_tensor_b_extent(conv_op, ps))};
        args.ref_bias = {
                static_cast<ElementBias*>(const_cast<void*>(conv_args->bias)),
                LayoutBias::packed(
                        implicit_gemm_tensor_bias_extent(conv_op, ps))};
        args.ref_z = {
                static_cast<ElementDst*>(const_cast<void*>(conv_args->z)),
                LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};
        args.ref_dst = {
                static_cast<ElementDst*>(conv_args->dst),
                LayoutDst::packed(implicit_gemm_tensor_c_extent(conv_op, ps))};

        args.output_op =
                init_epilogue_param<typename Operator::EpilogueOutputOp>().get(
                        conv_args);

        if (conv_args->extra_param) {
            args.extra_param =
                    *reinterpret_cast<typename Operator::ExtraParam const*>(
                            conv_args->extra_param);
        }

        Operator op;
        Status status = op.initialize(args, device_workspace);

        if (status != Status::kSuccess) {
            return status;
        }

        return op.run(stream);
    }
};

///////////////////////////////////////////////////////////////////////////////////////////////////

}  // namespace library
}  // namespace cutlass

///////////////////////////////////////////////////////////////////////////////////////////////////