opr_proxy.h 23.2 KB
Newer Older
1 2 3 4
/**
 * \file dnn/test/common/opr_proxy.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
9 10
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
11 12 13 14 15
 */
#pragma once

#include "test/common/deduce_layout_proxy.h"
#include "test/common/exec_proxy.h"
16
#include "test/common/fast_run_cache.h"
17
#include "test/common/inspect_type.h"
18
#include "test/common/opr_algo_proxy.h"
19 20 21 22 23
#include "test/common/opr_trait.h"
#include "test/common/timer.h"
#include "test/common/workspace_wrapper.h"

#include <algorithm>
24
#include <limits>
25
#include <memory>
26
#include <unordered_map>
27

28 29 30
namespace megdnn {
namespace test {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
template <Algorithm::OprType>
struct OprFromOprTypeTrait;

template <typename Opr>
struct OprTypeFromOprTrait;

#define cb(_opr_type, _opr)                                     \
    template <>                                                 \
    struct OprFromOprTypeTrait<Algorithm::OprType::_opr_type> { \
        using Opr = megdnn::_opr;                               \
    };                                                          \
    template <>                                                 \
    struct OprTypeFromOprTrait<megdnn::_opr> {                  \
        constexpr static Algorithm::OprType opr_type =          \
                Algorithm::OprType::_opr_type;                  \
    }

cb(MATRIX_MUL_FORWARD, MatrixMulForward);
cb(CONVOLUTION_FORWARD, ConvolutionForward);
cb(CONVOLUTION_BACKWARD_DATA, ConvolutionBackwardData);
cb(CONVOLUTION_BACKWARD_FILTER, ConvolutionBackwardFilter);
cb(CONVOLUTION3D_FORWARD, Convolution3DForward);
cb(CONVOLUTION3D_BACKWARD_DATA, Convolution3DBackwardData);
cb(CONVOLUTION3D_BACKWARD_FILTER, Convolution3DBackwardFilter);
cb(LOCAL_SHARE_FORWARD, LocalShareForward);
cb(LOCAL_SHARE_BACKWARD_DATA, LocalShareBackwardData);
cb(LOCAL_SHARE_BACKWARD_FILTER, LocalShareBackwardFilter);
cb(DEFORMABLE_CONV_FORWARD, DeformableConvForward);
cb(DEFORMABLE_CONV_BACKWARD_DATA, DeformableConvBackwardData);
cb(DEFORMABLE_CONV_BACKWARD_FILTER, DeformableConvBackwardFilter);
cb(BATCH_CONV_FORWARD, BatchConvBiasForward);
cb(CONVBIAS_FORWARD, ConvBiasForward);

#undef cb

// clang-format off
#define FOREACH_OPR_TYPE(cb) \
    cb(MATRIX_MUL_FORWARD) \
    cb(CONVOLUTION_FORWARD) \
    cb(CONVOLUTION_BACKWARD_DATA) \
    cb(CONVOLUTION_BACKWARD_FILTER) \
    cb(CONVOLUTION3D_FORWARD) \
    cb(CONVOLUTION3D_BACKWARD_DATA) \
    cb(CONVOLUTION3D_BACKWARD_FILTER) \
    cb(LOCAL_SHARE_FORWARD) \
    cb(LOCAL_SHARE_BACKWARD_DATA) \
    cb(LOCAL_SHARE_BACKWARD_FILTER) \
    cb(DEFORMABLE_CONV_FORWARD) \
    cb(DEFORMABLE_CONV_BACKWARD_DATA) \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER) \
    cb(BATCH_CONV_FORWARD) \
    cb(CONVBIAS_FORWARD)

#define FOREACH_OPR_TYPE_WITH_STMT(cb, stmt) \
    cb(MATRIX_MUL_FORWARD, stmt) \
    cb(CONVOLUTION_FORWARD, stmt) \
    cb(CONVOLUTION_BACKWARD_DATA, stmt) \
    cb(CONVOLUTION_BACKWARD_FILTER, stmt) \
    cb(CONVOLUTION3D_FORWARD, stmt) \
    cb(CONVOLUTION3D_BACKWARD_DATA, stmt) \
    cb(CONVOLUTION3D_BACKWARD_FILTER, stmt) \
    cb(LOCAL_SHARE_FORWARD, stmt) \
    cb(LOCAL_SHARE_BACKWARD_DATA, stmt) \
    cb(LOCAL_SHARE_BACKWARD_FILTER, stmt) \
    cb(DEFORMABLE_CONV_FORWARD, stmt) \
    cb(DEFORMABLE_CONV_BACKWARD_DATA, stmt) \
    cb(DEFORMABLE_CONV_BACKWARD_FILTER, stmt) \
    cb(BATCH_CONV_FORWARD, stmt) \
    cb(CONVBIAS_FORWARD, stmt)

// clang-format on

#define _OPR_TYPE_CASE(_opr_type, _stmt)             \
    case Algorithm::OprType::_opr_type: {            \
        using _Opr = typename OprFromOprTypeTrait<   \
                Algorithm::OprType::_opr_type>::Opr; \
        _stmt;                                       \
        break;                                       \
    }

#define FOREACH_OPR_TYPE_DISPATCH(_search_items, _stmt)          \
    for (size_t _item_idx = 0; _item_idx < _search_items.size(); \
         _item_idx++) {                                          \
        auto&& _item = _search_items[_item_idx];                 \
        switch (_item.opr_type) {                                \
            FOREACH_OPR_TYPE_WITH_STMT(_OPR_TYPE_CASE, _stmt)    \
            default:                                             \
                megdnn_throw("unknown opr_type");                \
        }                                                        \
    }

122 123 124 125 126 127 128 129 130 131
template <typename Opr, size_t arity = OprTrait<Opr>::arity,
          bool has_workspace = OprTrait<Opr>::has_workspace,
          bool can_deduce_layout = OprTrait<Opr>::can_deduce_layout>
struct OprProxyDefaultImpl
        : public DeduceLayoutProxy<Opr, arity, can_deduce_layout>,
          public ExecProxy<Opr, arity, has_workspace> {};

template <typename Opr>
struct OprProxy : public OprProxyDefaultImpl<Opr> {};

132 133 134
template <typename Opr>
struct OprWeightPreprocessProxy : public OprProxyDefaultImpl<Opr> {};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
template <typename Opr>
struct OprProxyVectorToSingle {};

template <>
struct OprProxy<ElemwiseForward> {
    static void deduce_layout(ElemwiseForward* opr,
                              TensorLayoutArray& layouts) {
        megdnn_assert(layouts.size() >= 2);
        auto inp = layouts;
        inp.pop_back();
        opr->deduce_layout(inp, layouts.back());
    }

    static void exec(ElemwiseForward* opr, const TensorNDArray& tensors) {
        megdnn_assert(tensors.size() >= 2);
        auto inp = tensors;
        inp.pop_back();
        opr->exec(inp, tensors.back());
    }
};

template <>
struct OprProxy<ElemwiseMultiType> {
    static void deduce_layout(ElemwiseMultiType* opr,
                              TensorLayoutArray& layouts) {
        megdnn_assert(layouts.size() >= 2);
        auto inp = layouts;
        inp.pop_back();
        opr->deduce_layout(inp, layouts.back());
    }

    static void exec(ElemwiseMultiType* opr, const TensorNDArray& tensors) {
        megdnn_assert(tensors.size() >= 2);
        auto inp = tensors;
        inp.pop_back();
        opr->exec(inp, tensors.back());
    }
};

template <>
struct OprProxy<ConcatForward> {
    static void deduce_layout(ConcatForward* opr, TensorLayoutArray& layouts) {
        megdnn_assert(layouts.size() >= 2);
        auto inp = layouts;
        inp.pop_back();
        opr->deduce_layout(inp, layouts.back());
    }

    static void exec(ConcatForward* opr, const TensorNDArray& tensors) {
        megdnn_assert(tensors.size() >= 2);
        auto inp = tensors;
        inp.pop_back();

        TensorLayoutArray layouts(tensors.size());
        std::transform(tensors.begin(), tensors.end(), layouts.begin(),
                       [](const TensorND& tensor) { return tensor.layout; });
        auto inp_layouts = layouts;
        inp_layouts.pop_back();

        WorkspaceWrapper W(opr->handle(), opr->get_workspace_in_bytes(
                                                  inp_layouts, layouts.back()));

        auto inp_tensors = tensors;
        inp_tensors.pop_back();
        opr->exec(inp_tensors, tensors.back(), W.workspace());
    }
};

template <>
struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> {
    static void exec(SplitForward* opr, const TensorNDArray& tensors) {
        megdnn_assert(tensors.size() >= 2);
        auto out = tensors;
        out.erase(out.begin());

        TensorLayoutArray layouts(tensors.size());
        std::transform(tensors.begin(), tensors.end(), layouts.begin(),
                       [](const TensorND& tensor) { return tensor.layout; });
        auto out_layouts = layouts;
        out_layouts.erase(out_layouts.begin());

        WorkspaceWrapper W(
                opr->handle(),
                opr->get_workspace_in_bytes(layouts.front(), out_layouts));

        auto out_tensors = tensors;
        out_tensors.erase(out_tensors.begin());
        opr->exec(tensors.front(), out_tensors, W.workspace());
    }
};

//! OprProxy impl for tenary oprs with profiling support
227
template <class Opr>
228
struct OprProxyProfilingBase
229
        : public DeduceLayoutProxy<Opr, OprTrait<Opr>::arity,
230
                                   OprTrait<Opr>::can_deduce_layout> {
231
    static constexpr int arity = OprTrait<Opr>::arity;
232 233 234 235 236 237 238 239
    size_t warmup_times = 10, exec_times = 100;

    //! whether to enable profiling
    bool m_profiling;
    WorkspaceWrapper W;

    //! target algo setup by profiler; it can also be directly specified by the
    //! caller
240
    ExecutionPolicy target_execution_policy;
241 242

    OprProxyProfilingBase(bool profile = false) { m_profiling = profile; }
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

    //! used for alloc tensor for weight preprocess
    static std::shared_ptr<TensorNDArray> alloc_tensors(
            Handle* handle, const TensorLayoutArray& layouts) {
        auto deleter = [handle](TensorNDArray* ptr) {
            for (auto&& i : *ptr) {
                auto pdata = static_cast<dt_byte*>(i.raw_ptr) +
                             i.layout.span().low_byte;
                megdnn_free(handle, pdata);
            }
            delete ptr;
        };
        std::shared_ptr<TensorNDArray> ret{new TensorNDArray, deleter};
        for (size_t i = 0; i < layouts.size(); ++i) {
            auto span = layouts[i].span();
            ret->emplace_back(static_cast<dt_byte*>(
                                      megdnn_malloc(handle, span.dist_byte())) -
                                      span.low_byte,
                              layouts[i]);
        }
        return ret;
    }
265

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    /**
     * flatten search space in postorder traversal
     * The subopr search construct a search tree
     *
     *           A
     *        /    \
     *       B1B2   C
     *      /     \
     *     D1D2D3   E
     * We use postorder traverse the search tree.
     * D1 -> D2 -> D3 -> E -> B1 -> B2 -> C -> A
     */
    static std::vector<Algorithm::SearchItem> flatten_search_space(
            const TensorLayoutArray layouts, const std::string& param,
            Handle* handle) {
        megdnn_assert(layouts.size() == arity);
        auto opr = handle->create_operator<Opr>();
        opr->param() =
                Algorithm::deserialize_read_pod<typename Opr::Param>(param);

        std::vector<Algorithm::SearchItem> ret;
        for (auto algo_info : AlgoProxy<Opr, arity>::get_all_algorithms_info(
                     opr.get(), layouts)) {
            Algorithm* algo = opr->get_algorithm_from_desc(algo_info.desc);
            std::vector<Algorithm::SearchItem>&& sub_items =
                    algo->get_subopr_list(layouts, opr.get());

            FOREACH_OPR_TYPE_DISPATCH(sub_items, {
                auto space = OprProxyProfilingBase<_Opr>::flatten_search_space(
                        _item.layouts, _item.param, handle);
                ret.insert(ret.end(), space.begin(), space.end());
            });
        }
        ret.push_back({OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
        return ret;
    }

    static void construct_execution_policy(
            const TensorLayoutArray& layouts, const std::string& param,
            Handle* handle, FastRunCache& cache,
            ExecutionPolicy& policy) {
        megdnn_assert(layouts.size() == arity);
        auto opr = handle->create_operator<Opr>();
        opr->param() =
                Algorithm::deserialize_read_pod<typename Opr::Param>(param);
        if (!policy.algo.valid()) {
            policy.algo = cache.get(Algorithm::SearchItem{
                    OprTypeFromOprTrait<Opr>::opr_type, param, layouts});
            megdnn_assert(policy.algo.valid(),
                          "No cache found, maybe some error occured in "
                          "flatten_search_space or get_subopr_list");
        }
        policy.sub_policy.clear();
        Algorithm* algo = opr->get_algorithm_from_desc(policy.algo);
        std::vector<Algorithm::SearchItem>&& sub_items =
                algo->get_subopr_list(layouts, opr.get());
        FOREACH_OPR_TYPE_DISPATCH(sub_items, {
            policy.sub_policy.push_back({});
            OprProxyProfilingBase<_Opr>::construct_execution_policy(
                    _item.layouts, _item.param, handle, cache,
                    policy.sub_policy.back());
        });
        return;
    }

    /**
     * \brief search and get the best execution_policy
     */
    static void search(const TensorLayoutArray& layouts,
                       const std::string& param,
                       WorkspaceWrapper& workspace_wrapper, Handle* handle,
                       size_t warmup_times, size_t exec_times,
                       FastRunCache& cache) {
        megdnn_assert(layouts.size() == arity);
        auto opr = handle->create_operator<Opr>();
341

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
        opr->param() =
                Algorithm::deserialize_read_pod<typename Opr::Param>(param);
        SmallVector<size_t> sizes_in_bytes;
        for (const auto& layout : layouts) {
            sizes_in_bytes.push_back(layout.span().dist_byte());
        }

        float min_time = std::numeric_limits<float>::max();
        Algorithm::Info::Desc best_algo;

        std::string log_info = "Profiling start: ";
        for (auto&& layout : layouts) {
            log_info += layout.to_string() + " ";
        }
        megdnn_log("%s", log_info.c_str());
        best_algo = cache.get(Algorithm::SearchItem{
                OprTypeFromOprTrait<Opr>::opr_type, param, layouts});

        if (best_algo.valid()) {
            auto&& algo = opr->get_algorithm_from_desc(best_algo);
            MEGDNN_MARK_USED_VAR(algo);
            megdnn_log("Find best algo %s in cache", algo->name());
            return;
        }
        for (auto algo : AlgoProxy<Opr, arity>::get_all_algorithms_info(
                     opr.get(), layouts)) {
            //! construct execution_policy
            opr->execution_policy().algo = algo.desc;
            construct_execution_policy(layouts, param, handle, cache,
                                       opr->execution_policy());

            auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
                    opr.get(), layouts);
            sizes_in_bytes.push_back(workspace_size);

            WorkspaceBundle wb(nullptr, sizes_in_bytes);
            workspace_wrapper.update(wb.total_size_in_bytes());
            wb.set(workspace_wrapper.workspace().raw_ptr);
            TensorNDArray tensors;
            for (size_t i = 0; i < arity; i++) {
                tensors.push_back({wb.get(i), layouts[i]});
            }

            for (size_t times = 0; times < warmup_times; ++times) {
                AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
                                            wb.get_workspace(arity));
            }
            megcoreSynchronize(opr->handle()->megcore_computing_handle());
            Timer timer;
            timer.start();
            for (size_t times = 0; times < exec_times; ++times) {
                AlgoProxy<Opr, arity>::exec(opr.get(), tensors,
                                            wb.get_workspace(arity));
            }
            megcoreSynchronize(opr->handle()->megcore_computing_handle());
            timer.stop();
            megdnn_log("%.3fms %s", timer.get_time_in_us() / 1e3,
                       algo.name.c_str());
            if (min_time > timer.get_time_in_us()) {
                min_time = timer.get_time_in_us();
                best_algo = algo.desc;
            }

            sizes_in_bytes.pop_back();
        }
        auto&& algo = opr->get_algorithm_from_desc(best_algo);
        MEGDNN_MARK_USED_VAR(algo);
        megdnn_log("Profiling end, got best algo: %s", algo->name());
        cache.put(Algorithm::SearchItem{OprTypeFromOprTrait<Opr>::opr_type,
                                        param, layouts},
                  best_algo);
    }

415
    void exec(Opr* opr, const TensorNDArray& tensors) {
416 417 418
        megdnn_assert(tensors.size() == arity);
        if (!W.valid()) {
            W = WorkspaceWrapper(opr->handle(), 0);
419
        }
420 421 422
        TensorLayoutArray layouts;
        for (auto&& tensor : tensors) {
            layouts.push_back(tensor.layout);
423
        }
424 425 426 427 428 429 430
        if (m_profiling && !target_execution_policy.algo.valid()) {
            FastRunCache cache;
            std::string param_str;
            Algorithm::serialize_write_pod(opr->param(), param_str);
            auto&& search_items =
                    flatten_search_space(layouts, param_str, opr->handle());
            FOREACH_OPR_TYPE_DISPATCH(search_items, {
431 432 433
                OprProxyProfilingBase<_Opr>::search(
                        _item.layouts, _item.param, W, opr->handle(),
                        warmup_times, exec_times, cache);
434 435 436 437 438
            });

            construct_execution_policy(layouts, param_str, opr->handle(), cache,
                                       opr->execution_policy());
            target_execution_policy = opr->execution_policy();
439 440 441
            auto workspace_size =
                    AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
            W.update(workspace_size);
442
        }
443
        if (!target_execution_policy.algo.valid()) {
444 445 446
            auto workspace_size =
                    AlgoProxy<Opr, arity>::get_workspace_in_bytes(opr, layouts);
            W.update(workspace_size);
447
        }
448
        AlgoProxy<Opr, arity>::exec(opr, tensors, W.workspace());
449 450 451
    }
};

452 453 454 455
#define DEF_PROF(c)                                            \
    template <>                                                \
    struct OprProxy<c> : public OprProxyProfilingBase<c> {     \
        using OprProxyProfilingBase<c>::OprProxyProfilingBase; \
456
    }
457

458 459 460 461 462 463 464
DEF_PROF(MatrixMulForward);
DEF_PROF(ConvolutionForward);
DEF_PROF(ConvolutionBackwardData);
DEF_PROF(ConvolutionBackwardFilter);
DEF_PROF(LocalShareForward);
DEF_PROF(LocalShareBackwardData);
DEF_PROF(LocalShareBackwardFilter);
465

466 467 468 469
DEF_PROF(DeformableConvForward);
DEF_PROF(DeformableConvBackwardFilter);
DEF_PROF(BatchConvBiasForward);
DEF_PROF(ConvBiasForward);
470

471
DEF_PROF(DeformableConvBackwardData);
472
#undef DEF_PROF
473

474 475 476 477
template <class Opr>
struct OprWeightPreprocessProxyImpl : public OprProxyProfilingBase<Opr> {
    using Base = OprProxyProfilingBase<Opr>;
    static constexpr int arity = OprTrait<Opr>::arity;
478
    void exec(Opr* opr, const TensorNDArray& tensors) {
479
        megdnn_assert(tensors.size() == arity);
480 481 482 483
        if (!Base::W.valid()) {
            Base::W = WorkspaceWrapper(opr->handle(), 0);
        }

484 485 486
        TensorLayoutArray layouts;
        for (auto&& tensor : tensors) {
            layouts.push_back(tensor.layout);
487
        }
488
        if (Base::m_profiling && !Base::target_execution_policy.algo.valid()) {
489
            size_t min_time = std::numeric_limits<size_t>::max();
490 491
            for (auto algo :
                 AlgoProxy<Opr, arity>::get_all_algorithms_info(opr, layouts)) {
492
                opr->execution_policy().algo = algo.desc;
493

494 495
                auto preprocess_tensors =
                        weight_prerocess(opr, tensors, algo.desc);
496
                megcoreSynchronize(opr->handle()->megcore_computing_handle());
497
                typename Opr::PreprocessedFilter preprocessed_filter{
498
                        nullptr, *preprocess_tensors};
499

500 501 502
                auto workspace_size =
                        AlgoProxy<Opr, arity>::get_workspace_in_bytes(
                                opr, layouts, &preprocessed_filter);
503 504
                Base::W.update(workspace_size);

505 506 507 508 509
                for (size_t times = 0; times < Base::warmup_times; ++times) {
                    AlgoProxy<Opr, arity>::exec(opr, tensors,
                                                &preprocessed_filter,
                                                Base::W.workspace());
                }
510 511 512 513
                megcoreSynchronize(opr->handle()->megcore_computing_handle());
                Timer timer;
                timer.start();
                for (size_t times = 0; times < Base::exec_times; ++times) {
514 515 516
                    AlgoProxy<Opr, arity>::exec(opr, tensors,
                                                &preprocessed_filter,
                                                Base::W.workspace());
517 518 519 520
                }
                megcoreSynchronize(opr->handle()->megcore_computing_handle());
                timer.stop();
                printf("%.3fms %s\n", timer.get_time_in_us() / 1e3,
521
                       algo.name.c_str());
522 523
                if (min_time > timer.get_time_in_us()) {
                    min_time = timer.get_time_in_us();
524
                    Base::target_execution_policy.algo = algo.desc;
525 526
                }
            }
527 528 529
            opr->execution_policy() = Base::target_execution_policy;
            auto preprocess_tensors = weight_prerocess(
                    opr, tensors, Base::target_execution_policy.algo);
530
            megcoreSynchronize(opr->handle()->megcore_computing_handle());
531
            typename Opr::PreprocessedFilter preprocessed_filter{
532
                    nullptr, *preprocess_tensors};
533 534
            auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
                    opr, layouts, &preprocessed_filter);
535 536
            Base::W.update(workspace_size);
        }
537 538
        auto preprocess_tensors = weight_prerocess(
                opr, tensors, Base::target_execution_policy.algo);
539
        megcoreSynchronize(opr->handle()->megcore_computing_handle());
540
        typename Opr::PreprocessedFilter preprocessed_filter{
541
                nullptr, *preprocess_tensors};
542
        if (!Base::target_execution_policy.algo.valid()) {
543 544
            auto workspace_size = AlgoProxy<Opr, arity>::get_workspace_in_bytes(
                    opr, layouts, &preprocessed_filter);
545 546
            Base::W.update(workspace_size);
        }
547 548
        AlgoProxy<Opr, arity>::exec(opr, tensors, &preprocessed_filter,
                                    Base::W.workspace());
549 550 551 552
    }

    //! handle weight preprocess
    std::shared_ptr<TensorNDArray> weight_prerocess(
553 554 555 556 557 558 559 560 561
            Opr* opr, const TensorNDArray& tensors,
            const typename Opr::AlgorithmDesc&) {
        TensorLayoutArray layouts;
        for (auto&& tensor : tensors) {
            layouts.push_back(tensor.layout);
        }
        auto weight_perprocess_layouts =
                AlgoProxy<Opr, arity>::deduce_preprocessed_filter_layout(
                        opr, layouts);
562
        auto preprocessed_filter_tensors_ptr =
563 564
                Base::alloc_tensors(opr->handle(), weight_perprocess_layouts);
        typename Opr::PreprocessedFilter preprocessed_filter{
565
                nullptr, *preprocessed_filter_tensors_ptr};
566
        size_t preprocess_workspace_size =
567 568
                AlgoProxy<Opr, arity>::get_preprocess_workspace_in_bytes(
                        opr, layouts);
569 570
        WorkspaceWrapper preprocess_workspace(opr->handle(),
                                              preprocess_workspace_size);
571 572 573
        AlgoProxy<Opr, arity>::exec_preprocess(
                opr, tensors, layouts, &preprocessed_filter,
                preprocess_workspace.workspace());
574 575 576 577
        return preprocessed_filter_tensors_ptr;
    }
};

578 579 580 581 582
#define DEF_PROF(c)                                                          \
    template <>                                                              \
    struct OprWeightPreprocessProxy<c>                                       \
            : public OprWeightPreprocessProxyImpl<c> {                       \
        using OprWeightPreprocessProxyImpl<c>::OprWeightPreprocessProxyImpl; \
583 584
    }

585 586
DEF_PROF(ConvolutionForward);
DEF_PROF(ConvBias);
587
#undef DEF_PROF
588 589 590 591 592

}  // namespace test
}  // namespace megdnn

// vim: syntax=cpp.doxygen