misc.cpp 14.6 KB
Newer Older
1 2 3 4
/**
 * \file src/opr/impl/misc.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./internal/megdnn_opr_wrapper.inl"

#include "megbrain/graph/grad_impl.h"
#include "megbrain/opr/basic_arith_wrapper.h"
#include "megbrain/opr/indexing.h"
#include "megbrain/opr/misc.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"

using namespace mgb;
using namespace opr;

namespace mgb {
namespace opr {
namespace intl {
    template<>
    struct MegDNNOprInitPostCtor<Argmax> {
        static void apply(cg::OperatorNodeBase &opr) {
            opr.output(0)->dtype(dtype::Int32());
        }
    };

    template<>
    struct MegDNNOprInitPostCtor<Argmin>: public MegDNNOprInitPostCtor<Argmax> {
    };

    template<>
    struct MegDNNOprInitPostCtor<ArgsortForward> {
        static void apply(cg::OperatorNodeBase &opr) {
            opr.output(0)->dtype(opr.input(0)->dtype());
            opr.output(1)->dtype(dtype::Int32());
        }
    };
}
}
}

/* ================= Argmxx ================= */

51
#if MGB_ENABLE_GRAD
52 53 54 55 56 57
MGB_IMPL_OPR_GRAD(Argmax) {
    MGB_MARK_USED_VAR(out_grad);
    MGB_MARK_USED_VAR(opr);
    mgb_assert(!wrt_idx);
    return nullptr;
}
58
#endif
59 60 61 62

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmax);
MEGDNN_OPR_INIT1(Argmax, "argmax")

63
#if MGB_ENABLE_GRAD
64 65 66 67 68 69
MGB_IMPL_OPR_GRAD(Argmin) {
    MGB_MARK_USED_VAR(out_grad);
    MGB_MARK_USED_VAR(opr);
    mgb_assert(!wrt_idx);
    return nullptr;
}
70
#endif
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Argmin);
MEGDNN_OPR_INIT1(Argmin, "argmin")

/* ================= ArgsortForward =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ArgsortForward);
MEGDNN_OPR_CTOR_INIT1(ArgsortForward, "argsort")

std::array<SymbolVar, 2> ArgsortForward::make(
        SymbolVar in_tensor, const Param &param,
        const OperatorNodeConfig &config)
{
    auto node = in_tensor.node()->owner_graph()->insert_opr(
            std::make_unique<ArgsortForward>(in_tensor.node(), param, config));
    mgb_assert(node->output().size() == 3);
    return {node->output(0), node->output(1)};
}

90
#if MGB_ENABLE_GRAD
91 92 93 94 95 96
MGB_IMPL_OPR_GRAD(ArgsortForward) {
    mgb_assert(out_grad.size() == 3 && wrt_idx == 0 && !out_grad[2]);
    if (!out_grad[0])
        return nullptr;
    return ArgsortBackward::make(out_grad[0], opr.output(1)).node();
}
97
#endif
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

/* ================= ArgsortBackward =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(ArgsortBackward);
MEGDNN_OPR_INIT3(ArgsortBackward, "argsort_bwd", 2, false)

/* ================= Cumsum =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(Cumsum);

Cumsum::Cumsum(VarNode* opr, const Param& param,
               const OperatorNodeConfig& config)
        : Super{opr->owner_graph(), config, "Cumsum", {opr}} {
    init_megdnn_opr(*this, param);
    add_input({opr}, AddInputSortType::CUR_ADDED);
}

115
#if MGB_ENABLE_GRAD
116 117 118 119 120 121
MGB_IMPL_OPR_GRAD(Cumsum) {
    mgb_assert(out_grad[0] && !out_grad[1]);
    auto param = opr.param();
    param.reverse = !param.reverse;
    return Cumsum::make(out_grad[0], param).node();
}
122
#endif
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

SymbolVar Cumsum::make(SymbolVar opr, const Param& param,
                       const OperatorNodeConfig& config) {
    return opr.insert_single_output_opr<Cumsum>(opr.node(), param, config);
}

void Cumsum::scn_do_execute() {
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       output(0)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output().back()));
}

void Cumsum::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto infer_shape = [](TensorShape& dest, const InpVal& iv) {
        auto ishp = iv.val.at(0).shape();
        dest = ishp;
        return true;
    };
    owner_graph()->static_infer_manager().register_shape_infer(
            output(0),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
    auto infer_workspace = [this](TensorShape& dest, const InpVal& iv) {
        auto dtype = input(0)->dtype();
        auto ishp = iv.val.at(0).shape();
        TensorLayout ily(ishp, dtype);
        Param real_param = param();
        if (real_param.axis < 0)
            real_param.axis += ishp.ndim;
        megdnn_opr()->param() = real_param;
        dest.ndim = 1;
        dest[0] = megdnn_opr()->get_workspace_in_bytes(ily, ily);
        return true;
    };
    owner_graph()->static_infer_manager().register_shape_infer(
            output(1),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_workspace});
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
/* ================= NvOf =================  */

#if MGB_CUDA
MGB_DYN_TYPE_OBJ_FINAL_IMPL(NvOf);

NvOf::NvOf(VarNode* opr, const Param& param, const OperatorNodeConfig& config)
        : Super{opr->owner_graph(), config, "NvOf", {opr}}, m_param{param} {
    mgb_assert(opr->dtype() == dtype::Uint8());
    add_input({opr});
    //! NvOf hava only one output
    add_output(None);
    mgb_log_debug("init nvof engine with precision: %u", m_param.precision);
}

void NvOf::init_output_dtype() {
    output(0)->dtype(dtype::Int16());
}

SymbolVar NvOf::make(SymbolVar opr, const Param& param,
                     const OperatorNodeConfig& config) {
    return opr.insert_single_output_opr<NvOf>(opr.node(), param, config);
}

void NvOf::scn_do_execute() {
186 187 188 189
    auto input_shape = this->input()[0]->shape();
    for (size_t i = 0; i < 5; i++) {
        vshape.push_back(input_shape[i]);
    }
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    auto c = this->comp_node();
    //! comp_node may init on CUDA or CPU, eg: lar with --cpu
    //! if ON CUDA, need sync, caused by we use different stream
    if (CompNode::DeviceType::CUDA == c.device_type()) {
        c.sync();
    } else {
        mgb_log_warn(
                "NvOf opr on non CUDA comp_node, which will triger H2D and "
                "D2H!!");
    }

    //! create NvOF engine at same device id of comp_node, can not get
    //! comp_node device id, when NvOf:NvOf, so init at scn_do_execute
    std::lock_guard<std::mutex> lock(m_lock);
    if (init_flag == false) {
        //! nvof sdk do not imp p2p copy, so init nvof engine on the same
        //! device with mgb comp_node
        nv_flow_extractor = std::make_shared<NVFlowExtractor>(
                c.locator().device, vshape, m_param.precision, true, true);
        init_flag = true;
    }

    nv_flow_extractor->extract_flow(
            static_cast<unsigned char*>(
                    input(0)->dev_tensor().as_megdnn().raw_ptr),
            vshape,
            reinterpret_cast<int16_t*>(
                    output(0)->dev_tensor().as_megdnn().raw_ptr));
}

void NvOf::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto infer_shape = [](TensorShape& dest, const InpVal& iv) {
        auto ishp = iv.val.at(0).shape();
224 225 226 227
        //! nvof input format: nthwc4
        mgb_assert(ishp.ndim == 5);
        //! now only support RGBA format channel data
        mgb_assert(ishp[4] == 4);
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
        SmallVector<size_t> tv;
        tv.push_back(ishp[0]);
        tv.push_back(ishp[1] - 1);
        tv.push_back(ishp[2] / 4);
        tv.push_back(ishp[3] / 4);
        tv.push_back(ishp[4] / 2);
        dest = tv;

        return true;
    };
    owner_graph()->static_infer_manager().register_shape_infer(
            output(0),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_shape});
}
#endif
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/* ================= CondTake =================  */
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CondTake);

CondTake::CondTake(VarNode *data, VarNode *mask,
        const Param &param, const OperatorNodeConfig &config):
    Super(data->owner_graph(), config, "cond_take", {data, mask})
{
    init_megdnn_opr(*this, param);
    add_input({data, mask});
    auto dtypes = megdnn_opr()->infer_dtype(data->dtype(), mask->dtype());
    for (int i = 0; i < 2; ++ i) {
        output(i)
            ->add_flag(VarNode::Flag::NO_SYS_MEM_ALLOC)
            .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE)
            .dtype(dtypes[i]);
    }
}

262
#if MGB_ENABLE_GRAD
263 264 265 266 267 268 269 270 271 272 273
MGB_IMPL_OPR_GRAD(CondTake) {
    mgb_assert(out_grad.size() == 3 && !out_grad[2]);
    if (wrt_idx == 0 && out_grad[0]) {
        SymbolVar data_sym{opr.input(0)};
        auto inp_set = IndexingIncrMultiAxisVec::make(
                data_sym.flatten().fill_retain_dtype(0), out_grad[0],
                {indexing::AxisIndexer::make_index(0, opr.output(1))});
        return inp_set.reshape(data_sym.symshape()).node();
    }
    return nullptr;
}
274
#endif
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381

std::array<SymbolVar, 2> CondTake::make(
        SymbolVar data, SymbolVar mask,
        const Param &param, const OperatorNodeConfig &config) {
    auto ov0 = data.insert_single_output_opr<CondTake>(
            data.node(), mask.node(), param, config);
    return {ov0, ov0.node()->owner_opr()->output(1)};
}

void CondTake::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto infer_workspace = [this](TensorShape& dest, const InpVal& iv) {
        auto dtype = input(0)->dtype();
        TensorLayout ily(iv.val[0].shape(), dtype);
        dest.ndim = 1;
        dest.shape[0] = megdnn_opr()->get_workspace_in_bytes(ily);
        return true;
    };
    owner_graph()->static_infer_manager().register_shape_infer(
            output(2),
            {SourceType::DEP, {{input(0), DepType::SHAPE}}, infer_workspace});
}

void CondTake::add_input_layout_constraint() {
    mixin::megdnn_utils::add_input_layout_constraint_contig(*this);
}

void CondTake::scn_do_execute() {
    intl::MegDNNDynOutMallocImpl dyn_malloc{this, comp_node()};
    megdnn_opr()->exec(input(0)->dev_tensor().as_megdnn(),
                       input(1)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output().back()),
                       &dyn_malloc);
}

/* ================= TopK =================  */

MGB_DYN_TYPE_OBJ_FINAL_IMPL(TopK);

TopK::TopK(VarNode* data, VarNode* k, const Param& param,
           const OperatorNodeConfig& config)
        : Super(data->owner_graph(), config, "top_k", {data, k}) {
    init_megdnn_opr(*this, param);
    add_input({data, k});
    if (param.mode == Param::Mode::KTH_ONLY) {
        output(1)
                ->add_flag(VarNode::Flag::VOLATILE_CONTENT)
                .add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE);
    }
}

std::array<SymbolVar, 2> TopK::make(SymbolVar data, SymbolVar k,
                                    const Param& param,
                                    const OperatorNodeConfig& config) {
    auto opr = data.node()->owner_graph()->insert_opr(
            std::make_unique<TopK>(data.node(), k.node(), param, config));
    auto o1 = opr->output(1);
    if (param.mode == Param::Mode::KTH_ONLY) {
        o1 = nullptr;
    }
    return {opr->output(0), o1};
}

void TopK::init_output_dtype() {
    mgb_assert(input(1)->dtype() == dtype::Int32{}, "k must be int32, got %s",
               input(1)->dtype().name());
    output(0)->dtype(input(0)->dtype());
    output(1)->dtype(dtype::Int32{});
}

void TopK::add_input_layout_constraint() {
    auto check = [](const TensorLayout& layout) {
        mgb_assert(layout.ndim == 2, "top-k input must be two-dim, got %s",
                   layout.TensorShape::to_string().c_str());
        return layout.stride[1] == 1;
    };
    input(0)->add_layout_constraint(check);
}

void TopK::init_output_static_infer_desc() {
    using namespace cg::static_infer;
    auto&& mgr = owner_graph()->static_infer_manager();

    auto infer_oshp0 = [this](TensorShape& dst, const InpVal& iv) {
        auto&& k_tensor = iv.val[1].value();
        mgb_assert(k_tensor.shape().is_scalar(), "k must be scalar, got %s",
                   k_tensor.shape().to_string().c_str());
        TensorLayout o0, o1;
        megdnn_opr()->deduce_layout(k_tensor.ptr<int>()[0],
                                    {iv.val[0].shape(), input(0)->dtype()}, o0,
                                    o1);
        dst = o0;
        return true;
    };
    mgr.register_shape_infer(output(0), {SourceType::DEP,
                                         {{input(0), DepType::SHAPE},
                                          {input(1), DepType::VALUE}},
                                         infer_oshp0});

    if (param().mode == Param::Mode::KTH_ONLY) {
        mgr.register_shape_infer(output(1), ShapeInferDesc::make_const({}));
    } else {
        mgr.register_shape_infer(output(1),
                                 ShapeInferDesc::make_identity(output(0)));
    }

    auto infer_workspace = [this](TensorShape& dst, const InpVal& iv) {
382 383
        // active comp_node for cuda launch kernel in get_workspace_in_bytes
        comp_node().activate();
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        auto k = iv.val[3].value().ptr<int>()[0];
        auto size = megdnn_opr()->get_workspace_in_bytes(
                k, {iv.val[0].shape(), input(0)->dtype()},
                {iv.val[1].shape(), output(0)->dtype()},
                {iv.val[2].shape(), output(1)->dtype()});
        dst.ndim = 1;
        dst.shape[0] = size;
        return true;
    };
    mgr.register_shape_infer(output(2), {SourceType::DEP,
                                         {{input(0), DepType::SHAPE},
                                          {output(0), DepType::SHAPE},
                                          {output(1), DepType::SHAPE},
                                          {input(1), DepType::VALUE}},
                                         infer_workspace});
}

void TopK::scn_do_execute() {
    auto&& mgr = owner_graph()->static_infer_manager();
    auto k = mgr.infer_value(input(1)).ptr<int>()[0];
    megdnn_opr()->exec(k, input(0)->dev_tensor().as_megdnn(),
                       output(0)->dev_tensor().as_megdnn(),
                       output(1)->dev_tensor().as_megdnn(),
                       intl::get_megdnn_workspace_from_var(output(2)));
}

void TopK::record_execute_deps(ExecDependencyArray& deps) {
    record_megdnn_opr(deps);
}

414
#if MGB_ENABLE_GRAD
415
MGB_IMPL_OPR_GRAD(TopK) {
M
Megvii Engine Team 已提交
416 417
    // TopK has no gradient on the input k
    if (wrt_idx) return nullptr;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    if (opr.param().mode == TopK::Param::Mode::KTH_ONLY) {
        mgb_assert(out_grad[0] && !out_grad[1] && !out_grad[2]);
        auto add_axis = [](SymbolVar x) {
            return opr::AxisAddRemove::make(
                    x, {opr::AxisAddRemove::AxisDesc::make_add(1)});
        };
        SymbolVar mask = opr::eq(add_axis(opr.output(0)), opr.input(0)),
                  og = add_axis(out_grad[0]) / opr::reduce_ax_sum(mask, 1);
        return (og * mask).node();
    }
    if (!out_grad[0])
        return nullptr;
    return ArgsortBackward::make(out_grad[0], opr.output(1), opr.input(0))
            .node();
}
433
#endif
434 435

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}