You need to sign in or sign up before continuing.
op_def.cpp 5.8 KB
Newer Older
1
/**
M
Megvii Engine Team 已提交
2 3
 * \file imperative/src/impl/op_def.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
4
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6
 *
M
Megvii Engine Team 已提交
7 8 9
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
10 11 12
 */

#include "megbrain/imperative/op_def.h"
13 14 15

#include <sstream>

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#include "megbrain/imperative/ops/opr_attr.h"

#include "./op_trait.h"

namespace mgb {
namespace imperative {

std::shared_ptr<OpDef> OpDef::make_from_op_node(
    cg::OperatorNodeBase* node) {
    OpTrait* trait;
    trait = OpTrait::find_by_typeinfo(node->dyn_typeinfo());
    if (!trait) {
        // TODO: register `make_from_op_node` for each OperatorNode
        // instead of forwarding to OprAttr
        trait = OpTrait::find_by_typeinfo(OprAttr::typeinfo());
    }
    mgb_assert(trait);
    return trait->make_from_op_node(node);
}

36 37 38 39 40 41
DispatchMode OpDef::decide_dispatch_mode(
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs) {
    return def.trait()->decide_dispatch_mode(def, inputs);
}

42 43
SmallVector<TensorPtr> OpDef::apply_on_physical_tensor(
    const OpDef& def,
44 45
    SmallVector<TensorPtr> inputs) {
    return def.trait()->apply_on_physical_tensor(def, std::move(inputs));
46 47
}

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> OpDef::infer_output_mem_desc(
    const OpDef& def,
    const SmallVector<TensorPtr>& inputs_tensors,
    const SmallVector<MemoryDesc>& inputs_mems) {
    return def.trait()->infer_output_mem_desc(def, inputs_tensors, inputs_mems);
}

void OpDef::execute(
    const OpDef& def,
    SmallVector<TensorPtr> inputs,
    SmallVector<TensorPtr> outputs,
    SmallVector<TensorPtr> workspace) {
    def.trait()->execute(def, std::move(inputs), outputs, std::move(workspace));
}

63 64 65 66 67 68 69 70
void OpDef::apply_on_device_tensornd(
    const OpDef& def,
    const SmallVector<DeviceTensorND>& inputs,
    SmallVector<DeviceTensorND>* outputs) {
    def.trait()->apply_on_device_tensornd(def, inputs, outputs);
    return;
}

71
VarNodeArray OpDef::apply_on_var_node(
72 73 74 75 76
    const OpDef& def,
    const VarNodeArray& inputs) {
    return def.trait()->apply_on_var_node(def, inputs);
}

77
std::tuple<SmallVector<LogicalTensorDesc>, bool> OpDef::infer_output_attrs_fallible(
78 79 80 81 82
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs) {
    return def.trait()->infer_output_attrs_fallible(def, inputs);
}

83
EncodedSubraph OpDef::make_backward_graph(
84 85 86 87 88 89 90
    const OpDef& def,
    const SmallVector<LogicalTensorDesc>& inputs,
    const SmallVector<bool>& input_requires_grad,
    const SmallVector<bool>& output_has_grad) {
    return def.trait()->make_backward_graph(def, inputs, input_requires_grad, output_has_grad);
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
std::vector<std::pair<const char*, std::string>> OpDef::props(
    const OpDef& def) {
    return def.trait()->props(def);
}

std::string OpDef::to_string() const {
    std::string builder = "{";
    for (auto&& [name, value]: props(*this)) {
        builder += name;
        builder += ": ";
        builder += value;
        builder += ",";
    }
    return builder + "}";
}

107 108 109 110 111 112 113 114
size_t OpDef::hash() const {
    return trait()->hash(*this);
}

bool OpDef::is_same_st(const Hashable& rhs) const {
    return trait()->is_same_st(*this, static_cast<const OpDef&>(rhs));
}

115 116 117 118 119 120 121 122 123
const OpTrait* OpDef::trait() const {
    if (!m_trait) {
        m_trait = OpTrait::find_by_typeinfo(dyn_typeinfo());
        mgb_throw_if(!m_trait, MegBrainError,
            "can not find op_trait by %s", dyn_typeinfo()->name);
    }
    return m_trait;
}

124 125 126 127 128 129 130 131 132 133 134 135 136 137
const std::string OpDef::scope() const {
    return m_scope;
}

void OpDef::set_scope(const std::string& scope) {
    m_scope = scope;
}

const std::string OpDef::make_name() const {
    if (m_scope.empty())
        return trait()->make_name(*this);
    return m_scope + "." + trait()->make_name(*this);
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
std::string Subgraph::repr() const {
    std::ostringstream buf;
    buf << "(";
    for (size_t i = 0; i < inputs.size(); ++i) {
        if (i > 0) buf << ", ";
        buf << "%" << inputs[i];
    }
    buf << ") => {\n";
    auto fmt_const = [](size_t i, const TensorPtr& t) {
        if (t->shape().ndim == 1 && t->shape()[0] == 1) {
            auto&& v = t->get_value();
            if (v.dtype() == dtype::Float32{}) {
                return std::to_string(*v.ptr<dt_float32>());
            } else if (v.dtype() == dtype::Int32{}) {
                return std::to_string(*v.ptr<int32_t>());
            }
        }
        return std::string("%c") + std::to_string(i);
    };
    std::unordered_map<size_t, std::string> const_reps;
    for (auto&& [i, t] : constants) {
        const_reps.emplace(i, fmt_const(i, t));
    }
    for (auto& [op, ins, outs] : exprs) {
        buf << "  ";
        if (outs.size()) {
            for (size_t i = 0; i < outs.size(); ++i) {
                if (i > 0) buf << ", ";
                buf << "%" << outs[i];
            }
            buf << " = ";
        }
        if (auto* p = op->try_cast_final<OprAttr>()) {
            buf << p->type;
        } else {
            buf << op->dyn_typeinfo()->name;
        }
        for (size_t i : ins) {
            buf << " ";
            auto&& it = const_reps.find(i);
            if (it != const_reps.end()) {
                buf << it->second;
            } else {
                buf << "%" << i;
            }
        }
        buf << "\n";
    }
    buf << "  ";
    if (outputs.size()) {
        for (size_t i = 0; i < outputs.size(); ++i) {
            if (i > 0) buf << ", ";
            buf << "%" << outputs[i];
        }
    } else {
        buf << "()";
    }
    buf << "\n}\n";
    return buf.str();
}

199 200 201 202
} // namespace imperative
} // namespace mgb

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}