opr_impl.h 16.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
/**
 * \file dnn/src/fallback/convolution/opr_impl.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once

#include "src/common/utils.h"
#include "src/fallback/handle.h"
#include "src/naive/convolution/opr_impl.h"

namespace megdnn {
namespace fallback {

/*!
 * \brief fallback convolution forward impl
 *
 * Note: this operator class serves for multiple purposes:
 *
 *  1. canonizing conv reprs into NCBKernParam and NCBKernSizeParam, and
 *     subclasses should impl by overriding *_ncb methods
 *  2. providing a default impl for group conv by calling ncb_1g* methods
 *  3. providing a conv impl faster than naive under some cases
 *  4. providing a default impl for choosing heuristic algorithm, by using the
 *     first algo that fits the workspace limit
 */
class ConvolutionImpl : public naive::ConvolutionForwardImpl {
public:
    using naive::ConvolutionForwardImpl::ConvolutionForwardImpl;
    using AlgoSelectionStrategy = detail::AlgoSelectionStrategy;

    //! implemented by exec_with_ncb_kern()
    void exec(_megdnn_tensor_in src, _megdnn_tensor_in filter,
39 40
              _megdnn_tensor_out dst, const PreprocessedFilter*,
              _megdnn_workspace workspace) override;
41 42 43 44

    //! implemented by get_workspace_with_ncb()
    size_t get_workspace_in_bytes(const TensorLayout& src,
                                  const TensorLayout& filter,
45 46
                                  const TensorLayout& dst,
                                  const PreprocessedFilter*) override;
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104

    //! implemented by get_all_algorithms_with_ncb()
    std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& src, const TensorLayout& filter,
            const TensorLayout& dst) override;

    //! implemented by get_algorithm_heuristic_with_ncb()
    Algorithm* get_algorithm_heuristic(const TensorLayout& src,
                                       const TensorLayout& filter,
                                       const TensorLayout& dst,
                                       size_t workspace_limit_in_bytes,
                                       bool reproducible) override;

    //! size param for kernels with non-contiguous batch
    struct NCBKernSizeParam {
        uint32_t n;
        std::array<uint32_t, MAX_SPATIAL_DIM> isz, osz;
        //! filter info; group is guaranteed to be 1
        CanonizedFilterMeta filter_meta;
        DType src_type, filter_type, dst_type;
        //! stride for batch of input, output
        ptrdiff_t inp_bs, out_bs;
        //! stride for each dim of input, output
        ptrdiff_t inp_s[4], out_s[4];
        Param::ComputeMode compute_mode;
        size_t nr_threads;
    };

    //! memory param for kernels with non-contiguous batch
    struct NCBKernParam : public NCBKernSizeParam {
        const void* src_ptr;
        const void* filter_ptr;
        void* dst_ptr;
        void* workspace_ptr;
        size_t workspace_size;

        template <typename T>
        const T* src() const {
            src_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(src_ptr);
        }

        template <typename T>
        const T* filter() const {
            filter_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(filter_ptr);
        }

        template <typename T>
        T* dst() const {
            dst_type.assert_is_compatible_ctype<T>();
            return static_cast<T*>(dst_ptr);
        }

        template <typename T>
        T* workspace() const {
            return static_cast<T*>(workspace_ptr);
        }
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

        //! when format is nchwxx and channel wise, multi group will pack into
        //! one group_pack_id. group_pack_size is the number of packed group
        //! together, like weight shape is {g/8, 1, 1, Fh, Fw, 8}
        template <typename T>
        T* dst(size_t batch_id, size_t group_pack_id,
               size_t group_pack_size = 1_z) const{
            size_t batch_offset = batch_id * out_bs * dst_type.size();
            size_t group_offset = group_pack_size * group_pack_id *
                                  filter_meta.ocpg * osz[0] * osz[1] *
                                  dst_type.size();
            return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(dst_ptr) +
                                        batch_offset + group_offset);
        }

        template <typename T>
        const T* src(size_t batch_id, size_t group_pack_id,
                     size_t group_pack_size = 1_z) const {
            size_t batch_offset = batch_id * inp_bs * src_type.size();
            size_t group_offset = group_pack_size * group_pack_id *
                                  filter_meta.icpg * isz[0] * isz[1] *
                                  src_type.size();
            return reinterpret_cast<T*>(reinterpret_cast<ptrdiff_t>(src_ptr) +
                                        batch_offset + group_offset);

        }

        template <typename T>
        const T* filter(size_t group_pack_id,
                        size_t pack_group_size = 1_z) const {
            size_t group_offset = pack_group_size * group_pack_id *
                                  filter_meta.icpg * filter_meta.ocpg *
                                  filter_meta.spatial[0] *
                                  filter_meta.spatial[1] * filter_type.size();
            return reinterpret_cast<T*>(
                    reinterpret_cast<ptrdiff_t>(filter_ptr) + group_offset);
        }
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
    };

    static void* const sm_fallback_conv_algo_type;

    /**
     * \brief Kernel run time id, This information is used for getting the
     * work data
     */
    struct NCBKernIndex {
        size_t thread_id = 0;  //!< Thread id
        CpuNDRange ndrange_id;
    };

    using ncb_kern_t = thin_function<void(const NCBKernParam& param,
                                          const NCBKernIndex& ncb_index)>;
    struct NCBKern {
        ncb_kern_t kern;  //!< conv kern parallel ptr
        CpuNDRange global_size;
    };

    class AlgoBase : public Algorithm {
    public:
        virtual ~AlgoBase() = default;
        virtual bool usable(ConvolutionImpl* opr, const NCBKernSizeParam& param,
                            AlgoSelectionStrategy) const = 0;
        virtual size_t get_workspace(ConvolutionImpl* opr,
                                     const NCBKernSizeParam& param) const = 0;
        virtual SmallVector<NCBKern> dispatch_kern(
                ConvolutionImpl* opr, const NCBKernSizeParam& param) const = 0;

        //! Temporarily used to identify whether the matmul algorithm is
        //! is_preferred.
        virtual bool is_preferred(ConvolutionImpl*,
                                  const NCBKernSizeParam&) const {
            return false;
        }
        bool usable_reproducible(ConvolutionImpl* opr,
                                 const NCBKernSizeParam& param,
                                 AlgoSelectionStrategy algo_selection_strategy,
                                 bool reproducible = true) const {
            return (!reproducible || is_reproducible()) &&
                   usable(opr, param, algo_selection_strategy);
        }
    };

    /**
     * \brief get all the algorithm for the opr.
     */
    virtual SmallVector<AlgoBase*> algo_pack();

protected:
    virtual void exec_with_ncb_kern(const NCBKernParam& param, Algorithm* algo);

    virtual std::vector<Algorithm*> get_all_algorithms_with_ncb(
            const NCBKernSizeParam& param);

    virtual Algorithm* get_algorithm_heuristic_with_ncb(
            const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
            bool reproducible = false);

    //! get kernel pointer
    virtual SmallVector<NCBKern> ncb_algo_dispatch_kern(
            Algorithm* algo, const NCBKernSizeParam& param) {
        return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param);
    }
    //! get algo workspace
    virtual size_t ncb_algo_get_workspace(Algorithm* algo,
                                          const NCBKernSizeParam& param) {
        return static_cast<AlgoBase*>(algo)->get_workspace(this, param);
    }
    /*!
     * the default impl iterates over all ncb_1g_get_all_algorithms()
     * and return the first one whose workspace does not exceed the limit.
     */

    const char* get_algorithm_set_name() const override;

    class AlgoFallback;
    class AlgoNaive;
    class AlgoDefault;
    class AlgoPack;

private:
    NCBKernSizeParam m_prev_selected_algo_sizep;
    Algorithm* m_prev_selected_algo = nullptr;

    bool is_naive_algo(ConvolutionImpl::Algorithm* algo);
    //! get algorithm set by user or by heuristic
    Algorithm* get_algorithm(
            const NCBKernSizeParam& param,
            size_t workspace_size = std::numeric_limits<size_t>::max());

    NCBKernSizeParam make_ncb_kern_size_param(const TensorLayout& src,
                                              const TensorLayout& filter,
                                              const TensorLayout& dst);

    NCBKernParam make_ncb_kern_param(_megdnn_tensor_in src,
                                     _megdnn_tensor_in filter,
                                     _megdnn_tensor_out dst,
                                     _megdnn_workspace workspace);
};

class ConvolutionBackwardDataImpl : public naive::ConvolutionBackwardDataImpl {
public:
    using naive::ConvolutionBackwardDataImpl::ConvolutionBackwardDataImpl;

    void exec(_megdnn_tensor_in filter, _megdnn_tensor_in diff,
              _megdnn_tensor_out grad, _megdnn_workspace workspace) override;
    size_t get_workspace_in_bytes(const TensorLayout& flter,
                                  const TensorLayout& diff,
                                  const TensorLayout& grad) override;
    std::vector<Algorithm*> get_all_algorithms(
            const TensorLayout& filter, const TensorLayout& diff,
            const TensorLayout& grad) override;
    Algorithm* get_algorithm_heuristic(const TensorLayout& filter,
                                       const TensorLayout& diff,
                                       const TensorLayout& grad,
                                       size_t workspace_limit_in_bytes,
                                       bool reproducible) override;
    const char* get_algorithm_set_name() const override;

    //! size param for kernels with non-contiguous batch
    struct NCBKernSizeParam {
        uint32_t n;
        std::array<uint32_t, MAX_SPATIAL_DIM> isz, osz;
        //! filter info; group is guaranteed to be 1
        CanonizedFilterMeta filter_meta;
        DType diff_type, filter_type, grad_type;
        TensorLayout diff_layout, filter_layout, grad_layout;
        //! stride for batch of input, output
        ptrdiff_t inp_bs, out_bs;
        //! extra_mem_size (in bytes) memory after the end of the logical
        //! memory block is accessible.
        //!
        //! this allows for eliminating unnecessary memory copies: e.g.
        //! if several bytes after the end of the tensor are
        //! accessible, some kernel implementations can utilize
        //! out-of-bound SIMD memory access, to avoid issuing
        //! memcpy instructions.
        //!
        //! Note that although extra_mem_size bytes are accessible by the
        //! kernel implementation, kernel implementation should not have any
        //! ``visible'' effect on any unintended memory location.
        //! This means reading and writing the same value to some memory
        //! location within extra_mem_size is allowed, but writing a
        //! different value is not allowed.
        size_t diff_extra_mem_size, filter_extra_mem_size, grad_extra_mem_size;
        Param::ComputeMode compute_mode;
    };

    //! memory param for kernels with non-contiguous batch
    struct NCBKernParam : public NCBKernSizeParam {
        const void* filter_ptr;
        const void* diff_ptr;
        void* grad_ptr;
        void* workspace_ptr;
        size_t workspace_size;

        template <typename T>
        const T* diff() const {
            diff_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(diff_ptr);
        }

        template <typename T>
        const T* filter() const {
            filter_type.assert_is_compatible_ctype<T>();
            return static_cast<const T*>(filter_ptr);
        }

        template <typename T>
        T* grad() const {
            grad_type.assert_is_compatible_ctype<T>();
            return static_cast<T*>(grad_ptr);
        }

        template <typename T>
        T* workspace() const {
            return static_cast<T*>(workspace_ptr);
        }
    };

protected:
    typedef void (*ncb_kern_t)(const NCBKernParam& param);

    //! default impl calls ncb_1g_dispatch_kern()
    virtual void exec_with_ncb_kern(const NCBKernParam& param);

    //! default impl calls ncb_1g_get_workspace()
    virtual size_t get_workspace_with_ncb(const NCBKernSizeParam& param);

    //! default impl calls ncb_1g_get_all_algorithms()
    virtual std::vector<Algorithm*> get_all_algorithms_with_ncb(
            const NCBKernSizeParam& param);

    //! default impl calls ncb_1g_get_algorithm_heuristic()
    virtual Algorithm* get_algorithm_heuristic_with_ncb(
            const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
            bool reproducible = false);

    //! get kernel pointer for float32 non-contiguous batch 1-group kernel
    virtual ncb_kern_t ncb_1g_dispatch_kern(Algorithm* algo,
                                            const NCBKernSizeParam& param);

    virtual size_t ncb_1g_get_workspace(Algorithm* algo,
                                        const NCBKernSizeParam& param);

    virtual std::vector<Algorithm*> ncb_1g_get_all_algorithms(
            const NCBKernSizeParam& param);

    /*!
     * the default impl iterates over all ncb_1g_get_all_algorithms()
     * and return the first one whose workspace does not exceed the limit.
     */
    virtual Algorithm* ncb_1g_get_algorithm_heuristic(
            const NCBKernSizeParam& param, size_t workspace_limit_in_bytes,
            bool reproducible = false);

    static void* const sm_fallback_deconv_algo_type;

    class AlgoBase : public Algorithm {
    protected:
        ~AlgoBase() = default;

    public:
        virtual bool usable(ConvolutionBackwardDataImpl* opr,
                            const NCBKernSizeParam& param) const = 0;
        virtual size_t get_workspace(ConvolutionBackwardDataImpl* opr,
                                     const NCBKernSizeParam& param) const = 0;
        virtual ncb_kern_t dispatch_kern(
                ConvolutionBackwardDataImpl* opr,
                const NCBKernSizeParam& param) const = 0;
        bool usable_reproducible(ConvolutionBackwardDataImpl* opr,
                                 const NCBKernSizeParam& param,
                                 bool reproducible = true) const {
            return (!reproducible || is_reproducible()) && usable(opr, param);
        }
    };

    static bool is_matrix_mul_preferred(const NCBKernSizeParam& param);

private:
    NCBKernSizeParam m_prev_selected_algo_sizep;
    Algorithm* m_prev_selected_algo = nullptr;

    //! get algorithm set by user or by heuristic
    Algorithm* get_algorithm(const NCBKernSizeParam& param);

    NCBKernSizeParam make_ncb_kern_size_param(const TensorLayout& filter,
                                              const TensorLayout& diff,
                                              const TensorLayout& grad);

    NCBKernParam make_ncb_kern_param(_megdnn_tensor_in filter,
                                     _megdnn_tensor_in diff,
                                     _megdnn_tensor_out grad,
                                     _megdnn_workspace workspace);

    class AlgoDirect;
    class AlgoMatrixMul;

    struct AlgoPack;
    static AlgoPack sm_algo_pack;
};

}  // namespace fallback
}  // namespace megdnn

//! unpack NCBKernSizeParam into local variables (N, IC, IH, IW, ...)
#define UNPACK_CONV_F32_NCB_KERN_SIZES(_p)                                   \
    auto N = _p.n, IC = _p.filter_meta.icpg, IH = _p.isz[0], IW = _p.isz[1], \
         OC = _p.filter_meta.ocpg, OH = _p.osz[0], OW = _p.osz[1],           \
         FH = _p.filter_meta.spatial[0], FW = _p.filter_meta.spatial[1],     \
         SH = _p.filter_meta.stride[0], SW = _p.filter_meta.stride[1],       \
         PH = _p.filter_meta.padding[0], PW = _p.filter_meta.padding[1]

// vim: syntax=cpp.doxygen