elemwise_helper.cuh 41.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/**
 * \file dnn/src/cuda/elemwise_helper.cuh
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#pragma once

#include "src/common/elemwise_helper.cuh"
#include "src/cuda/utils.cuh"
#include "src/cuda/int_fastdiv.cuh"
#include "src/cuda/query_blocksize.cuh"

/*
 * please note that all arithmetics on GPU are 32-bit for best performance; this
 * limits max possible size
 */

namespace megdnn {
namespace cuda {

//! internals for element-wise
namespace elemwise_intl {
#define devfunc __device__ __forceinline__

    /*!
     * \brief get cuda launch specs for element-wise kernel
     * \param kern kernel function address
     * \param size total size of elements
     */
    void get_launch_spec(
            const void *kern, size_t size, int *grid_size, int *block_size);

    MEGDNN_NORETURN void on_bad_ndim(int ndim);

    /*!
     * \brief broadcast type
     * BCAST_x[0]x[1]...: x[i] == !stride[i]
     */
    enum BcastType {
        BCAST_OTHER,
        BCAST_1010,
        BCAST_101,
        BCAST_10,
        BCAST_01,
        BCAST_FULL
    };

    /*!
     * \brief read and write type trait for byte width integer type
     */
    template <typename ctype>
    class VectTypeTrait;

    struct __attribute__((aligned(8))) half4 {
        dt_float16 x, y, z, w;
    };

    __device__ __forceinline__ half4 make_half4(dt_float16 x, dt_float16 y,
                                                dt_float16 z, dt_float16 w) {
        half4 t;
        t.x = x, t.y = y, t.z = z, t.w = w;
        return t;
    }

71 72 73 74 75 76 77 78 79 80 81
    struct __attribute__((aligned(8))) bhalf4 {
        dt_bfloat16 x, y, z, w;
    };

    __device__ __forceinline__ bhalf4 make_bhalf4(dt_bfloat16 x, dt_bfloat16 y,
                                                dt_bfloat16 z, dt_bfloat16 w) {
        bhalf4 t;
        t.x = x, t.y = y, t.z = z, t.w = w;
        return t;
    }

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
#define INST(_ctype, _vect_type)                                               \
    template <>                                                                \
    class VectTypeTrait<_ctype> {                                              \
    public:                                                                    \
        using vect_type = _vect_type;                                          \
        static const size_t packed_size = sizeof(_vect_type) / sizeof(_ctype); \
        static __device__ __forceinline__ vect_type make_vector(_ctype x,      \
                                                                _ctype y,      \
                                                                _ctype z,      \
                                                                _ctype w) {    \
            return make_##_vect_type(as_raw(x), as_raw(y), as_raw(z),          \
                                     as_raw(w));                               \
        }                                                                      \
    }
#define as_raw(x) x
    INST(dt_int8, char4);
    INST(dt_uint8, uchar4);
    INST(dt_float32, float4);
    INST(dt_float16, half4);
101
    INST(dt_bfloat16, bhalf4);
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
    INST(dt_int32, int4);
    INST(dt_int16, short4);
#undef as_raw
#define as_raw(x) x.as_int8()
    INST(dt_qint8, char4);
#undef as_raw
#define as_raw(x) x.as_uint8()
    INST(dt_quint8, uchar4);
#undef as_raw
#define as_raw(x) x.as_int32()
    INST(dt_qint32, int4);
#undef as_raw
#undef INST

    /*!
     * \brief visitor to access an elemeent in a tensor at given logic index
     * \tparam ctype plain element ctype (i.e. ctype in DTypeTrait)
     * \tparam brdcast_mask bit mask for broadcast of params; (i.e. stride[i] is
     *      0 iff (brdcast_mask & (1<<(ndim-1-i))) is 1.
     *
     * host interface:
     *      void host_init(
     *              const TensorND &tensor, int grid_size, int block_size)
     *
     * device interface:
     *      void thread_init(uint32_t idx)
     *          called on thread entrance, with logical indexing; the index may
     *          go beyond buffer range
     *
     *      ctype* ptr()
     *          return buffer pointer; can be used by specialized OpCaller
     *
     *      void next()
     *          called before moving to next chunk on each thread
     *
     *      int offset(uint32_t idx)
     *          get physical offset from logical index
     *
     *      ctype& at(uint32_t idx)
     *          ptr()[offset(idx)]
     *
     */
    template <int ndim, typename ctype, BcastType brd_type>
    class ParamElemVisitor;

    /*!
     * \brief visitor to access vector element in a tensor at given logic index
     * \tparam ctype same as ParamElemVisitor, vect_type packed vector type of
     * element ctype (i.e. vect_type in VectTypeTrait) \tparam brdcast_mask same
     * as ParamElemVisitor
     *
     *
     * device interface:
     *      vect_type& at(uint32_t idx)
     *          ptr()[offset(idx)]
     *
     */
    template <int ndim, typename ctype, BcastType brd_type>
    class ParamVectVisitor;

    /* f{{{ ParamElemVisitor specializations */

#define PARAM_ELEM_VISITOR_COMMON_DEV      \
    devfunc ctype* ptr() { return m_ptr; } \
    devfunc ctype& at(uint32_t idx) { return m_ptr[offset(idx)]; }
#define PARAM_ELEM_VISITOR_COMMON_HOST static const int packed_size = 1;

    //! specialization for BCAST_OTHER
    template <int ndim, typename ctype>
    class ParamElemVisitor<ndim, ctype, BCAST_OTHER> {
    protected:
        ctype* __restrict m_ptr;

    private:
        int m_stride[ndim];

        //! m_shape_highdim[i] = original_shape[i + 1]
#ifdef _MSC_VER
        Uint32Fastdiv m_shape_highdim[ndim > 1 ? ndim - 1 : 1];
#else
        Uint32Fastdiv m_shape_highdim[ndim];
#endif

    public:
        static const int NDIM = ndim;
        PARAM_ELEM_VISITOR_COMMON_HOST

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t) {}

        devfunc void next() {}

        devfunc int offset(uint32_t idx) {
            int offset = 0;
#pragma unroll
            for (int i = ndim - 1; i >= 1; --i) {
                Uint32Fastdiv& shp = m_shape_highdim[i - 1];
                uint32_t idx_div = idx / shp;
                offset += (idx - idx_div * shp.divisor()) * m_stride[i];
                idx = idx_div;
            }
            offset += idx * m_stride[0];
            return offset;
        }

        PARAM_ELEM_VISITOR_COMMON_DEV
#endif
    };
    
    /*!
     * \brief specialization for ndim == 3 and BCAST_101
     * (for dimshuffle 'x', 0, 'x')
     *
     * visit: idx / m_shape2 % m_shape1
     */
    template <typename ctype>
    class ParamElemVisitor<3, ctype, BCAST_101> {
        StridedDivSeq2 m_shape12;
        int m_stride1;

    protected:
        ctype* __restrict m_ptr;

    public:
        static const int NDIM = 3;
        PARAM_ELEM_VISITOR_COMMON_HOST

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t idx) { m_shape12.device_init(idx); }

        devfunc void next() { m_shape12.next(); }

        devfunc int offset(uint32_t idx) { return m_shape12.get() * m_stride1; }

        PARAM_ELEM_VISITOR_COMMON_DEV
#endif
    };

    /*!
     * \brief specialization for ndim == 2 and BCAST_10
     *
     * visit: idx % m_shape1
     */
    template <typename ctype>
    class ParamElemVisitor<2, ctype, BCAST_10> {
        StridedDivSeq<false> m_shape1;
        int m_stride1;

    protected:
        ctype* __restrict m_ptr;

    public:
        static const int NDIM = 2;
        PARAM_ELEM_VISITOR_COMMON_HOST

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t idx) { m_shape1.device_init(idx); }

        devfunc void next() { m_shape1.next(); }

        devfunc int offset(uint32_t idx) { return m_shape1.r() * m_stride1; }

        PARAM_ELEM_VISITOR_COMMON_DEV
#endif
    };

    /*!
     * \brief specialization for ndim == 2 and BCAST_01
     *
     * visit: idx / shape1
     */
    template <typename ctype>
    class ParamElemVisitor<2, ctype, BCAST_01> {
        StridedDivSeq<true> m_shape1;
        int m_stride0;

    protected:
        ctype* __restrict m_ptr;

    public:
        static const int NDIM = 2;
        PARAM_ELEM_VISITOR_COMMON_HOST

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t idx) { m_shape1.device_init(idx); }

        devfunc void next() { m_shape1.next(); }

        devfunc int offset(uint32_t idx) { return m_shape1.q() * m_stride0; }

        PARAM_ELEM_VISITOR_COMMON_DEV
#endif
    };

    //! specialization for ndim == 1 and BCAST_FULL
    template <typename ctype>
    class ParamElemVisitor<1, ctype, BCAST_FULL> {
    protected:
        ctype* __restrict m_ptr;

    public:
        static const int NDIM = 1;
        PARAM_ELEM_VISITOR_COMMON_HOST

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t) {}

        devfunc void next() {}

        devfunc int offset(uint32_t idx) {
            MEGDNN_MARK_USED_VAR(idx);
            return 0;
        }

        PARAM_ELEM_VISITOR_COMMON_DEV
#endif
    };

#undef PARAM_ELEM_VISITOR_COMMON_DEV
#undef PARAM_ELEM_VISITOR_COMMON_HOST

    /* f}}} */

    /* f{{{ ParamVectVisitor specializations */

#if MEGDNN_CC_CUDA
#define DEVICE_WRAPPER(x) x
#else
#define DEVICE_WRAPPER(x)
#endif
#define INST_PARAM_VECT_VISITOR                                        \
    template <int ndim, typename ctype>                                \
    class ParamVectVisitor<ndim, ctype, _brdcast_mask>                 \
            : public ParamElemVisitor<ndim, ctype, _brdcast_mask> {    \
    public:                                                            \
        using Super = ParamElemVisitor<ndim, ctype, _brdcast_mask>;    \
        using rwtype = typename VectTypeTrait<ctype>::vect_type;       \
        static const int packed_size = sizeof(rwtype) / sizeof(ctype); \
        DEVICE_WRAPPER(devfunc rwtype& at(uint32_t idx) {              \
            return *(rwtype*)(&Super::m_ptr[Super::offset(idx)]);      \
        })                                                             \
    };
#define _brdcast_mask BCAST_OTHER
    INST_PARAM_VECT_VISITOR;
#undef _brdcast_mask
#define _brdcast_mask BCAST_01
    INST_PARAM_VECT_VISITOR;
#undef _brdcast_mask
#define _brdcast_mask BCAST_10
    INST_PARAM_VECT_VISITOR;
#undef _brdcast_mask
#define _brdcast_mask BCAST_101
    INST_PARAM_VECT_VISITOR;
#undef _brdcast_mask
#define INST_DT_IBYTE(ctype)                                                \
    template <int ndim>                                                     \
    class ParamVectVisitor<ndim, ctype, BCAST_FULL>                         \
            : public ParamElemVisitor<ndim, ctype, BCAST_FULL> {            \
    public:                                                                 \
        using Super = ParamElemVisitor<ndim, ctype, BCAST_FULL>;            \
        using rwtype = typename VectTypeTrait<ctype>::vect_type;            \
        static const int packed_size = sizeof(rwtype) / sizeof(ctype);      \
        DEVICE_WRAPPER(rwtype vect_scalar;                                  \
                       devfunc rwtype & at(uint32_t /* idx */) {            \
                           ctype v = Super::m_ptr[0];                       \
                           vect_scalar = VectTypeTrait<ctype>::make_vector( \
                                   v, v, v, v);                             \
                           return vect_scalar;                              \
                       })                                                   \
    }
    INST_DT_IBYTE(dt_int8);
    INST_DT_IBYTE(dt_uint8);
    INST_DT_IBYTE(dt_qint8);
    INST_DT_IBYTE(dt_quint8);
#undef INST_DT_IBYTE
#undef DEVICE_WRAPPER
#undef INST_PARAM_VECT_VISITOR

    /*!
     * \brief specialization for ndim == 4 and BCAST_1010
     *
     * visit: (idx % m_shape3) * m_stride3 + (idx / m_shape23 % m_shape1) *
     * m_stride1
     */
    template <typename ctype>
    class ParamVectVisitor<4, ctype, BCAST_1010> {
        StridedDivSeq2 m_shape123;
        StridedDivSeq<false> m_shape3;
        int m_stride3, m_stride1;
        ctype* __restrict m_ptr;

    public:
        static const int NDIM = 4;
        using rwtype = typename VectTypeTrait<ctype>::vect_type;
        static const int packed_size = sizeof(rwtype) / sizeof(ctype);

        void host_init(const TensorND& rv, int grid_size, int block_size);

#if MEGDNN_CC_CUDA
        devfunc void thread_init(uint32_t idx) {
            m_shape123.device_init(idx);
            m_shape3.device_init(idx);
        }

        devfunc void next() {
            m_shape123.next();
            m_shape3.next();
        }

        devfunc int offset(uint32_t idx) {
            return m_shape3.r() * m_stride3 + m_shape123.get() * m_stride1;
        }

        devfunc ctype* ptr() { return m_ptr; }
        devfunc rwtype& at(uint32_t idx) {
            return *(rwtype*)(&m_ptr[offset(idx)]);
        }
#endif
    };

    /* f}}} */


#if MEGDNN_CC_CUDA

    /* f{{{ user operator callers */

    /*
     * OpCaller is used to invoke user operator with loaded element arguments.
     *
     * device interface:
     *      void thread_init(uint32_t idx);
     *
     *      void on(uint32_t idx);
     *
     *      void next();
     */

    /*!
     * \brief call user op directly without visiting any params (i.e. arity ==
     *      0)
     */
    template<class Op>
    struct OpCallerNull {
        Op op;

        devfunc void thread_init(uint32_t) {
        }

        devfunc void on(uint32_t idx) {
            op(idx);
        }

        devfunc void next() {
        }
    };

    /*!
     * \brief call an operator whose each param are promted to the same ndim and
     *      brdcast_mask
     * \tparam PVis ParamElemVisitor class
     */
    template<class Op, int arity, class PVis>
    struct OpCallerUniform;

    //! specialization for arity == 1
    template<class Op, class PVis>
    struct OpCallerUniform<Op, 1, PVis> {
        Op op;
        PVis par[1];
        static const uint32_t packed_size = PVis::packed_size;

        devfunc void thread_init(uint32_t idx) {
            idx = idx * packed_size;
            par[0].thread_init(idx);
        }

        devfunc void on(uint32_t idx) {
            idx = idx * packed_size;
            op(idx, par[0].at(idx));
        }

        devfunc void on(uint32_t idx, uint32_t remain) {
            idx = idx * packed_size;
            if (remain >= packed_size) {
                op(idx, par[0].at(idx));
            } else {
                auto ptr0 = par[0].ptr();
                for (int i = 0; i < remain; i++) {
                    op(idx + i, ptr0[par[0].offset(idx + i)]);
                }
            }
        }

        devfunc void next() {
            par[0].next();
        }
    };
    //! specialization for arity == 2
    template<class Op, class PVis>
    struct OpCallerUniform<Op, 2, PVis> {
        Op op;
        PVis par[2];
        static const uint32_t packed_size = PVis::packed_size;

        devfunc void thread_init(uint32_t idx) {
            idx = idx * packed_size;
            par[0].thread_init(idx);
            par[1].thread_init(idx);
        }

        devfunc void on(uint32_t idx) {
            idx = idx * packed_size;
            op(idx, par[0].at(idx), par[1].at(idx));
        }

        devfunc void on(uint32_t idx, uint32_t remain) {
            idx = idx * packed_size;
            if (remain >= packed_size) {
                op(idx, par[0].at(idx), par[1].at(idx));
            } else {
                auto ptr0 = par[0].ptr();
                auto ptr1 = par[1].ptr();
                for (int i = 0; i < remain; i++) {
                    op(idx + i, ptr0[par[0].offset(idx + i)],
                       ptr1[par[1].offset(idx + i)]);
                }
            }
        }

        devfunc void next() {
            par[0].next();
            par[1].next();
        }
    };
    //! specialization for arity == 3
    template<class Op, class PVis>
    struct OpCallerUniform<Op, 3, PVis> {
        Op op;
        PVis par[3];
        static const uint32_t packed_size = PVis::packed_size;

        devfunc void thread_init(uint32_t idx) {
            idx = idx * packed_size;
            par[0].thread_init(idx);
            par[1].thread_init(idx);
            par[2].thread_init(idx);
        }

        devfunc void on(uint32_t idx) {
            idx = idx * packed_size;
            op(idx, par[0].at(idx), par[1].at(idx), par[2].at(idx));
        }

        devfunc void on(uint32_t idx, uint32_t remain) {
            idx = idx * packed_size;
            if (remain >= packed_size) {
                op(idx, par[0].at(idx), par[1].at(idx), par[2].at(idx));
            } else {
                auto ptr0 = par[0].ptr();
                auto ptr1 = par[1].ptr();
                auto ptr2 = par[2].ptr();
                for (int i = 0; i < remain; i++) {
                    op(idx + i, ptr0[par[0].offset(idx + i)],
                       ptr1[par[1].offset(idx + i)],
                       ptr2[par[2].offset(idx + i)]);
                }
            }
        }

        devfunc void next() {
            par[0].next();
            par[1].next();
            par[2].next();
        }
    };

    /*!
     * \brief call binary (i.e. arity == 2) operator with different param
     *      visitors
     */
    template <class Op, class PVis0, class PVis1>
    struct OpCallerBinary {
        Op op;
        PVis0 par0;
        PVis1 par1;
        MEGDNN_STATIC_ASSERT(PVis0::packed_size == PVis1::packed_size,
                             "vector size mismatch")

        static const uint32_t packed_size = PVis0::packed_size;

        devfunc void thread_init(uint32_t idx) {
            idx = idx * packed_size;
            par0.thread_init(idx);
            par1.thread_init(idx);
        }

        devfunc void on(uint32_t idx) {
            idx = idx * packed_size;
            op(idx, par0.at(idx), par1.at(idx));
        }

        devfunc void next() {
            par0.next();
            par1.next();
        }
    };

    /* f}}} */

    template <class OpCaller>
    __global__ void cuda_kern(OpCaller op_caller, uint32_t size) {
        uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x,
                 delta = blockDim.x * gridDim.x;
        // each thread works on at most 3 elements; see get_launch_spec
        op_caller.thread_init(idx);
        if (idx < size) {
            op_caller.on(idx);
            idx += delta;
            if (idx < size) {
                op_caller.next();
                op_caller.on(idx);
                idx += delta;
                if (idx < size) {
                    op_caller.next();
                    op_caller.on(idx);
                }
            }
        }
    }

    template <class Op, int arity, class PVis>
    __global__ void cuda_kern(OpCallerUniform<Op, arity, PVis> op_caller,
                              uint32_t size) {
        constexpr uint32_t packed_size = PVis::packed_size;
        const uint32_t size_packed = DIVUP(size, packed_size);
        uint32_t idx = blockIdx.x * blockDim.x + threadIdx.x,
                 delta = blockDim.x * gridDim.x;
        if (idx < size_packed) {
            op_caller.on(idx, size - packed_size * idx);
            idx += delta;
            if (idx < size_packed) {
                op_caller.on(idx, size - packed_size * idx);
                idx += delta;
                if (idx < size_packed) {
                    op_caller.on(idx, size - packed_size * idx);
                }
            }
        }
    }

    //! invoke a user Op passed to run_elemwise
    template<class Op, typename ctype, int arity>
    class UserOpInvoker;

    /* f{{{ UserOpInvoker specializations */

    //! run op by promoting all params to same ndim
    template<class Op, typename ctype, int arity>
    class UserOpInvokerToSameNdim {
        const ElemwiseOpParamN<arity> &m_param;
        cudaStream_t m_stream;
        const Op &m_op;

        void dispatch0() {
            switch(m_param.max_ndim) {
#define cb(ndim) \
                case ndim: return dispatch1<ndim>();
                MEGDNN_FOREACH_TENSOR_NDIM(cb)
#undef cb
            }
            on_bad_ndim(m_param.max_ndim);
        }

        template <int ndim>
        void dispatch1() {
            typedef OpCallerUniform<
                    Op, arity,
                    ParamElemVisitor<ndim, ctype, BCAST_OTHER>>
                    Caller;
            size_t size = m_param.size;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);

            Caller caller;
            caller.op = m_op;
            for (int i = 0; i < arity; ++i)
                caller.par[i].host_init(m_param[i], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller, size);
            after_kernel_launch();
        }

    public:
        UserOpInvokerToSameNdim(const ElemwiseOpParamN<arity>& param,
                                cudaStream_t stream, const Op& op)
                : m_param(param), m_stream(stream), m_op(op) {
            dispatch0();
            }
    };

    template <class Op, typename ctype, int arity>
    class UserOpInvokerToSameNdimIByteHelper {
    public:
        UserOpInvokerToSameNdimIByteHelper(const ElemwiseOpParamN<arity>& param,
                                           cudaStream_t stream, const Op& op)
                : m_rw_size(param.size),
                  m_param(param),
                  m_stream(stream),
                  m_op(op) {
            if (!try_vect_load_store_contiguous() && !try_vect_load_store()) {
                dispatch0();
            }
        }

    private:
        const ElemwiseOpParamN<arity>& m_param;
        size_t m_rw_size;
        cudaStream_t m_stream;
        const Op& m_op;
        using vect_type = typename VectTypeTrait<ctype>::vect_type;
        static const size_t packed_size = VectTypeTrait<ctype>::packed_size;

        void dispatch0() {
            switch (m_param.max_ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch1<ndim>();
                MEGDNN_FOREACH_TENSOR_NDIM(cb)
#undef cb
            }
            on_bad_ndim(m_param.max_ndim);
        }

        void dispatch0_vect() {
            switch (m_param.max_ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch1_vect<ndim>();
                MEGDNN_FOREACH_TENSOR_NDIM(cb)
#undef cb
            }
            on_bad_ndim(m_param.max_ndim);
        }

        void dispatch_contiguous() {
            typedef ParamVectVisitor<1, ctype, BCAST_OTHER> PVis;
            typedef OpCallerUniform<Op, arity, PVis> Caller;
            size_t size = m_rw_size;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Op, arity, PVis>;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);

            Caller caller;
            caller.op = m_op;
            for (int i = 0; i < arity; ++i)
                caller.par[i].host_init(m_param[i], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller,
                                                            m_param.size);
            after_kernel_launch();
        }

        template <int ndim>
        void dispatch1() {
            typedef ParamElemVisitor<ndim, ctype, BCAST_OTHER> PVis;
            typedef OpCallerUniform<Op, arity, PVis> Caller;
            size_t size = m_rw_size;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);
            Caller caller;
            caller.op = m_op;
            for (int i = 0; i < arity; ++i)
                caller.par[i].host_init(m_param[i], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller, size);
            after_kernel_launch();
        }

        template <int ndim>
        void dispatch1_vect() {
            typedef ParamVectVisitor<ndim, ctype, BCAST_OTHER> PVis;
            typedef OpCallerUniform<Op, arity, PVis> Caller;
            size_t size = m_rw_size;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);
            Caller caller;
            caller.op = m_op;
            for (int i = 0; i < arity; ++i)
                caller.par[i].host_init(m_param[i], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller, size);
            after_kernel_launch();
        }

        bool try_vect_load_store() {
            auto try_last_contig = [](const TensorLayout& layout) {
                return layout.stride[layout.ndim - 1] == 1 &&
                       layout[layout.ndim - 1] % packed_size == 0;
            };
            /*
             * \NOTE: remove try_scalar() to adapt multi-type tenary op
             */
            for (int i = 0; i < arity; ++i) {
                if (!try_last_contig(m_param[i].layout)) return false;
            }
            m_rw_size /= packed_size;
            dispatch0_vect();
            return true;
        }

        bool try_vect_load_store_contiguous() {
            auto try_contig = [](const TensorLayout& layout) {
                return (layout.is_contiguous());
            };
            for (int i = 0; i < arity; ++i) {
                if (!try_contig(m_param[i].layout))
                    return false;
            }
            m_rw_size = DIVUP(m_rw_size, packed_size);
            dispatch_contiguous();
            return true;
        }
    };

#define INST_DT_IBYTE(ctype)                                                \
    template <class Op, int arity>                                          \
    class UserOpInvokerToSameNdim<Op, ctype, arity>                         \
            : public UserOpInvokerToSameNdimIByteHelper<Op, ctype, arity> { \
        using Super = UserOpInvokerToSameNdimIByteHelper<Op, ctype, arity>; \
                                                                            \
    public:                                                                 \
        UserOpInvokerToSameNdim(const ElemwiseOpParamN<arity>& param,       \
                                cudaStream_t stream, const Op& op)          \
                : Super{param, stream, op} {}                               \
    }
    INST_DT_IBYTE(dt_int8);
    INST_DT_IBYTE(dt_uint8);
    INST_DT_IBYTE(dt_qint8);
    INST_DT_IBYTE(dt_quint8);
#undef INST_DT_IBYTE

    //! implement general case by UserOpInvokerToSameNdim
    template<class Op, typename ctype, int arity>
    class UserOpInvoker: public UserOpInvokerToSameNdim<Op, ctype, arity> {
        public:
            UserOpInvoker(
                    const ElemwiseOpParamN<arity> &param,
                    cudaStream_t stream,
                    const Op &op):
                UserOpInvokerToSameNdim<Op, ctype, arity>(param, stream, op)
            {
            }
    };

    //! specialization for arity == 0
    template<class Op, typename ctype>
    class UserOpInvoker<Op, ctype, 0> {
        public:
            UserOpInvoker(
                    const ElemwiseOpParamN<0> &param,
                    cudaStream_t stream,
                    const Op &op) {
                size_t size = param.size;
                typedef OpCallerNull<Op> Caller;
                Caller caller;
                caller.op = op;
                int grid_size, block_size;
                void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
                get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                                &grid_size, &block_size);
                (*fptr) <<< grid_size, block_size, 0, stream >>> (caller, size);
                after_kernel_launch();
            }
    };

#define DEFINE_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, _stride) \
    _cb_header(1) { \
        const ptrdiff_t *stride = _stride; \
        if (!stride[0]) { \
            return _cb_dispatch(1, BCAST_FULL); \
        } \
        _cb_dispatch(1, BCAST_OTHER); \
    } \
    _cb_header(2) { \
        const ptrdiff_t *stride = _stride; \
        if (!stride[0] && stride[1]) { \
            return _cb_dispatch(2, BCAST_10); \
        } \
        if (stride[0] && !stride[1]) { \
            return _cb_dispatch(2, BCAST_01); \
        } \
        _cb_dispatch(2, BCAST_OTHER); \
    } \
    _cb_header(3) { \
        const ptrdiff_t *stride = _stride; \
        if (!stride[0] && stride[1] && !stride[2]) { \
            return _cb_dispatch(3, BCAST_101); \
        } \
        _cb_dispatch(3, BCAST_OTHER); \
    }

    //! specialization for binary opr
    template<class Op, typename ctype>
    class UserOpInvoker<Op, ctype, 2> {
        bool m_invoked;
        const ElemwiseOpParamN<2> &m_param;
        cudaStream_t m_stream;
        const Op &m_op;

        void fallback() {
            megdnn_assert(!m_invoked);
            UserOpInvokerToSameNdim<Op, ctype, 2>(m_param, m_stream, m_op);
            m_invoked = true;
        }

        void dispatch0() {
            switch(m_param[0].layout.ndim) {
#define cb(ndim) \
                case ndim: return dispatch1_##ndim();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
            }
            fallback();
        }

#define cb_header(ndim) void dispatch1_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
        dispatch2<ParamElemVisitor<ndim, ctype, brdcast_mask> >()
DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
        m_param[0].layout.stride)
#undef cb_header
#undef cb_dispatch


        template<class PVis0>
        void dispatch2() {
            switch(m_param[1].layout.ndim) {
#define cb(ndim) \
                case ndim: return dispatch3_##ndim<PVis0>();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
            }
            fallback();
        }

#define cb_header(ndim) \
    template<class PVis0> \
    void dispatch3_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
        do_run<PVis0, ParamElemVisitor<ndim, ctype, brdcast_mask> >()
DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
        m_param[1].layout.stride)
#undef cb_header
#undef cb_dispatch

        template<class PVis0, class PVis1>
        void do_run() {
            megdnn_assert(!m_invoked);
            m_invoked = true;
            typedef OpCallerBinary<Op, PVis0, PVis1> Caller;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
            size_t size = m_param.size;
            get_launch_spec(reinterpret_cast<const void*>(fptr),
                    size, &grid_size, &block_size);
            Caller caller;
            caller.op = m_op;
            caller.par0.host_init(m_param[0], grid_size, block_size);
            caller.par1.host_init(m_param[1], grid_size, block_size);
            (*fptr) <<< grid_size, block_size, 0, m_stream >>> (caller, size);
            after_kernel_launch();
        }

        public:
            UserOpInvoker(const ElemwiseOpParamN<2> &param, cudaStream_t stream,
                    const Op &op):
                m_param(param), m_stream(stream), m_op(op)
            {
                m_invoked = false;
                dispatch0();
                megdnn_assert(m_invoked);
            }
    };

#define DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, \
                                               _stride)                  \
    DEFINE_BRDCAST_DISPATCH_RECEIVERS(_cb_header, _cb_dispatch, _stride) \
    _cb_header(4) {                                                      \
        const ptrdiff_t* stride = _stride;                               \
        if (!stride[0] && stride[1] && !stride[2] && stride[3]) {        \
            return _cb_dispatch(4, BCAST_1010);                          \
        }                                                                \
        _cb_dispatch(4, BCAST_OTHER);                                    \
    }

    template <class Op, typename ctype>
    class UserOpInvokerBinaryIByteHelper {
    private:
        bool m_invoked;
        size_t m_rw_size;
        const ElemwiseOpParamN<2>& m_param;
        cudaStream_t m_stream;
        const Op& m_op;
        using vect_type = typename VectTypeTrait<ctype>::vect_type;
        static const size_t packed_size = VectTypeTrait<ctype>::packed_size;
        bool try_vect_load_store() {
            auto try_last_contig_or_scalar = [](const TensorLayout& layout) {
                return (layout.stride[layout.ndim - 1] == 1 &&
                        layout[layout.ndim - 1] % packed_size == 0) ||
                       (layout.ndim == 1 && layout.stride[0] == 0);
            };
            for (int i = 0; i < 2; ++i) {
                if (!try_last_contig_or_scalar(m_param[i].layout))
                    return false;
            }
            m_rw_size /= packed_size;
            dispatch0_vect();
            return true;
        }

        bool try_vect_load_store_contiguous() {
            auto try_contig = [](const TensorLayout& layout) {
                return (layout.is_contiguous());
            };
            for (int i = 0; i < 2; ++i) {
                if (!try_contig(m_param[i].layout))
                    return false;
            }
            m_rw_size = DIVUP(m_rw_size, packed_size);
            dispatch_contiguous();
            return true;
        }

        void dispatch0() {
            switch (m_param[0].layout.ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch1_##ndim();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
            }
            fallback();
        }

        void dispatch0_vect() {
            switch (m_param[0].layout.ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch1_vect_##ndim();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
                case 4:
                    return dispatch1_vect_4();
            }
            fallback();
        }

        void dispatch_contiguous() {
            m_invoked = true;
            typedef ParamVectVisitor<1, ctype, BCAST_OTHER> PVis;
            typedef OpCallerUniform<Op, 2, PVis> Caller;
            size_t size = m_rw_size;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Op, 2, PVis>;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);

            Caller caller;
            caller.op = m_op;
            for (int i = 0; i < 2; ++i)
                caller.par[i].host_init(m_param[i], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller,
                                                            m_param.size);
            after_kernel_launch();
        }

        void fallback() {
            megdnn_assert(!m_invoked);
            UserOpInvokerToSameNdim<Op, ctype, 2>(m_param, m_stream, m_op);
            m_invoked = true;
        }

#define cb_header(ndim) void dispatch1_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
    dispatch2<ParamElemVisitor<ndim, ctype, brdcast_mask>>()
        DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
                                          m_param[0].layout.stride)
#undef cb_header
#undef cb_dispatch

#define cb_header(ndim) void dispatch1_vect_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
    dispatch2_vect<ParamVectVisitor<ndim, ctype, brdcast_mask>>()
        DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
                                               m_param[0].layout.stride)
#undef cb_header
#undef cb_dispatch

        template <class PVis0>
        void dispatch2() {
            switch (m_param[1].layout.ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch3_##ndim<PVis0>();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
            }
            fallback();
        }

        template <class PVis0>
        void dispatch2_vect() {
            switch (m_param[1].layout.ndim) {
#define cb(ndim) \
    case ndim:   \
        return dispatch3_vect_##ndim<PVis0>();
                MEGDNN_FOREACH_TENSOR_NDIM_SMALL(cb)
#undef cb
                case 4:
                    return dispatch3_vect_4<PVis0>();
            }
            fallback();
        }

#define cb_header(ndim)    \
    template <class PVis0> \
    void dispatch3_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
    do_run<PVis0, ParamElemVisitor<ndim, ctype, brdcast_mask>>()
        DEFINE_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
                                          m_param[1].layout.stride)
#undef cb_header
#undef cb_dispatch

#define cb_header(ndim)    \
    template <class PVis0> \
    void dispatch3_vect_##ndim()
#define cb_dispatch(ndim, brdcast_mask) \
    do_run<PVis0, ParamVectVisitor<ndim, ctype, brdcast_mask>>()
        DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS(cb_header, cb_dispatch,
                                               m_param[1].layout.stride)
#undef cb_header
#undef cb_dispatch

        template <class PVis0, class PVis1>
        void do_run() {
            megdnn_assert(!m_invoked);
            m_invoked = true;
            typedef OpCallerBinary<Op, PVis0, PVis1> Caller;
            int grid_size, block_size;
            void (*fptr)(Caller, uint32_t) = cuda_kern<Caller>;
            size_t size = m_rw_size;
            get_launch_spec(reinterpret_cast<const void*>(fptr), size,
                            &grid_size, &block_size);
            Caller caller;
            caller.op = m_op;
            caller.par0.host_init(m_param[0], grid_size, block_size);
            caller.par1.host_init(m_param[1], grid_size, block_size);
            (*fptr)<<<grid_size, block_size, 0, m_stream>>>(caller, size);
            after_kernel_launch();
        }

    public:
        UserOpInvokerBinaryIByteHelper(const ElemwiseOpParamN<2>& param,
                                       cudaStream_t stream, const Op& op)
                : m_rw_size(param.size),
                  m_param(param),
                  m_stream(stream),
                  m_op(op) {
            m_invoked = false;
            if (!try_vect_load_store_contiguous() && !try_vect_load_store()) {
                dispatch0();
            }
            megdnn_assert(m_invoked);
        }
    };

#define INST_DT_IBYTE(ctype)                                                 \
    template <class Op>                                                      \
    class UserOpInvoker<Op, ctype, 2>                                        \
            : public UserOpInvokerBinaryIByteHelper<Op, ctype> {             \
        using Super = UserOpInvokerBinaryIByteHelper<Op, ctype>;             \
                                                                             \
    public:                                                                  \
        UserOpInvoker(const ElemwiseOpParamN<2>& param, cudaStream_t stream, \
                      const Op& op)                                          \
                : Super{param, stream, op} {}                                \
    }
    INST_DT_IBYTE(dt_int8);
    INST_DT_IBYTE(dt_uint8);
    INST_DT_IBYTE(dt_qint8);
    INST_DT_IBYTE(dt_quint8);
#undef INST_DT_IBYTE
#endif

#undef DEFINE_BRDCAST_DISPATCH_RECEIVERS
#undef DEFINE_VECT_BRDCAST_DISPATCH_RECEIVERS

    /* f}}} */

#undef devfunc
} // namespace elemwise_intl

/*!
 * \brief general element-wise kernel launcher
 *
 * \tparam arity number of params for the operator
 * \param param param values for the operator; must have been initialized (i.e.
 *      by calling ElemwiseOpParamN::init_from_given_tensor). The params
 *      can have arbitrary layouts, as long as they share the same total number
 *      of elements.
 * \param op callable with a signature compatible with
 *      `void op(uint32_t idx, ctype& param0, ..., ctype& param[arity - 1])`
 *      if arity == 0, there is only an `idx` input
 *      if ctype=dt_int8, dt_uint8, dt_qint8, dt_quint8, a signature compatible
 * with `void op(uint32_t idx, vect_type& param0, ..., ctype& param[arity - 1])`
 * should be implemented
 */
template <class Op, typename ctype, int arity>
void run_elemwise(const ElemwiseOpParamN<arity>& param, cudaStream_t stream,
                  const Op& op = Op());

#if MEGDNN_CC_CUDA
template<class Op, typename ctype, int arity>
void run_elemwise(
        const ElemwiseOpParamN<arity> &param, cudaStream_t stream,
        const Op &op) {
    param.assert_initialized();
    elemwise_intl::UserOpInvoker<Op, ctype, arity>(param, stream, op);
}

/*!
 * \brief explicit instantialization of run_elemwise for given template params;
 *      used in .cu files, so corresponding run_elemwise can be called from .cpp
 */
#define INST_RUN_ELEMWISE(Op, ctype, arity) \
template void run_elemwise<Op, ctype, arity>( \
        const ElemwiseOpParamN<arity>&, cudaStream_t, const Op&)

#endif

} // namespace cuda
} // namespace megdnn

// vim: ft=cpp syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}