test_functional.py 28.7 KB
Newer Older
1 2 3
# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
4
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
5 6 7 8 9
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import itertools
10
from functools import partial
11 12 13

import numpy as np
import pytest
14
from utils import opr_test
15

16
import megengine.core.ops.builtin as builtin
17 18
import megengine.core.tensor.dtype as dtype
import megengine.functional as F
M
Megvii Engine Team 已提交
19
from megengine import Parameter, Tensor, is_cuda_available, tensor
20
from megengine.core._trace_option import use_symbolic_shape
21
from megengine.core.autodiff.grad import Grad
22
from megengine.core.tensor.utils import make_shape_tuple
23
from megengine.distributed.helper import get_device_count_by_fork
24
from megengine.jit import trace
25 26


27 28 29 30 31 32 33 34 35 36 37 38 39
def test_where():
    maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_)
    xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32)
    yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32)

    maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_)
    xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32)
    yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32)

    cases = [
        {"input": [maskv0, xv0, yv0]},
        {"input": [maskv1, xv1, yv1]},
    ]
40
    opr_test(cases, F.where, ref_fn=np.where, test_trace=False)
41 42 43 44 45 46 47 48 49 50 51 52 53

    maskv2 = np.array([1, 1, 1], dtype=np.bool_)
    xv2 = np.array([1, 3, 2], dtype=np.float32)
    yv2 = np.array([5, 6, 9], dtype=np.float32)

    maskv3 = np.array([0, 0, 0], dtype=np.bool_)
    xv3 = np.array([1, 3, 2], dtype=np.float32)
    yv3 = np.array([5, 6, 9], dtype=np.float32)

    cases = [
        {"input": [maskv2, xv2, yv2]},
        {"input": [maskv3, xv3, yv3]},
    ]
54
    opr_test(cases, F.where, ref_fn=np.where, test_trace=False)
55 56


57 58 59 60 61 62 63
def test_dropout():
    data = tensor(np.ones(10, dtype=np.float32))
    out = F.dropout(data, 1.0 / 3.0, training=False)

    assert out.numpy().sum() >= 0.0


64 65 66 67 68
def test_matinv():
    shape1 = (5, 5)
    shape2 = (3, 9, 9)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
M
Megvii Engine Team 已提交
69 70 71
    # make matrix diagonally dominant for numerical stability
    data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32")
    data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2)
72 73 74 75 76 77 78 79 80 81 82 83 84 85

    cases = [
        {"input": data1},
        {"input": data2},
    ]

    opr_test(
        cases,
        F.matinv,
        compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-5),
        ref_fn=np.linalg.inv,
    )


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def test_matmul():
    shape1 = 3
    shape2 = 3
    shape3 = (3, 5)
    shape4 = (5, 6)
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
    data4 = np.random.random(shape4).astype("float32")

    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
    ]
    opr_test(cases, F.matmul, ref_fn=np.matmul)

    batch_size = 10
104 105 106 107 108
    shape1 = (2,)
    shape2 = (batch_size, 2, 3)
    shape3 = (batch_size, 3, 4)
    shape4 = (batch_size, 10, 4, 2)
    shape5 = (batch_size, 10, 2, 4)
109 110 111
    data1 = np.random.random(shape1).astype("float32")
    data2 = np.random.random(shape2).astype("float32")
    data3 = np.random.random(shape3).astype("float32")
112 113
    data4 = np.random.random(shape4).astype("float32")
    data5 = np.random.random(shape5).astype("float32")
114

115 116 117 118 119 120
    cases = [
        {"input": [data1, data2]},
        {"input": [data2, data3]},
        {"input": [data3, data4]},
        {"input": [data4, data5]},
    ]
121
    opr_test(cases, F.matmul, ref_fn=np.matmul)
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    opr_test(
        [{"input": [data1, data4]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)),
        transpose_b=True,
    )

    opr_test(
        [{"input": [data3, data2]}],
        F.matmul,
        ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)),
        transpose_a=True,
        transpose_b=True,
    )

138

139 140 141 142
def test_interpolate():
    def linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

143 144
        out = F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
        out2 = F.vision.interpolate(inp, 4, mode="linear")
145

146
        np.testing.assert_allclose(
147 148
            out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )
149
        np.testing.assert_allclose(
150 151 152 153 154 155
            out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32)
        )

    def many_batch_interpolate():
        inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2))

156 157
        out = F.vision.interpolate(inp, [4, 4])
        out2 = F.vision.interpolate(inp, scale_factor=2.0)
158

159
        np.testing.assert_allclose(out.numpy(), out2.numpy())
160 161 162 163

    def assign_corner_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

164 165
        out = F.vision.interpolate(inp, [4, 4], align_corners=True)
        out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True)
166

167
        np.testing.assert_allclose(out.numpy(), out2.numpy())
168 169 170 171 172

    def error_shape_linear_interpolate():
        inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2))

        with pytest.raises(ValueError):
173
            F.vision.interpolate(inp, scale_factor=2.0, mode="linear")
174 175 176 177 178

    def inappropriate_scale_linear_interpolate():
        inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2))

        with pytest.raises(ValueError):
179
            F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear")
180 181 182 183 184 185 186 187 188

    linear_interpolate()
    many_batch_interpolate()
    assign_corner_interpolate()
    error_shape_linear_interpolate()
    inappropriate_scale_linear_interpolate()


def _save_to(self, name="grad"):
189
    def callback(grad):
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        setattr(self, name, grad)

    return callback


def _gen_roi_inp():
    inp_feat = np.random.randn(2, 32, 256, 256)
    rois = np.zeros((4, 5))
    rois[:, 0] = [0, 0, 1, 1]
    rois[:, 1:3] = np.random.rand(4, 2) * 100
    rois[:, 3:] = np.random.rand(4, 2) * 100 + 150

    inp_feat = tensor(inp_feat)
    rois = tensor(rois)
    return inp_feat, rois


def test_roi_align():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))

    output_shape = (7, 7)
212
    out_feat = F.vision.roi_align(
213 214 215 216 217 218 219 220
        inp_feat,
        rois,
        output_shape=output_shape,
        mode="average",
        spatial_scale=1.0 / 4,
        sample_points=2,
        aligned=True,
    )
221 222 223 224 225
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
226 227

    grad(out_feat, tensor(F.ones_like(out_feat)))
228
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
229 230


231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)):
    if random:
        inp_feat1 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
        inp_feat2 = np.random.randn(
            image_shape[0], image_shape[1], image_shape[2], image_shape[3]
        )
    else:
        inp_feat1 = np.ones(image_shape) * constant
        inp_feat2 = np.ones(image_shape) * constant

    return tensor(inp_feat1), tensor(inp_feat2)


def test_correlation():
    ##test case 0 check the grad shape
    data1, data2 = _gen_correlation()
    grad = Grad().wrt(data1, callback=_save_to(data1))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=5,
        max_displacement=4,
        stride1=2,
        stride2=2,
        pad_size=2,
        is_multiply=True,
    )

    grad(out_feat, tensor(F.ones_like(out_feat)))
    assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape)

    ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=True,
    )
    assert abs(out_feat.sum() - 1) < 1e-9

    ##test case 2 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 3 check same image subduction
    data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3))

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=0,
        stride1=1,
        stride2=1,
        pad_size=0,
        is_multiply=False,
    )
    assert out_feat.sum() < 1e-9

    ##test case 4 check correlation
    data1, _ = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=2.0
    )
    _, data2 = _gen_correlation(
        random=False, image_shape=(1, 1, 220, 220), constant=1.0
    )

    out_feat = F.vision.correlation(
        data1,
        data2,
        kernel_size=3,
        max_displacement=2,
        stride1=1,
        stride2=2,
        pad_size=0,
        is_multiply=False,
    )
    assert abs(out_feat.mean() - 1) < 1e-9


331 332 333 334
def test_roi_pooling():
    inp_feat, rois = _gen_roi_inp()
    grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat))
    output_shape = (7, 7)
335
    out_feat = F.vision.roi_pooling(
336 337
        inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4,
    )
338 339 340 341 342
    assert make_shape_tuple(out_feat.shape) == (
        rois.shape[0],
        inp_feat.shape[1],
        *output_shape,
    )
343 344

    grad(out_feat, tensor(F.ones_like(out_feat)))
345
    assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape)
346 347


348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
def test_adaptive_avg_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_avg_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                        [0.25, 0.25, 0.25, 0.25],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


def test_adaptive_max_pool2d():
    inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4))
    oshp = (2, 2)
    grad = Grad().wrt(inp, callback=_save_to(inp))
    outp = F.adaptive_max_pool2d(inp, oshp,)
    assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,)
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32)
    )

    grad(outp, tensor(F.ones_like(outp)))
    assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape)
    np.testing.assert_equal(
        inp.grad.numpy(),
        np.array(
            [
                [
                    [
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                        [0.0, 0.0, 0.0, 0.0],
                        [0.0, 1.0, 0.0, 1.0],
                    ]
                ]
            ],
            dtype=np.float32,
        ),
    )


408 409 410 411
def test_one_hot():
    def onehot_low_dimension():
        inp = tensor(np.arange(1, 4, dtype=np.int32))
        out = F.one_hot(inp, num_classes=4)
412

413
        np.testing.assert_allclose(
414 415
            out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)]
        )
416

417 418 419 420 421
    def onehot_high_dimension():
        arr = np.array(
            [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]],
            dtype=np.int32,
        )
422

423 424
        inp = tensor(arr)
        out = F.one_hot(inp, 10)
425

426
        np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr])
427

428 429
    onehot_low_dimension()
    onehot_high_dimension()
430 431


432
def test_interpolate_fastpath():
433 434 435 436 437
    # check shape
    test_cases = [
        [(1, 1, 10, 10), (5, 5)],
        [(1, 3, 10, 10), (20, 20)],
        [(10, 1, 10, 10), (1, 1)],
M
Megvii Engine Team 已提交
438
        # [(10, 10, 1, 1), (10, 10)], # FIXME, it causes random CI failure
439 440 441
    ]
    for inp_shape, target_shape in test_cases:
        x = tensor(np.random.randn(*inp_shape), dtype=np.float32)
442
        out = F.vision.interpolate(x, target_shape, mode="bilinear")
443 444 445 446 447
        assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1]
        assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1]

    # check value
    x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32)
448
    out = F.vision.interpolate(x, (15, 5), mode="bilinear")
449 450 451 452
    np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32))

    np_x = np.arange(32)
    x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1)
453
    out = F.vision.interpolate(x, (1, 1), mode="bilinear")
454 455 456
    np.testing.assert_equal(out.item(), np_x.mean())


457 458 459 460 461 462 463 464 465 466
def test_warp_perspective():
    inp_shape = (1, 1, 4, 4)
    x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
467
    outp = F.vision.warp_perspective(x, M, (2, 2))
468 469 470 471 472
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32)
    )


473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
def test_warp_perspective_mat_idx():
    inp_shape = (2, 1, 4, 4)
    x = tensor(np.arange(32, dtype=np.float32).reshape(inp_shape))
    M_shape = (1, 3, 3)
    # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1)
    M = tensor(
        np.array(
            [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32
        ).reshape(M_shape)
    )
    M = F.concat([M,] * 4, 0)
    outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0])
    np.testing.assert_equal(
        outp.numpy(),
        np.array(
            [
                [[[5.0, 6.0], [9.0, 10.0]]],
                [[[21.0, 22.0], [25.0, 26.0]]],
                [[[21.0, 22.0], [25.0, 26.0]]],
                [[[5.0, 6.0], [9.0, 10.0]]],
            ],
            dtype=np.float32,
        ),
    )


499 500 501 502
def test_warp_affine():
    inp_shape = (1, 3, 3, 3)
    x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape))
    weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]]
503
    outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap")
504 505 506 507 508 509 510 511 512 513 514 515 516
    res = np.array(
        [
            [
                [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]],
                [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]],
            ]
        ],
        dtype=np.float32,
    )
    if not is_cuda_available():
        np.testing.assert_almost_equal(outp.numpy(), res, 5)


517 518 519 520 521 522 523 524 525
def test_remap():
    inp_shape = (1, 1, 4, 4)
    inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape))
    map_xy_shape = (1, 2, 2, 2)
    map_xy = tensor(
        np.array(
            [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32
        ).reshape(map_xy_shape)
    )
526
    outp = F.vision.remap(inp, map_xy)
527 528 529 530 531
    np.testing.assert_equal(
        outp.numpy(), np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
    )


532 533 534 535 536 537 538 539 540 541
def test_binary_cross_entropy():
    data1_shape = (2, 2)
    label1_shape = (2, 2)
    data2_shape = (2, 3)
    label2_shape = (2, 3)

    def sigmoid(x):
        return 1 / (1 + np.exp(-x))

    def compare_fn(x, y):
542
        np.testing.assert_allclose(x.numpy(), y, atol=5e-4)
543 544

    np.random.seed(123)
545
    data1 = np.random.uniform(size=data1_shape).astype(np.float32)
546 547 548 549
    label1 = np.random.uniform(size=label1_shape).astype(np.float32)
    expect1 = np.array([0.6361], dtype=np.float32)

    np.random.seed(123)
550
    data2 = np.random.uniform(size=data2_shape).astype(np.float32)
551 552 553 554 555 556 557
    label2 = np.random.uniform(size=label2_shape).astype(np.float32)
    expect2 = np.array([0.6750], dtype=np.float32)

    cases = [
        {"input": [data1, label1], "output": expect1,},
        {"input": [data2, label2], "output": expect2,},
    ]
558
    opr_test(cases, F.nn.binary_cross_entropy, compare_fn=compare_fn)
559

560 561 562 563 564
    cases = [
        {"input": [sigmoid(data1), label1], "output": expect1,},
        {"input": [sigmoid(data2), label2], "output": expect2,},
    ]
    opr_test(
565 566 567
        cases,
        partial(F.nn.binary_cross_entropy, with_logits=False),
        compare_fn=compare_fn,
568 569
    )

570 571 572 573 574 575 576 577 578 579 580

def test_hinge_loss():
    np.random.seed(123)
    # case with L1 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = np.clip(0, np.inf, 1 - data * label).sum(axis=1).mean()
        cases.append({"input": [data, label], "output": expect})

581
    opr_test(cases, F.nn.hinge_loss)
582 583 584 585 586 587 588 589 590 591

    # cases with L2 norm
    cases = []
    for shape in [(2, 2), (2, 3)]:
        data = np.random.uniform(size=shape).astype(np.float32)
        label = 2 * np.random.randint(0, 1, size=shape).astype(np.float32) - 1
        expect = ((np.clip(0, np.inf, 1 - data * label) ** 2).sum(axis=1)).mean()
        cases.append({"input": [data, label], "output": expect})

    def hinge_loss_with_l2_norm(pred, label):
592
        return F.nn.hinge_loss(pred, label, "L2")
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608

    opr_test(cases, hinge_loss_with_l2_norm)


def test_nms():
    x = np.array(
        [
            [0, 0, 100, 100],
            [10, 10, 100, 100],
            [50, 50, 100, 100],
            [100, 100, 150, 150],
        ],
        dtype=np.float32,
    )
    inp = tensor(x)
    scores = tensor([0.5, 0.8, 0.9, 0.6], dtype=np.float32)
609
    result = F.vision.nms(inp, scores=scores, iou_thresh=0.5)
610 611 612
    np.testing.assert_equal(result.numpy(), np.array([2, 1, 3], dtype=np.int32))


613 614 615
@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="cuda does not support nchw int8"
)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
def test_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N,
        IC,
        OC,
        IH,
        IW,
        KH,
        KW,
        PH,
        PW,
        SH,
        SW,
        has_bias=True,
638
        nonlinear_mode="identity",
639 640
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
641
        w_v = np.random.normal(size=(OC, IC, KH, KW))
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def convert_to_nchw4(var):
            var = F.reshape(
                var, (var.shape[0], var.shape[1] // 4, 4, var.shape[2], var.shape[3])
            )
663
            var = F.transpose(var, (0, 1, 3, 4, 2))
664 665 666 667 668 669
            return var

        def run_conv2d(inp, w, b):
            O = F.conv2d(
                inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW),
            )
670
            if nonlinear_mode == "relu":
671 672 673 674 675 676 677 678 679 680
                return F.relu(O)
            else:
                return O

        def run_conv_bias(inp, w, b, format="NCHW"):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            if format == "NCHW4":
                inp = convert_to_nchw4(inp)
                w = convert_to_nchw4(w)
                b = convert_to_nchw4(b)
681
            return F.quantized.conv_bias_activation(
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
                inp,
                w,
                b,
                stride=(SH, SW),
                padding=(PH, PW),
                dtype=out_dtype,
                nonlinear_mode=nonlinear_mode,
            )

        format = "NCHW4" if is_cuda_available() else "NCHW"

        expected = run_conv2d(inp_fp32, w_fp32, b_fp32)
        expected = expected.astype(out_dtype).astype("float32")
        result = run_conv_bias(inp_int8, w_int8, b_int32, format=format).astype(
            "float32"
        )
        if format == "NCHW4":
699
            result = F.transpose(result, (0, 1, 4, 2, 3))
700 701
        expected = F.flatten(expected)
        result = F.flatten(result)
702
        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)
703 704 705 706 707 708 709 710 711

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1, False)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1, False)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False)

    run(1, 4, 4, 24, 33, 1, 1, 2, 3, 1, 1)
    run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1)
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2)

712 713
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu")
    run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu")
714 715


716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
@pytest.mark.skipif(
    get_device_count_by_fork("gpu") > 0, reason="no int8 algorithm on cuda"
)
def test_batch_conv_bias():
    inp_scale = 1.5
    w_scale = 2.5
    outp_scale = 1.5
    inp_dtype = dtype.qint8(inp_scale)
    w_dtype = dtype.qint8(w_scale)
    b_dtype = dtype.qint32(inp_scale * w_scale)
    out_dtype = dtype.qint8(outp_scale)

    def run(
        N, IC, OC, IH, IW, KH, KW, PH, PW, SH, SW, has_bias=True,
    ):
        inp_v = np.random.normal(size=(N, IC, IH, IW))
        w_v = np.random.normal(size=(N, OC, IC, KH, KW))
        b_v = np.random.normal(size=(1, OC, 1, 1))
        inp_scale = dtype.get_scale(inp_dtype)
        w_scale = dtype.get_scale(w_dtype)
        b_scale = dtype.get_scale(b_dtype)

        inpv = dtype.convert_to_qint8(inp_v * inp_scale, inp_dtype)
        wv = dtype.convert_to_qint8(w_v * w_scale, w_dtype)
        bv = dtype.convert_to_qint32(b_v * b_scale, b_dtype)

        inp_int8 = tensor(inpv, dtype=inp_dtype)
        w_int8 = Parameter(wv, dtype=w_dtype)
        b_int32 = Parameter(bv, dtype=b_dtype)

        inp_fp32 = inp_int8.astype("float32")
        w_fp32 = w_int8.astype("float32")
        b_fp32 = b_int32.astype("float32")

        def run_batch_conv_bias(inp, w, b):
            b = b if has_bias else Parameter(np.zeros_like(b.numpy()))
            result = F.quantized.batch_conv_bias_activation(
                inp, w, b, stride=(SH, SW), padding=(PH, PW), dtype=out_dtype,
            )
            return result.astype("float32")

        expected = F.conv2d(inp_fp32, w_fp32[0], b_fp32 if has_bias else None)[0]
        expected = expected.astype(out_dtype).astype("float32")
        expected = F.flatten(expected)

        result = run_batch_conv_bias(inp_int8, w_int8, b_int32)
        result = F.flatten(result)

        np.testing.assert_allclose(result.numpy(), expected.numpy(), atol=outp_scale)

    run(1, 4, 4, 5, 5, 3, 3, 0, 0, 1, 1, True)


769
def test_conv2d_zero_stride_numpy_array():
770 771 772 773 774 775 776 777
    inp = np.random.randn(3, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3), dtype=np.float32)
    out = F.conv2d(inp, weight, None, (2, 2), (3, 3), (1, 1), 1)


778 779 780 781 782 783 784 785 786 787
def test_conv3d_zero_stride_numpy_array():
    inp = np.random.randn(3, 224, 224, 224).astype(np.float32)
    inp = inp[np.newaxis, :]

    inp = tensor(inp, dtype=np.float32)
    weight = tensor(np.random.randn(16, 3, 3, 3, 3), dtype=np.float32)
    out = F.conv3d(inp, weight, None, (2, 2, 2), (3, 3, 3), (1, 1, 1), 1)
    out.numpy()


788 789 790 791 792 793 794 795 796 797 798 799
def test_conv1d():
    inp = tensor(np.ones((16,), dtype=np.float32).reshape(2, 2, 4))
    weight = tensor(np.ones((12,), dtype=np.float32).reshape(3, 2, 2))
    out = F.conv1d(inp, weight, None, 2, 0, 1, 1)
    np.testing.assert_equal(
        out.numpy(),
        np.array(
            [[[4, 4], [4, 4], [4, 4]], [[4, 4], [4, 4], [4, 4]]], dtype=np.float32
        ),
    )


800 801 802 803 804 805 806 807 808 809
def test_conv3d():
    inp = tensor(np.ones((256,), dtype=np.float32).reshape(2, 2, 4, 4, 4))
    weight = tensor(np.ones((48,), dtype=np.float32).reshape(3, 2, 2, 2, 2))
    out = F.conv3d(inp, weight, None, 2, 0, 1, 1)
    print(out.numpy().shape)
    np.testing.assert_equal(
        out.numpy(), np.ones((2, 3, 2, 2, 2), dtype=np.float32) * 16
    )


810 811 812 813 814 815 816 817
def test_condtake():
    x = np.array([[1, 2, 3], [4, 5, 6]])
    y = np.array([[True, False, True], [False, True, True]])
    xx = tensor(x)
    yy = tensor(y)
    val, idx = F.cond_take(yy, xx)
    np.testing.assert_equal(val.numpy(), x[y])
    np.testing.assert_equal(idx.numpy(), np.where(y.reshape(-1))[0])
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834


def test_condtake_is_same():
    op1 = builtin.CondTake()
    op2 = builtin.CondTake()
    assert op1 == op2


def test_nms_is_same():
    op1 = builtin.NMSKeep(0.7, 100)
    op2 = builtin.NMSKeep(0.7, 100)
    op3 = builtin.NMSKeep(0.8, 100)
    op4 = builtin.NMSKeep(0.7, 200)
    assert op1 == op2
    assert op1 != op3
    assert op1 != op4
    assert op3 != op4
835 836


837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853


def test_argmxx_on_inf():
    def run_argmax():
        x = F.zeros((100, 100))
        x[:] = -float("inf")
        idxs = F.argmax(x, axis=0)
        return idxs

    def run_argmin():
        x = F.zeros((100, 100))
        x[:] = float("inf")
        idxs = F.argmin(x, axis=0)
        return idxs

    assert all(run_argmax() >= 0)
    assert all(run_argmin() >= 0)
854 855


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
def test_deformable_psroi_pooling():
    inp = np.random.random((1, 256, 64, 64)).astype("float32")
    rois = np.random.random((1, 5)).astype("float32")
    trans = np.random.random((24, 2, 7, 7)).astype("float32")

    pooled_h = 7
    pooled_w = 7
    sample_per_part = 4
    no_trans = False
    part_size = 7
    spatial_scale = 1.0 / 64
    trans_std = 0.1

    y = F.deformable_psroi_pooling(
        tensor(inp),
        tensor(rois),
        tensor(trans),
        no_trans,
        part_size,
        pooled_h,
        pooled_w,
        sample_per_part,
        spatial_scale,
        trans_std,
    )


883 884 885 886 887 888 889
def test_cvt_color():
    def rgb2gray(rgb):
        return np.dot(rgb[..., :3], [0.299, 0.587, 0.114])

    inp = np.random.randn(3, 3, 3, 3).astype(np.float32)
    out = np.expand_dims(rgb2gray(inp), 3).astype(np.float32)
    x = tensor(inp)
890
    y = F.vision.cvt_color(x, mode="RGB2GRAY")
891
    np.testing.assert_allclose(y.numpy(), out, atol=1e-5)
892 893 894 895 896 897 898


@pytest.mark.parametrize("val", [2, [2,], [2, 3]])
def test_ones(val):
    shp = tensor(val)
    np_shp = np.array(val)
    np.testing.assert_equal(F.ones(shp), np.ones(np_shp))
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913


def test_assert_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.00001
    z = F.utils._assert_equal(x, y)


def test_assert_not_equal():
    shape = (2, 3, 4, 5)
    x = F.ones(shape, dtype=np.float32)
    y = F.zeros(shape, dtype=np.float32) + 1.1
    with pytest.raises(RuntimeError):
        z = F.utils._assert_equal(x, y)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929


def test_neg_axis():
    x = tensor(np.random.normal(0, 1, (32, 5)))

    y = F.argmax(x, axis=-1)
    yy = F.argmax(x, axis=1)
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmax(x, axis=(-1, -2))
    yy = F.argmax(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())

    y = F.argmin(x, axis=(-1, -2))
    yy = F.argmin(x, axis=(0, 1))
    np.testing.assert_equal(y.numpy(), yy.numpy())
930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954


def test_sliding_window():
    N, C, H, W = 2, 3, 7, 8
    inp = np.random.normal(size=(N, C, H, W))
    ph, pw = 1, 2
    sh, sw = 2, 1
    wh, ww = 3, 2
    dh, dw = 1, 3
    s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1
    inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2))
    inp_pad[:, :, ph : H + ph, pw : W + pw] = inp
    gt_out = np.empty(
        (N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32
    )
    for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])):
        ih, iw = oh * sh, ow * sw
        gt_out[n, c, oh, ow, :] = inp_pad[
            n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw
        ]

    out = F.sliding_window(
        tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw)
    )
    np.testing.assert_equal(gt_out, out.numpy())