collective_comm.cpp 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/**
 * \file src/opr-mm/test/collective_comm.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/opr/collective_comm.h"
#include "megbrain/opr/basic_arith.h"
#include "megbrain/opr/blas.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/test/helper.h"
#include "megbrain/graph.h"
20
#include "mock_client.h"
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

using namespace mgb;

using Mode = opr::CollectiveComm::Param::Mode;

SymbolVar make_all_reduce_output(const Mode mode,
                                 const SymbolVarArray& inputs) {
    if (mode == Mode::ALL_REDUCE_MAX)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MAX);
    if (mode == Mode::ALL_REDUCE_MIN)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::MIN);
    if (mode == Mode::ALL_REDUCE_SUM)
        return opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    mgb_assert(false);
}

SymbolVarArray make_reduce_scatter_sum_output(const SymbolVarArray& inputs) {
    auto rdc = opr::Elemwise::make(inputs, opr::Elemwise::Mode::ADD);
    return opr::Split::make(
            rdc, opr::Split::Options::make_average(0, inputs.size()));
}

TEST(TestOprCollectiveComm, AllReduce) {
    REQUIRE_GPU(2);
45 46 47 48 49 50 51 52 53 54

    auto run_mode = [](const Mode mode) {
        auto cn0 = CompNode::load("gpu0");
        auto cn1 = CompNode::load("gpu1");
    
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;
    
55
        auto client = std::make_shared<test::MockGroupClient>();
56 57 58 59 60 61 62
        auto graph = ComputingGraph::make();
    
        auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
        auto x1c = opr::Copy::make(x1, cn1);
    
        auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "all_reduce",
63
                2, false, 0, client, {mode}, dtype::Float32(), "nccl")[0];
64
        auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "all_reduce",
65
                2, false, 1, client, {mode}, dtype::Float32(), "nccl")[0];
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        auto y_expect = make_all_reduce_output(mode, {x0, x1});
    
        auto func = graph->compile({make_callback_copy(y0, host_y0),
                                    make_callback_copy(y1, host_y1),
                                    make_callback_copy(y_expect, host_y_expect)});
        func->execute();
    
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceMultiThread) {
    REQUIRE_GPU(2);
84 85 86 87 88 89 90 91 92
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    auto run_mode = [&](const Mode mode) {
        HostTensorGenerator<> gen;
        auto host_x0 = gen({28, 28});
        auto host_x1 = gen({28, 28});
        HostTensorND host_y0, host_y1, host_y_expect;

93
        auto client = std::make_shared<test::MockGroupClient>();
94 95 96 97 98

        auto run_0 = [&]() {
            auto graph0 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0);
            auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_reduce",
99
                    2, false, 0, client, {mode}, dtype::Float32(), "nccl")[0];
100 101 102 103 104 105 106 107
            auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
            func0->execute();
        };

        auto run_1 = [&]() {
            auto graph1 = ComputingGraph::make();
            auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
            auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_reduce",
108
                    2, false, 1, client, {mode}, dtype::Float32(), "nccl")[0];
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
            func1->execute();
        };

        auto run_2 = [&]() {
            auto graph2 = ComputingGraph::make();
            auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
            auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
            auto y_expect = make_all_reduce_output(mode, {x0, x1});
            auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
            func2->execute();
        };

        std::thread t0(run_0);
        std::thread t1(run_1);
        std::thread t2(run_2);

        t0.join();
        t1.join();
        t2.join();

        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
        MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    };

    run_mode(Mode::ALL_REDUCE_MAX);
    run_mode(Mode::ALL_REDUCE_MIN);
    run_mode(Mode::ALL_REDUCE_SUM);
}

TEST(TestOprCollectiveComm, AllReduceWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({10});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

154
    auto client = std::make_shared<test::MockGroupClient>();
155 156 157 158 159 160

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
161
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_reduce", 2, false, 0, client,
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
180
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_reduce", 2, false, 1, client,
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                {Mode::ALL_REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_all_reduce_output(Mode::ALL_REDUCE_SUM, {grad0, grad1});

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect, host_y_expect),
             make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, AllGather) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

235
    auto client = std::make_shared<test::MockGroupClient>();
236 237 238 239 240 241 242
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "all_gather",
243
            2, false, 0, client, {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
244
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "all_gather",
245
            2, false, 1, client, {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    auto y_expect = opr::Concat::make({x0, x1}, 0);

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

267
    auto client = std::make_shared<test::MockGroupClient>();
268 269 270 271

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
272
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_gather", 2, false, 0, client,
273 274 275 276 277 278 279 280
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
281
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_gather", 2, false, 1, client,
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
}

TEST(TestOprCollectiveComm, AllGatherWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({10});
    auto host_x1 = gen({10});
    auto host_grad0 = gen({20});
    auto host_grad1 = gen({20});

    HostTensorND host_y0, host_y1, host_y_expect;
    HostTensorND host_out_grad0, host_out_grad1;
    HostTensorND host_out_grad0_expect, host_out_grad1_expect;

323
    auto client = std::make_shared<test::MockGroupClient>();
324 325 326 327 328 329

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
330
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "all_gather", 2, false, 0, client,
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
349
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "all_gather", 2, false, 1, client,
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
                {Mode::ALL_GATHER}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = opr::Concat::make({x0, x1}, 0);

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = make_reduce_scatter_sum_output({grad0, grad1});

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect, host_y_expect),
             make_callback_copy(out_grad_expect[0], host_out_grad0_expect),
             make_callback_copy(out_grad_expect[1], host_out_grad1_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad0_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad1_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceScatterSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

400 401 402 403 404
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

405
    auto client = std::make_shared<test::MockGroupClient>();
406 407 408 409 410 411 412
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "reduce_scatter_sum",
413
            2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
414
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "reduce_scatter_sum",
415
            2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
    auto y_expect = make_reduce_scatter_sum_output({x0, x1});

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect[0], host_y0_expect),
                                make_callback_copy(y_expect[1], host_y1_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

433 434 435 436 437
    HostTensorGenerator<> gen;
    auto host_x0 = gen({8});
    auto host_x1 = gen({8});
    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;

438
    auto client = std::make_shared<test::MockGroupClient>();
439 440 441 442 443

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce_scatter_sum",
444
                       2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
445 446 447 448 449 450 451 452
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce_scatter_sum",
453
                       2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});
        auto func = graph2->compile(
            {make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect)});
        func->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
}

TEST(TestOprCollectiveComm, ReduceScatterSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    auto host_x0 = gen({20});
    auto host_x1 = gen({20});
    auto host_grad0 = gen({10});
    auto host_grad1 = gen({10});

    HostTensorND host_y0, host_y1, host_y0_expect, host_y1_expect;
    HostTensorND host_out_grad0, host_out_grad1, host_out_grad_expect;

495
    auto client = std::make_shared<test::MockGroupClient>();
496 497 498 499 500 501 502

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce_scatter_sum",
503
                2, false, 0, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce_scatter_sum",
522
                2, false, 1, client, {Mode::REDUCE_SCATTER_SUM}, dtype::Float32(), "nccl")[0];
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
        auto loss = opr::Dot::make(y1, grad1);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile(
            {make_callback_copy(y1, host_y1),
             make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();

        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = make_reduce_scatter_sum_output({x0, x1});

        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = opr::Concat::make({grad0, grad1}, 0);

        auto func2 = graph2->compile(
            {make_callback_copy(y_expect[0], host_y0_expect),
             make_callback_copy(y_expect[1], host_y1_expect),
             make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(host_y1_expect, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad1);
}

TEST(TestOprCollectiveComm, ReduceSum) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

572 573 574 575 576
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

577
    auto client = std::make_shared<test::MockGroupClient>();
578 579 580 581 582 583 584
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto x1 = opr::Host2DeviceCopy::make(*graph, host_x1, cn0);
    auto x1c = opr::Copy::make(x1, cn1);

    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "reduce_sum",
585
            2, true, 0, client, {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
586
    auto y1 = opr::CollectiveComm::make({x1c}, graph.get(), "reduce_sum",
587
            2, false, 1, client, {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    auto y_expect = x0 + x1;

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1),
                                make_callback_copy(y_expect, host_y_expect)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

603 604 605 606 607
    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    auto host_x1 = gen({28, 28});
    HostTensorND host_y0, host_y_expect;

608
    auto client = std::make_shared<test::MockGroupClient>();
609 610 611 612

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
613
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce", 2, true, 0, client,
614 615 616 617 618 619 620 621
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
622
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce", 2, false, 1, client,
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        auto func1 = graph1->compile({{y1, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y_expect = x0 + x1;
        auto func2 = graph2->compile({make_callback_copy(y_expect, host_y_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y_expect, host_y0);
}

TEST(TestOprCollectiveComm, ReduceSumWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_x1 = gen(shape);
    auto host_grad = gen(shape);

    HostTensorND host_y0, host_y0_expect, host_out_grad0, host_out_grad1;

661
    auto client = std::make_shared<test::MockGroupClient>();
662 663 664 665 666 667

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
668
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "reduce", 2, true, 0, client,
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph0, host_grad, cn0);
        auto loss = opr::Dot::make(y0, grad);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

        auto x1 = opr::Host2DeviceCopy::make(*graph1, host_x1, cn1);
687
        auto y1 = opr::CollectiveComm::make({x1}, graph1.get(), "reduce", 2, false, 1, client,
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
                {Mode::REDUCE_SUM}, dtype::Float32(), "nccl")[0];
        y1.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad = opr::Host2DeviceCopy::make(*graph1, gen({1}), cn1);
        auto loss = opr::Dot::make(y1, grad);
        auto g = opr::VirtualGrad::make(loss, x1);

        auto func1 = graph1->compile({{y1, nullptr}, make_callback_copy(g, host_out_grad1)});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph2, host_x0, cn0);
        auto x1 = opr::Host2DeviceCopy::make(*graph2, host_x1, cn0);
        auto y0_expect = x0 + x1;
        auto func2 = graph2->compile({
            make_callback_copy(y0_expect, host_y0_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(host_y0_expect, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad0);
    MGB_ASSERT_TENSOR_EQ(*host_grad, host_out_grad1);
}

TEST(TestOprCollectiveComm, Broadcast) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
726 727 728 729 730

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1, host_y_expect;

731
    auto client = std::make_shared<test::MockGroupClient>();
732 733 734 735
    auto graph = ComputingGraph::make();

    auto x0 = opr::Host2DeviceCopy::make(*graph, host_x0, cn0);
    auto y0 = opr::CollectiveComm::make({x0}, graph.get(), "broadcast",
736
            2, true, 0, client, {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
737 738 739 740
    auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                  .comp_node(cn1)
                                                  .dtype(dtype::Float32())
                                                  .resize(host_x0->shape()));
741
    auto y1 = opr::CollectiveComm::make({}, graph.get(), "broadcast", 2, false, 1,
742 743 744 745 746 747 748 749 750 751 752 753 754 755
            client, {y_dev}, {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

    auto func = graph->compile({make_callback_copy(y0, host_y0),
                                make_callback_copy(y1, host_y1)});
    func->execute();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastMultiThread) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");
756 757 758 759 760

    HostTensorGenerator<> gen;
    auto host_x0 = gen({28, 28});
    HostTensorND host_y0, host_y1;

761
    auto client = std::make_shared<test::MockGroupClient>();
762 763 764 765

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
766
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "broadcast", 2, true, 0, client,
767 768 769 770 771 772 773 774 775 776 777
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        auto func0 = graph0->compile({make_callback_copy(y0, host_y0)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        auto y_dev = std::make_shared<DeviceTensorND>(DeviceTensorND()
                                                      .comp_node(cn1)
                                                      .dtype(dtype::Float32())
                                                      .resize(host_x0->shape()));
778
        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "broadcast", 2, false, 1, client,
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
                {y_dev}, {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];
        auto func1 = graph1->compile({make_callback_copy(y1, host_y1)});
        func1->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);

    t0.join();
    t1.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
}

TEST(TestOprCollectiveComm, BroadcastWithGrad) {
    REQUIRE_GPU(2);
    auto cn0 = CompNode::load("gpu0");
    auto cn1 = CompNode::load("gpu1");

    HostTensorGenerator<> gen;
    TensorShape shape({28, 28});
    auto host_x0 = gen(shape);
    auto host_grad0 = gen(shape);
    auto host_grad1 = gen(shape);

    HostTensorND host_y0, host_y1, host_out_grad, host_out_grad_expect;

807
    auto client = std::make_shared<test::MockGroupClient>();
808 809 810 811 812 813

    auto run_0 = [&]() { // rank 0
        auto graph0 = ComputingGraph::make();
        graph0->options().graph_opt_level = 0;

        auto x0 = opr::Host2DeviceCopy::make(*graph0, host_x0, cn0);
814
        auto y0 = opr::CollectiveComm::make({x0}, graph0.get(), "broadcast", 2, true, 0, client,
815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
                {Mode::BROADCAST}, dtype::Float32(), "nccl")[0];
        y0.node()->owner_opr()->node_prop().attribute().priority = -1;

        auto grad0 = opr::Host2DeviceCopy::make(*graph0, host_grad0, cn0);
        auto loss = opr::Dot::make(y0, grad0);
        auto g = opr::VirtualGrad::make(loss, x0);

        auto func0 = graph0->compile(
            {make_callback_copy(y0, host_y0),
             make_callback_copy(g, host_out_grad)});
        func0->execute();
    };

    auto run_1 = [&]() { // rank 1
        auto graph1 = ComputingGraph::make();
        graph1->options().graph_opt_level = 0;

832
        auto y1 = opr::CollectiveComm::make({}, graph1.get(), "broadcast", 2, false, 1, client,
833 834 835
                {Mode::BROADCAST}, dtype::Float32(), "nccl", {cn1})[0];

        auto grad1 = opr::Host2DeviceCopy::make(*graph1, host_grad1, cn1);
836
        auto g = opr::CollectiveComm::make({grad1}, graph1.get(), "broadcast:grad", 2, false, 1, client,
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
                Mode::REDUCE_SUM, dtype::Float32(), "nccl")[0];
        g.node()->owner_opr()->node_prop().attribute().priority = 1;

        auto func1 = graph1->compile({make_callback_copy(y1, host_y1), {g, nullptr}});
        func1->execute();
    };

    auto run_2 = [&]() { // check
        auto graph2 = ComputingGraph::make();
        auto grad0 = opr::Host2DeviceCopy::make(*graph2, host_grad0, cn0);
        auto grad1 = opr::Host2DeviceCopy::make(*graph2, host_grad1, cn0);
        auto out_grad_expect = grad0 + grad1;
        auto func2 = graph2->compile({
            make_callback_copy(out_grad_expect, host_out_grad_expect)});
        func2->execute();
    };

    std::thread t0(run_0);
    std::thread t1(run_1);
    std::thread t2(run_2);

    t0.join();
    t1.join();
    t2.join();

    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y0);
    MGB_ASSERT_TENSOR_EQ(*host_x0, host_y1);
    MGB_ASSERT_TENSOR_EQ(host_out_grad_expect, host_out_grad);
}