# model = hub.load("megengine/models", "wwm_cased_L-24_H-1024_A-16", pretrained=True)
# model = megengine.hub.load("megengine/models", "wwm_cased_L-24_H-1024_A-16", pretrained=True)
# model = hub.load("megengine/models", "wwm_uncased_L-24_H-1024_A-16", pretrained=True)
# model = megengine.hub.load("megengine/models", "wwm_uncased_L-24_H-1024_A-16", pretrained=True)
# model = hub.load("megengine/models", "cased_L-12_H-768_A-12", pretrained=True)
# model = megengine.hub.load("megengine/models", "cased_L-12_H-768_A-12", pretrained=True)
# model = hub.load("megengine/models", "cased_L-24_H-1024_A-16", pretrained=True)
# model = megengine.hub.load("megengine/models", "cased_L-24_H-1024_A-16", pretrained=True)
# model = hub.load("megengine/models", "uncased_L-12_H-768_A-12", pretrained=True)
# model = megengine.hub.load("megengine/models", "uncased_L-12_H-768_A-12", pretrained=True)
# model = hub.load("megengine/models", "uncased_L-24_H-1024_A-16", pretrained=True)
# model = megengine.hub.load("megengine/models", "uncased_L-24_H-1024_A-16", pretrained=True)
# model = hub.load("megengine/models", "chinese_L-12_H-768_A-12", pretrained=True)
# model = megengine.hub.load("megengine/models", "chinese_L-12_H-768_A-12", pretrained=True)
# model = hub.load("megengine/models", "multi_cased_L-12_H-768_A-12", pretrained=True)
# model = megengine.hub.load("megengine/models", "multi_cased_L-12_H-768_A-12", pretrained=True)
```
```
<!-- section: zh_CN -->
<!-- section: zh_CN -->
...
@@ -147,7 +147,7 @@ We provide the following pre-trained models for users to finetune in different t
...
@@ -147,7 +147,7 @@ We provide the following pre-trained models for users to finetune in different t
*`chinese_L-12_H-768_A-12`
*`chinese_L-12_H-768_A-12`
*`multi_cased_L-12_H-768_A-12`
*`multi_cased_L-12_H-768_A-12`
The weight of the model comes from Google's pre-trained models, and its meaning is also consistent with it. Users can use `megengine.hub` to easily use the pre-trained bert model, and download the corresponding` vocab.txt` and `bert_config.json`. We also provide a convenient script in [models](https://github.com/megengine/models/official/nlp/bert), which can directly obtain the corresponding dictionary, configuration, and pre-trained model by task name. .
The weight of the model comes from Google's pre-trained models, and its meaning is also consistent with it. Users can use `megengine.hub` to easily use the pre-trained bert model, and download the corresponding` vocab.txt` and `bert_config.json`. We also provide a convenient script in [models](https://github.com/megengine/models/official/nlp/bert), which can directly obtain the corresponding dictionary, configuration, and pre-trained model by task name. .
All pre-trained models expect the data to be pre-processed correctly. The requirements are consistent with the Google's bert. For details, please refer to original [bert] (https://github.com/google-research/bert), or refer to our example [models] ( https://github.com/megengine/models/official/nlp/bert).
All pre-trained models expect the data to be pre-processed correctly. The requirements are consistent with the Google's bert. For details, please refer to original [bert](https://github.com/google-research/bert), or refer to our example [models](https://github.com/megengine/models/official/nlp/bert).
### Model Description
### Model Description
We provide example code in [models](https://github.com/megengine/models/official/nlp/bert).
We provide example code in [models](https://github.com/megengine/models/official/nlp/bert).
This example code fine-tunes the pre-trained `uncased_L-12_H-768_A-12` model on the Microsoft Research Paraphrase (MRPC) dataset.
This example code fine-tunes the pre-trained `uncased_L-12_H-768_A-12` model on the Microsoft Research Paraphrase (MRPC) dataset.
Our test ran on the original implementation hyper-parameters gave evaluation results between 84% and 88%.
Our test ran on the original implementation hyper-parameters gave evaluation results between 84% and 88%.
Currently we provide these pretrained models: `resnet18`, `resnet34`, `resnet50`, `resnet101`, `resnext50_32x4d`. Their 1-crop accuracy on ImageNet validation dataset can be found in following table.
Currently we provide these pretrained models: `resnet18`, `resnet34`, `resnet50`, `resnet101`, `resnet152`, `resnext50_32x4d`. Their 1-crop accuracy on ImageNet validation dataset can be found in following table.
| model | Top1 acc | Top5 acc |
| model | Top1 acc | Top5 acc |
| --- | --- | --- |
| --- | --- | --- |
...
@@ -113,6 +115,7 @@ Currently we provide these pretrained models: `resnet18`, `resnet34`, `resnet50`
...
@@ -113,6 +115,7 @@ Currently we provide these pretrained models: `resnet18`, `resnet34`, `resnet50`