comp_node.cpp 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/**
 * \file src/core/test/comp_node.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "./comp_node_helper.h"

#include "megbrain/comp_node_env.h"
#include "megbrain/utils/comp_node_sync_manager.h"
#include "megbrain/utils/timer.h"
#include "megbrain/system.h"
#include "megbrain/test/helper.h"
#include "megbrain/opr/utility.h"

#include <chrono>
#if MGB_HAVE_THREAD
#include <thread>
#endif

using namespace mgb;

TEST(TestCompNode, Parse) {
    using L = CompNode::Locator;
    using D = CompNode::DeviceType;
31
    auto make_lc = [](D t, int dev, int s) -> L { return {t, dev, {s}}; };
32 33 34 35 36 37 38 39 40 41 42

    ASSERT_EQ(L::parse("xpux"), make_lc(D::UNSPEC, -1, 0));
    ASSERT_EQ(L::parse("xpux:23"), make_lc(D::UNSPEC, -1, 23));
    ASSERT_EQ(L::parse("xpu2:23"), make_lc(D::UNSPEC, 2, 23));
    ASSERT_EQ(L::parse("xpu21:23"), make_lc(D::UNSPEC, 21, 23));

    ASSERT_EQ(L::parse("cpux"), make_lc(D::CPU, -1, 0));
    ASSERT_EQ(L::parse("cpux:23"), make_lc(D::CPU, -1, 23));
    ASSERT_EQ(L::parse("cpu2:23"), make_lc(D::CPU, 2, 23));
    ASSERT_EQ(L::parse("cpu21:23"), make_lc(D::CPU, 21, 23));

43
    ASSERT_EQ(L::parse("xpu"), make_lc(D::UNSPEC, -1, 0));
44 45 46 47
    ASSERT_EQ(L::parse("xpux"), make_lc(D::UNSPEC, -1, 0));
    ASSERT_EQ(L::parse("xpu23"), make_lc(D::UNSPEC, 23, 0));
    ASSERT_EQ(L::parse("xpu23:1"), make_lc(D::UNSPEC, 23, 1));

48 49 50
    ASSERT_EQ(L::parse("cpu:default"), make_lc(D::CPU, L::DEVICE_CPU_DEFAULT, 0));
    ASSERT_EQ(L::parse("multithread2:0"), make_lc(D::MULTITHREAD, 0, 2));
    ASSERT_EQ(L::parse("multithread1:3"), make_lc(D::MULTITHREAD, 3, 1));
51 52 53 54 55 56 57 58 59 60 61 62 63
    ASSERT_EQ(L::parse("multithread:default:2"),
              make_lc(D::MULTITHREAD, L::DEVICE_MULTITHREAD_DEFAULT, 2));

    ASSERT_THROW(L::parse("apu"), MegBrainError);
    ASSERT_THROW(L::parse("fpgbx"), MegBrainError);
    ASSERT_THROW(L::parse("cab0"), MegBrainError);
    ASSERT_THROW(L::parse("cpu"), MegBrainError);
    ASSERT_THROW(L::parse("cpu-1"), MegBrainError);
    ASSERT_THROW(L::parse("cpu0:"), MegBrainError);
    ASSERT_THROW(L::parse("cpu0:x"), MegBrainError);
    ASSERT_THROW(L::parse("cpu2:23x"), MegBrainError);
    ASSERT_THROW(L::parse("heaxgon0"), MegBrainError);
    ASSERT_THROW(L::parse("rcom0"), MegBrainError);
64
    ASSERT_THROW(L::parse("cmabricon0"), MegBrainError);
65 66 67 68
    ASSERT_THROW(L::parse("multithread"), MegBrainError);
    ASSERT_THROW(L::parse("multithread1:"), MegBrainError);
    ASSERT_THROW(L::parse("multithread1:default"), MegBrainError);
    ASSERT_THROW(L::parse("multithread1:default:0"), MegBrainError);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
}

TEST(TestCompNode, SetDefaultDev) {
    REQUIRE_GPU(3);

    CompNode::finalize();
    using L = CompNode::Locator;
    auto orig_dt = L::parse("xpu").to_physical(),
         orig_gpu = L::parse("gpux").to_physical();
    constexpr auto CUDA = CompNode::DeviceType::CUDA;
    L::set_unspec_device_type(CUDA);
    L::set_device_map(CUDA, -1, 2);
    auto run = []() {
        ASSERT_EQ(CompNode::load("xpu").locator(), L::parse("gpu2"));
    };

    MGB_TRY {
        run();
    } MGB_FINALLY({
        L::set_unspec_device_type(orig_dt.type);
        L::set_device_map(CUDA, -1, orig_gpu.device);
    });
    CompNode::finalize();
}

TEST(TestCompNode, Load) {
    auto cn0 = CompNode::load("xpux"),
         cn1 = CompNode::load("cpux");
    ASSERT_EQ(CompNode::DeviceType::UNSPEC, cn0.locator_logical().type);
    ASSERT_EQ(CompNode::DeviceType::CPU, cn1.locator_logical().type);
    ASSERT_EQ(CompNode::load("cpux"), cn1);
    ASSERT_EQ(CompNode::load("xpux"), cn0);
    auto cnp = CompNode::load("cpu1"), cnq = CompNode::load("cpu2");
    ASSERT_EQ(CompNode::load("cpu1"), cnp);
    ASSERT_EQ(CompNode::load("cpu2"), cnq);
#if MGB_HAVE_THREAD
    ASSERT_NE(cnp, cnq);
#else
    ASSERT_EQ(cnp, cnq);
#endif

#if MGB_HAVE_THREAD
111 112 113 114 115 116
    auto cn_multi_thread0 = CompNode::load("multithread2:0");
    auto cn_multi_thread1 = CompNode::load("multithread2:1");
    ASSERT_EQ(CompNode::load("multithread2:0"), cn_multi_thread0);
    ASSERT_EQ(CompNode::load("multithread2:1"), cn_multi_thread1);
    ASSERT_NE(CompNode::load("multithread4:0"), cn_multi_thread0);
    ASSERT_NE(CompNode::load("multithread4:1"), cn_multi_thread1);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

    auto cn_multi_default0 = CompNode::load("multithread:default:2");
    auto cn_multi_default1 = CompNode::load("multithread:default:4");
    ASSERT_EQ(CompNode::load("multithread:default:2"), cn_multi_default0);
    ASSERT_EQ(CompNode::load("multithread:default:4"), cn_multi_default1);
    ASSERT_NE(cn_multi_thread0, cn_multi_default1);
#endif

    ASSERT_EQ(CompNode::load("cpu1"), cnp);
    ASSERT_EQ(CompNode::load("cpu2"), cnq);
    if (check_gpu_available(2)) {
        auto cn2 = CompNode::load("gpux"),
             cn3 = CompNode::load("gpu1");
        ASSERT_EQ(CompNode::DeviceType::CUDA, cn2.locator_logical().type);
        ASSERT_NE(cn2, cn3);
        ASSERT_EQ(CompNode::load("gpux"), cn2);
        ASSERT_EQ(CompNode::load("gpu1"), cn3);
    }
}

TEST(TestCompNode, FreeAfterFinalize) {
    CompNode::finalize();
    for (size_t i = 0; i < CompNode::NR_DEVICE_TYPE; ++i) {
        auto type = static_cast<CompNode::DeviceType>(i);
        if (!CompNode::get_device_count(type))
            continue;
143
        auto cn = CompNode::load(CompNode::Locator{type, -1, {0}});
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        auto ptr = cn.alloc_device(123);
        CompNode::finalize();
        cn.free_device(ptr);
    }
}

TEST(TestCompNode, CPUDispatchSync) {
    REQUIRE_THREAD();
    constexpr int LOOP = 160, tot_threads = 8;
    std::atomic_int started_threads{0};
    auto worker = [&](int *shared_cnt, CompNode dest) {
        int nr_call = 0;
        RNGxorshf rng{next_rand_seed()};
        auto func = [&rng, &nr_call, shared_cnt]() {
            ++ nr_call;
            ++ *shared_cnt;
            int volatile cnt = 0;
            while (rng() % 20)
                ++ cnt;
        };
        auto &&env = CompNodeEnv::from_comp_node(dest).cpu_env();
        ++ started_threads;
        while (started_threads.load() != tot_threads);
        for (int i = 0; i < LOOP; ++ i) {
            env.dispatch(func);
            dest.sync();
            ASSERT_EQ(i + 1, nr_call);
        }
    };
    auto cn0 = CompNode::load("cpu0"), cn1 = CompNode::load("cpu1");
    int cnt0 = 0, cnt1 = 0;
    std::vector<std::thread> wk_threads;
    for (int i = 0; i < tot_threads / 2; ++ i) {
        wk_threads.emplace_back(worker, &cnt0, cn0);
        wk_threads.emplace_back(worker, &cnt1, cn1);
    }

    for (auto &&i: wk_threads)
        i.join();

    ASSERT_EQ(LOOP * tot_threads / 2, cnt0);
    ASSERT_EQ(LOOP * tot_threads / 2, cnt1);
}

TEST(TestCompNodeCPU, CoreAffinity) {
    REQUIRE_THREAD();
    std::vector<size_t> data_v(2, 0);
    size_t data0, data1 = 0;
    auto empty_task = []() {};
    auto cn0 = CompNode::load("cpu:default"), cn1 = CompNode::load("cpu0"),
194
         cn2 = CompNode::load("multithread2:0");
195
    auto binding0 = [&](size_t) { data0 = 10; };
196 197 198 199
    CompNodeEnv::from_comp_node(cn0).cpu_env().set_affinity(binding0);
    CompNodeEnv::from_comp_node(cn0).cpu_env().dispatch(empty_task);
    cn0.sync();

200
    auto binding1 = [&](size_t ) { data1 = 20; };
201 202 203 204 205
    CompNodeEnv::from_comp_node(cn1).cpu_env().set_affinity(binding1);
    CompNodeEnv::from_comp_node(cn1).cpu_env().dispatch(empty_task);
    cn1.sync();

    auto binding2 = [&](size_t thread_id) { data_v[thread_id] = 30; };
206
    auto temp_task = [](size_t, size_t) {};
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    CompNodeEnv::from_comp_node(cn2).cpu_env().set_affinity(binding2);
    CompNodeEnv::from_comp_node(cn2).cpu_env().dispatch(temp_task, 40u);
    cn2.sync();
    ASSERT_EQ(data0, static_cast<size_t>(10));
    ASSERT_EQ(data1, static_cast<size_t>(20));
    ASSERT_EQ(data_v[0], static_cast<size_t>(30));
    ASSERT_EQ(data_v[1], static_cast<size_t>(30));
}

TEST(TestCompNode, CPU_MULTI_THREAD) {
    REQUIRE_THREAD();
    std::vector<int> source(100), dst0(100), dst1(100);
    for (int i = 0; i < 100; i++) {
        source[i] = i;
        dst0[i] = 0;
        dst1[i] = 0;
    }
    size_t total_task = 20;
    auto worker = [&](std::vector<int>& dst, CompNode dest) {
        auto func = [&](size_t index, size_t) {
            size_t sub_task = 100 / total_task;
            for (size_t i = index * sub_task; i < (index + 1) * sub_task; i++) {
                int sum = 0;
                for (size_t j = 0; j < i; j++) {
                    sum += source[j];
                }
                dst[i] = sum;
            }
        };
        auto&& env = CompNodeEnv::from_comp_node(dest).cpu_env();
        env.dispatch(std::move(func), total_task);
        dest.sync();
    };

    for (auto&& str : std::vector<std::string>{
242
                 "multithread2:0", "multithread4:0", "multithread:default:4"}) {
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        auto cn0 = CompNode::load("cpu0"), cn1 = CompNode::load(str);
        std::thread wk_thread0{std::ref(worker), std::ref(dst0), std::ref(cn0)};
        std::thread wk_thread1{std::ref(worker), std::ref(dst1), std::ref(cn1)};

        wk_thread0.join();
        wk_thread1.join();

        for (int i = 0; i < 100; i++) {
            ASSERT_EQ(dst0[i], dst1[i]);
        }
    }
}

TEST(TestCompNodeCuda, MemNode) {
    REQUIRE_GPU(2);

    auto cn00 = CompNode::load("gpu0"),
         cn1 = CompNode::load("gpu1"),
         cn01 = CompNode::load("gpu0:1");
    ASSERT_EQ(cn00, CompNode::load("gpu0"));
    ASSERT_EQ(cn00.mem_node(), cn01.mem_node());
    ASSERT_NE(cn00.mem_node(), cn1.mem_node());
}


TEST(TestCompNodeCPU, PhysicalDispatch) {
    constexpr int ID = 0x2a6453e0;
    using L = CompNode::Locator;
    constexpr auto DT = CompNode::DeviceType::CPU;
    L::set_device_map(DT, ID, 0);
    L::set_device_map(DT, ID + 1, 0);
    L::set_device_map(DT, ID + 2, 1);
275 276 277
    auto cn0 = CompNode::load({DT, ID, {0}}),
         cn1 = CompNode::load({DT, ID + 1, {0}}),
         cn2 = CompNode::load({DT, ID + 2, {0}});
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
#if MGB_HAVE_THREAD
    ASSERT_NE(cn0, cn1);
#else
    ASSERT_EQ(cn0, cn1);
#endif
    std::vector<std::thread::id> tids;
    std::mutex tids_mtx;
    auto get_tid = [&]() {
        MGB_LOCK_GUARD(tids_mtx);
        tids.push_back(std::this_thread::get_id());
    };
    CompNodeEnv::from_comp_node(cn0).cpu_env().dispatch(get_tid);
    CompNodeEnv::from_comp_node(cn1).cpu_env().dispatch(get_tid);
    CompNodeEnv::from_comp_node(cn2).cpu_env().dispatch(get_tid);
    CompNode::sync_all();
    std::unordered_set<std::thread::id> uniq_tids(tids.begin(), tids.end());
    ASSERT_EQ(3u, tids.size());
#if MGB_HAVE_THREAD
    ASSERT_EQ(2u, uniq_tids.size());
#else
    ASSERT_EQ(1u, uniq_tids.size());
#endif
}

TEST(TestCompNodeCPU, EventWait) {
    REQUIRE_THREAD();
    std::atomic_bool start = ATOMIC_VAR_INIT(false);
    auto cn0 = CompNode::load("cpu0"),
         cn1 = CompNode::load("cpu1");
    auto task0 = [&]() {
        while (!start)
            std::this_thread::yield();
    };
    auto event = cn0.create_event();
    CompNodeEnv::from_comp_node(cn0).cpu_env().dispatch(task0);
    event->record();
    cn1.device_wait_event(*event);

    bool succ = false;
    auto task1 = [&]() {
        succ = start;
    };
    CompNodeEnv::from_comp_node(cn1).cpu_env().dispatch(task1);

    using namespace std::literals;
    std::this_thread::sleep_for(50ms);
    ASSERT_FALSE(succ);
    start = true;
    CompNode::sync_all();
    ASSERT_TRUE(succ);
}

TEST(TestCompNodeCPU, EventRecOverwrite) {
    REQUIRE_THREAD();
    auto cn = CompNode::load("cpu0");
    auto dispatcher = CompNodeEnv::from_comp_node(cn).
        cpu_env().dispatcher.get();
    auto dispatch = [&](MegcoreCPUDispatcher::Task &&t) {
        dispatcher->dispatch(std::move(t));
    };
    auto ev = cn.create_event();
    auto wait_atomic = [](std::atomic_bool *var) {
        while(!var->load())
            std::this_thread::yield();
    };
    auto set_atomic = [](std::atomic_bool *var) {
        var->store(true);
    };

    std::atomic_bool
        s0 = ATOMIC_VAR_INIT(false),
        s1 = ATOMIC_VAR_INIT(false),
        t0 = ATOMIC_VAR_INIT(false),
        t1 = ATOMIC_VAR_INIT(false),
        t2 = ATOMIC_VAR_INIT(false);

    dispatch(std::bind(set_atomic, &t0));
    dispatch(std::bind(wait_atomic, &s0));
    ev->record();
    dispatch(std::bind(set_atomic, &t1));

    dispatch(std::bind(wait_atomic, &s1));
    ev->record();
    dispatch(std::bind(set_atomic, &t2));

    wait_atomic(&t0);
    ASSERT_FALSE(ev->finished());
    set_atomic(&s0);
    wait_atomic(&t1);
    ASSERT_FALSE(ev->finished());
    set_atomic(&s1);
    wait_atomic(&t2);
    ASSERT_TRUE(ev->finished());
}

namespace {
void test_peer_copy_from_device(const char* comp_node) {
    REQUIRE_THREAD();
    auto cn_gpu = CompNode::load(comp_node);
    auto cn_cpu = CompNode::load("cpux");

    HostTensorGenerator<> gen;
    auto a = gen({20, 3, 112, 112});
    auto b = gen({20, 3, 112, 112});
    auto c = gen({20, 3, 112, 112});
    DeviceTensorND dev_a{cn_gpu}, dev_b{cn_cpu}, dev_c{cn_gpu};
    dev_a.copy_from(*a).sync();
    dev_b.copy_from(*b).sync();
    dev_c.copy_from(*c).sync();

    auto wait_event = cn_gpu.create_event();

    opr::Sleep::sleep(cn_gpu, 0.1);
    dev_a.copy_from(dev_c);
    wait_event->record();

    cn_cpu.device_wait_event(*wait_event);
    dev_b.copy_from(dev_a);

    dev_b.sync();

    HostTensorND result;
    result.copy_from(dev_b);

    CompNode::sync_all();

    MGB_ASSERT_TENSOR_EQ(result, *c);
}
}

TEST(TestCompNodeCPU, PeerCopyFromCUDA) {
    REQUIRE_GPU(1);
    test_peer_copy_from_device("gpux");
}


TEST(TestCompNodeSyncManager, HostWait) {
    REQUIRE_THREAD();
    CompNodeSyncManager mgr(CompNode::load("xpu0"));

    auto run_set = [&]() {
        using namespace std::literals;
        std::this_thread::sleep_for(200ms);
        mgr.set_ready();
        mgb_log_debug("set_ready() called");
    };

    for (int run = 0; run < 2; ++ run) {
        std::thread th_run_set(run_set);

        RealTimer timer;
        mgr.clear_waiter_record();
        ASSERT_THROW(mgr.busy_wait_set_ready(), MegBrainError);

        mgr.add_waiter_record(false);
        mgr.add_waiter_record(false);
        mgr.busy_wait_set_ready();
        EXPECT_GE(timer.get_secs(), 0.1);
        timer.reset();
        mgr.busy_wait_set_ready();
        EXPECT_LE(timer.get_secs(), 0.001);

        th_run_set.join();
    }
}

TEST(TestCompNodeSyncManager, DeviceWait) {
    REQUIRE_THREAD();
    auto cns = load_multiple_xpus(3);
    auto cn0 = cns[0], cn1 = cns[1], cn2 = cns[2];
    CompNodeSyncManager mgr(cn0);

    using Event = CompNode::Event;
    auto ev_cn1 = cn1.create_event(),
         ev_cn2_begin = cn2.create_event(Event::NEED_TIMER),
         ev_cn2_end = cn2.create_event(Event::NEED_TIMER);

    for (int run = 0; run < 2; ++ run) {
        RealTimer timer;
        mgr.clear_waiter_record();
        ASSERT_THROW(mgr.busy_wait_set_ready_and_get_event(), MegBrainError);
        mgr.add_waiter_record(true);
        mgr.add_waiter_record(true);
        opr::Sleep::sleep(cn0, 0.13);
        mgr.set_ready();
        ev_cn2_begin->record();
        cn1.device_wait_event(mgr.busy_wait_set_ready_and_get_event());
        cn2.device_wait_event(mgr.busy_wait_set_ready_and_get_event());
        ev_cn1->record();
        ev_cn2_end->record();
        EXPECT_LE(timer.get_secs(), 0.05);

        ev_cn1->host_wait();
        EXPECT_GE(timer.get_secs(), 0.1);
        ev_cn2_end->host_wait();
        auto ev2_t = ev_cn2_begin->elapsed_time_until(*ev_cn2_end);
        EXPECT_GE(ev2_t, 0.1);
    }
}

TEST(TestCompNodeSyncManager, DeviceWaitCross) {
    REQUIRE_THREAD();
    auto cn0 = CompNode::load("xpu0:0"), cn1 = CompNode::load("xpu0:1");
    auto ev_cn0 = cn0.create_event(),
         ev_cn1 = cn1.create_event();

    RealTimer timer;

    // cross wait like deadlock, but guaranteed to work due to good timing
    ev_cn0->record();
    cn1.device_wait_event(*ev_cn0);
    ev_cn1->record();
    opr::Sleep::sleep(cn0, 0.1);
    cn0.device_wait_event(*ev_cn1);
    ev_cn0->record();
    cn1.device_wait_event(*ev_cn0);

    cn0.sync();
    cn1.sync();
    // sleep kernel in cuda is easily affected by the frequency change of GPU,
    // so we just print warn log instead assert. more refer to
    // XPU-226
    auto used = timer.get_secs();
    if (used <= 0.1 || used >= 0.2) {
        mgb_log_warn("expect time between [%f, %f], got %f", 0.1, 0.2, used);
    }
}

#if !MGB_HAVE_THREAD
TEST(TestCompNodeSyncManager, DeviceWaitWithoutThread) {
    auto cn = CompNode::load("cpu:default");
    CompNodeSyncManager mgr(cn);
    mgr.add_waiter_record(true);
    ASSERT_ANY_THROW(mgr.busy_wait_set_ready());
    mgr.set_ready();
    EXPECT_TRUE(mgr.busy_wait_set_ready_and_get_event().finished());
}
#endif

TEST(TestCompNode, MultipleLoad) {
    auto run = [](CompNode cn) {
        HostTensorND a(cn, {23}, dtype::Int32{}), b;
        auto pa = a.ptr<int>();
        for (int i = 0; i < 23; ++i) {
            pa[i] = i;
        }
        DeviceTensorND tmp;
        tmp.copy_from(a);
        b.copy_from(tmp).sync();
        auto pb = b.ptr<int>();
        for (int i = 0; i < 23; ++i) {
            ASSERT_EQ(i, pb[i]);
        }
        CompNode::finalize();
    };
    for (size_t i = 1; i < CompNode::NR_DEVICE_TYPE; ++i) {
        auto dt = static_cast<CompNode::DeviceType>(i);
        if (CompNode::get_device_count(dt)) {
536
            auto cn = CompNode::load({dt, 0, {0}});
537 538
            mgb_log("comp node %s is available", cn.to_string().c_str());
            run(cn);
539
            cn = CompNode::load({dt, 0, {0}});
540 541 542 543 544
            run(cn);
        }
    }
}

545

546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
namespace {
class CompNodeDepedentObjectInst final : public CompNodeDepedentObject {
    int *m_dst, *m_timer;

    std::shared_ptr<void> on_comp_node_finalize() override {
        EXPECT_EQ(0, *m_dst);
        *m_dst = ++*m_timer;
        return {};
    }

public:
    CompNodeDepedentObjectInst(int* dst, int* timer)
            : m_dst{dst}, m_timer{timer} {}
    void chk() { check_not_finalized(); }
};
}  // anonymous namespace

TEST(TestCompNode, DepedentObjectList) {
    CompNode::finalize();
    for (int i = 0; i < 5; ++i) {
        // loop multiple times so memory problems can be easier exposed
        int ts[4] = {0}, timer = 0;
        auto make = [&](int i) {
            return std::make_unique<CompNodeDepedentObjectInst>(ts + i, &timer);
        };
        auto i0 = make(0), i1 = make(1), i2 = make(2), i3 = make(3);
        ASSERT_NO_THROW(i0->chk());
        ASSERT_NO_THROW(i1->chk());
        i1.reset();
        comp_node_detail::DepedentObjList::invoke_callback_and_clean();
        ASSERT_EQ(1, ts[3]);
        ASSERT_EQ(2, ts[2]);
        ASSERT_EQ(0, ts[1]);
        ASSERT_EQ(3, ts[0]);
        ASSERT_THROW(i0->chk(), InternalError);
    }
}

namespace {
template <typename tag>
class TestCPUCompSeqRec : public ::testing::Test {};
TYPED_TEST_CASE(TestCPUCompSeqRec, comp_node_test::seq_rec::test_types);
TYPED_TEST(TestCPUCompSeqRec, run) {
    comp_node_test::seq_rec::run<TypeParam>(CompNode::load("cpux"));
}
TYPED_TEST(TestCPUCompSeqRec, run_default_cpu) {
    comp_node_test::seq_rec::run<TypeParam>(CompNode::load("cpu:default"));
}
TYPED_TEST(TestCPUCompSeqRec, run_multi_thread) {
595
    auto cn = CompNode::load("multithread4:0");
596 597 598 599 600 601 602 603 604 605
    comp_node_test::seq_rec::run<TypeParam>(cn);
}

TYPED_TEST(TestCPUCompSeqRec, run_multi_thread_default) {
    auto cn = CompNode::load("multithread:default:4");
    comp_node_test::seq_rec::run<TypeParam>(cn);
}
}  // anonymous namespace

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}