impl.cpp 15.5 KB
Newer Older
1 2 3 4
/**
 * \file src/core/impl/comp_node/mem_alloc/impl.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
5
 * Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain_build_config.h"

#include "./impl.h"
#include "megbrain/utils/arith_helper.h"

#include <algorithm>

using namespace mgb;
using namespace mem_alloc;

/* ===================== MemAllocImplHelper ===================== */

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#if !MGB_BUILD_SLIM_SERVING
std::pair<size_t, size_t> MemAllocImplHelper::get_free_left_and_right(size_t begin_ptr, size_t end_ptr) {
    MGB_LOCK_GUARD(m_mutex);
    auto iter = m_free_blk_addr.lower_bound(begin_ptr);
    size_t left_free = 0, right_free = 0;
    if (iter != m_free_blk_addr.begin()) {
        auto prev = iter;
        prev --;
        if (prev->first + prev->second.size == begin_ptr) {
            left_free = prev->second.size;
        }
    }
    if (iter != m_free_blk_addr.end()) {
        if (iter->first == end_ptr) {
            right_free = iter->second.size;
        }
    }
    return {left_free, right_free};
}
#endif

45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
MemAllocImplHelper::MemAddr MemAllocImplHelper::do_alloc(
        size_t size, bool allow_from_parent, bool log_stat_on_error) {

    mgb_assert(size);
    m_mutex.lock();

    auto iter = m_free_blk_size.lower_bound(FreeBlock{MemAddr{0, 0}, size});
    if (iter == m_free_blk_size.end()) {
        m_mutex.unlock();
        if (!allow_from_parent) {
            if (log_stat_on_error) {
                print_memory_state();
            }
            mgb_throw(MemAllocError,
                    "out of memory while requesting %zu bytes; you can try "
                    "setting MGB_CUDA_RESERVE_MEMORY to reserve all memory. "
                    "If there are dynamic variables, you can also try enabling "
                    "graph option `enable_grad_var_static_reshape` so "
                    "some gradient variables can be statically allocated",
                    size);
        }
        return alloc_from_parent(size);
    }

    size_t remain = iter->first.size - size;
    auto alloc_addr = iter->first.addr;
    m_free_blk_addr.erase(iter->second.aiter);
    m_free_blk_size.erase(iter);

    if (remain)
        insert_free_unsafe({alloc_addr + size, remain});

    m_mutex.unlock();
    return alloc_addr;
}

void MemAllocImplHelper::merge_free_unsafe(FreeBlock block) {
    auto iter = m_free_blk_addr.lower_bound(block.addr.addr);

    // merge with previous
    if (!block.addr.is_head && iter != m_free_blk_addr.begin()) {
        auto iprev = iter;
        -- iprev;
        if (iprev->first + iprev->second.size == block.addr.addr) {
            block.addr.addr = iprev->first;
            block.addr.is_head = iprev->second.is_head;
            block.size += iprev->second.size;
            m_free_blk_size.erase(iprev->second.siter);
            m_free_blk_addr.erase(iprev);
        }
    }

    // merge with next
    if (iter != m_free_blk_addr.end()) {
        mgb_assert(iter->first >= block.end());
        if (!iter->second.is_head && block.end() == iter->first) {
            block.size += iter->second.size;
            m_free_blk_size.erase(iter->second.siter);
            m_free_blk_addr.erase(iter);
        }
    }

    insert_free_unsafe(block);
}

void MemAllocImplHelper::insert_free_unsafe(const FreeBlock &block) {
    auto rst0 = m_free_blk_size.insert({block, {}});
    auto rst1 = m_free_blk_addr.insert({block.addr.addr, {}});
    mgb_assert(rst0.second & rst1.second);
    rst0.first->second.aiter = rst1.first;
    rst1.first->second.is_head = block.addr.is_head;
    rst1.first->second.size = block.size;
    rst1.first->second.siter = rst0.first;
}

void MemAllocImplHelper::print_memory_state() {
    auto stat = get_free_memory();
    MGB_MARK_USED_VAR(stat);
    mgb_log("device memory allocator stats: %s: "
            "used=%zu free={tot:%zu, min_blk:%zu, max_blk:%zu, nr:%zu}",
            get_name().c_str(), get_used_memory(),
            stat.tot, stat.min, stat.max, stat.nr_blk);
}

FreeMemStat MemAllocImplHelper::get_free_memory_self_unsafe() {
    FreeMemStat stat{0, std::numeric_limits<size_t>::max(), 0, 0};
    for (auto &&i: m_free_blk_size) {
        auto size = i.first.size;
        stat.tot += size;
        stat.min = std::min(stat.min, size);
        stat.max = std::max(stat.max, size);
        ++ stat.nr_blk;
    }
    return stat;
}

FreeMemStat MemAllocImplHelper::get_free_memory() {
    MGB_LOCK_GUARD(m_mutex);
    return get_free_memory_self_unsafe();
}

/* ===================== StreamMemAllocImpl ===================== */
std::string StreamMemAllocImpl::get_name() const {
    return ssprintf("stream allocator %d@%d",
            m_stream_id, m_dev_alloc->device());
}

void* StreamMemAllocImpl::alloc(size_t size) {
    size = get_aligned_power2(size, m_dev_alloc->alignment());
    auto addr = do_alloc(size, true);
    MGB_LOCK_GUARD(m_mutex);
    m_allocated_blocks[addr.addr_ptr()] = {addr.is_head, size};
    return addr.addr_ptr();
}

MemAllocImplHelper::MemAddr StreamMemAllocImpl::alloc_from_parent(size_t size) {
    auto addr = m_dev_alloc->alloc(size);
    MGB_LOCK_GUARD(m_mutex);
    m_allocated_blocks[addr.addr_ptr()] = {addr.is_head, size};
    return addr;
}

void StreamMemAllocImpl::free(void *addr) {
    MGB_LOCK_GUARD(m_mutex);
    auto iter = m_allocated_blocks.find(addr);
    mgb_assert(iter != m_allocated_blocks.end(),
            "releasing bad pointer: %p", addr);
    FreeBlock fb{
        MemAddr{iter->second.is_head, reinterpret_cast<size_t>(addr)},
        iter->second.size};
    m_allocated_blocks.erase(iter);
    merge_free_unsafe(fb);
}

void StreamMemAllocImpl::get_mem_info(size_t& free, size_t& tot) {
    auto&& stat = get_free_memory();
    free = stat.tot;
    auto used = get_used_memory();
    tot = free + used;
}

size_t StreamMemAllocImpl::get_used_memory() {
    MGB_LOCK_GUARD(m_mutex);
    size_t size = 0;
    for (auto &&i: m_allocated_blocks)
        size += i.second.size;
    return size;
}

FreeMemStat StreamMemAllocImpl::get_free_memory_dev() {
    return m_dev_alloc->get_free_memory_dev();
}

/* ===================== DevMemAllocImpl ===================== */

StreamMemAlloc* DevMemAllocImpl::add_stream(StreamKey stream) {
    MGB_LOCK_GUARD(m_mutex);
    auto&& ptr = m_stream_alloc[stream];
    if (!ptr)
        ptr.reset(new StreamMemAllocImpl(this, m_stream_alloc.size() - 1));
    return ptr.get();
}

MemAllocImplHelper::MemAddr DevMemAllocImpl::alloc(size_t size) {
    auto addr = do_alloc(size, true);
    m_used_size += size;
    return addr;
}

MemAllocImplHelper::MemAddr DevMemAllocImpl::alloc_from_parent(size_t size) {
    // pre-allocate to size_upper
    auto &&prconf = prealloc_config();
    auto size_upper = std::max<size_t>(std::max(size, prconf.min_req),
            m_tot_allocated_from_raw * prconf.growth_factor);
    size_upper = std::min(size_upper, size + prconf.max_overhead);
    size_upper = get_aligned_power2(size_upper, prconf.alignment);

    auto ptr = m_raw_allocator->alloc(size_upper);

    if (!ptr && size_upper > size) {
        // failed to allocate; do not pre-allocate and try again
        size_upper = size;
        ptr = m_raw_allocator->alloc(size_upper);
    }

    if (!ptr) {
        // gather free memory from other streams on this device and try again
        auto get = gather_stream_free_blk_and_release_full();
        MGB_MARK_USED_VAR(get);
        mgb_log("could not allocate memory on device %d; "
                "try to gather free blocks from child streams, "
                "got %.2fMiB(%zu bytes).",
                m_device, get / 1024.0 / 1024, get);

        ptr = m_raw_allocator->alloc(size_upper);

        if (!ptr) {
            // sync other devices in the hope that they can release memory on
            // this device; then try again
            auto&& runtime_policy = device_runtime_policy();
            auto callback = [&runtime_policy](CompNode cn) {
                if (cn.device_type() == runtime_policy->device_type()) {
                    int dev = cn.locator().device;
                    runtime_policy->device_synchronize(dev);
                }
            };
            MGB_TRY { CompNode::foreach (callback); }
            MGB_FINALLY({ m_runtime_policy->set_device(m_device); });

            {
                // sleep to wait for async dealloc
                using namespace std::literals;
                std::this_thread::sleep_for(0.2s);
            }
            get = gather_stream_free_blk_and_release_full();
            mgb_log("device %d: sync all device and try to "
                    "allocate again: got %.2fMiB(%zu bytes).",
                    m_device, get / 1024.0 / 1024, get);

            ptr = m_raw_allocator->alloc(size_upper);

            if (!ptr) {
                // try to alloc from newly gathered but unreleased (i.e. thoses
                // that are not full chunks from raw allocator) chunks
                //
                // exception would be thrown from here
                auto t = do_alloc(size, false, true);
                m_used_size += size;
                return t;
            }
        }
    }

    MGB_LOCK_GUARD(m_mutex);
    m_alloc_from_raw[ptr] = size_upper;
    auto ptr_int = reinterpret_cast<size_t>(ptr);
    if (size_upper > size) {
        insert_free_unsafe({
                MemAddr{false, ptr_int + size},
                size_upper - size});
    }
    m_tot_allocated_from_raw += size_upper;
    return {true, ptr_int};
}

size_t DevMemAllocImpl::gather_stream_free_blk_and_release_full() {
    size_t free_size = 0;
    std::vector<void*> to_free_by_raw;
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334

    MGB_LOCK_GUARD(m_mutex);
    auto return_full_free_blk_unsafe = [&](MemAllocImplHelper* alloc) {
        auto&& free_blk_size = alloc->m_free_blk_size;
        auto&& free_blk_addr = alloc->m_free_blk_addr;
        using Iter = decltype(m_free_blk_size.begin());
        for (Iter i = free_blk_size.begin(), inext; i != free_blk_size.end();
                i = inext) {
            inext = i;
            ++ inext;
            auto &&blk = i->first;
            if (blk.addr.is_head) {
                auto riter = m_alloc_from_raw.find(blk.addr.addr_ptr());
                mgb_assert(riter != m_alloc_from_raw.end() &&
                        blk.size <= riter->second);
                if (blk.size == riter->second) {
                    to_free_by_raw.push_back(blk.addr.addr_ptr());
                    free_size += blk.size;
                    auto j = i->second.aiter;
                    free_blk_size.erase(i);
                    free_blk_addr.erase(j);
                    m_alloc_from_raw.erase(riter);
                }
            }
        }
    };

    if (auto child = get_single_child_stream_unsafe()) {
        MGB_LOCK_GUARD(child->m_mutex);
        return_full_free_blk_unsafe(child);
        mgb_assert(free_size <= m_used_size.load());
        m_used_size -= free_size;
    } else {
        size_t gathered_size = 0;
        for (auto &&pair: m_stream_alloc) {
            auto ch = pair.second.get();
            auto &&chmtx = ch->m_mutex;

            MGB_LOCK_GUARD(chmtx);
            for (auto &&i: ch->m_free_blk_size) {
                merge_free_unsafe(i.first);
                gathered_size += i.first.size;
335
            }
336 337
            ch->m_free_blk_addr.clear();
            ch->m_free_blk_size.clear();
338
        }
339 340
        mgb_assert(gathered_size <= m_used_size.load());
        m_used_size -= gathered_size;
341
    }
342 343

    return_full_free_blk_unsafe(this);
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    m_tot_allocated_from_raw -= free_size;

    // we have to sync to ensure no kernel on the child stream still uses
    // freed memory
    m_runtime_policy->device_synchronize(m_device);

    for (auto i: to_free_by_raw)
        m_raw_allocator->free(i);

    return free_size;
}

DevMemAllocImpl::DevMemAllocImpl(
        int device, size_t reserve_size,
        const std::shared_ptr<mem_alloc::RawAllocator>& raw_allocator,
        const std::shared_ptr<mem_alloc::DeviceRuntimePolicy>&
                runtime_policy)
        : m_device(device),
          m_raw_allocator(raw_allocator),
          m_runtime_policy(runtime_policy) {
    if (reserve_size) {
        auto ptr = m_raw_allocator->alloc(reserve_size);
        mgb_throw_if(!ptr, MemAllocError,
                "failed to reserve memory for %zu bytes", reserve_size);
        insert_free_unsafe({
                MemAddr{true, reinterpret_cast<size_t>(ptr)},
                reserve_size});

        m_alloc_from_raw[ptr] = reserve_size;
        m_tot_allocated_from_raw += reserve_size;
    }
}

void DevMemAllocImpl::print_memory_state() {
    MemAllocImplHelper::print_memory_state();
    for (auto &&i: m_stream_alloc)
        i.second->print_memory_state();
}

FreeMemStat DevMemAllocImpl::get_free_memory_dev() {
    MGB_LOCK_GUARD(m_mutex);
    auto ret = get_free_memory_self_unsafe();
    for (auto&&i : m_stream_alloc) {
        MGB_LOCK_GUARD(i.second->m_mutex);
        auto cur = i.second->get_free_memory_self_unsafe();
        ret.tot += cur.tot;
        ret.min = std::min(ret.min, cur.min);
        ret.max = std::max(ret.max, cur.max);
        ret.nr_blk += cur.nr_blk;
    }
    return ret;
}

397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
void DevMemAllocImpl::insert_free_unsafe(const FreeBlock &block) {
    if (auto child = get_single_child_stream_unsafe()) {
        {
            MGB_LOCK_GUARD(child->m_mutex);
            child->insert_free_unsafe(block);
        }
        m_used_size += block.size;
    } else {
        MemAllocImplHelper::insert_free_unsafe(block);
    }
}

StreamMemAllocImpl* DevMemAllocImpl::get_single_child_stream_unsafe() {
    if (m_stream_alloc.size() == 1) {
        return m_stream_alloc.begin()->second.get();
    }
    return nullptr;
}

416 417 418 419 420
DevMemAllocImpl::~DevMemAllocImpl() {
    for (auto &&i: m_alloc_from_raw)
        m_raw_allocator->free(i.first);
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
std::unique_ptr<SimpleCachingAlloc> SimpleCachingAlloc::make(std::unique_ptr<RawAllocator> raw_alloc) {
    return std::make_unique<SimpleCachingAllocImpl>(std::move(raw_alloc));
}

SimpleCachingAllocImpl::SimpleCachingAllocImpl(std::unique_ptr<RawAllocator> raw_alloc)
        : m_raw_alloc(std::move(raw_alloc)) {}

void* SimpleCachingAllocImpl::alloc(size_t size) {
    size = get_aligned_power2(size, m_alignment);
    auto&& addr = do_alloc(size, true);
    auto ptr = addr.addr_ptr();
    MGB_LOCK_GUARD(m_mutex);
    m_allocated_blocks[ptr] = {addr.is_head, size};
    m_used_size += size;
    return ptr;
}

void SimpleCachingAllocImpl::free(void* ptr) {
    MGB_LOCK_GUARD(m_mutex);
    auto&& iter = m_allocated_blocks.find(ptr);
    mgb_assert(iter != m_allocated_blocks.end(),
            "releasing bad pointer: %p", ptr);
    auto size = iter->second.size;
    FreeBlock fb{MemAddr{iter->second.is_head, reinterpret_cast<size_t>(ptr)}, size};
    m_allocated_blocks.erase(iter);
    merge_free_unsafe(fb);
    m_used_size -= size;
}
449

450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
SimpleCachingAllocImpl::~SimpleCachingAllocImpl() {
    for (auto&& ptr_size : m_alloc_from_raw) {
        m_raw_alloc->free(ptr_size.first);
    }
}

SimpleCachingAllocImpl::MemAddr SimpleCachingAllocImpl::alloc_from_parent(size_t size) {
    void* ptr = m_raw_alloc->alloc(size);
    m_alloc_from_raw[ptr] = size;
    return {true, reinterpret_cast<size_t>(ptr)};
}

std::string SimpleCachingAllocImpl::get_name() const {
    return "SimpleCachingAllocImpl";
}

size_t SimpleCachingAllocImpl::get_used_memory() {
    return m_used_size;
}

FreeMemStat SimpleCachingAllocImpl::get_free_memory_dev() {
    return get_free_memory();
}

// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}