提交 49ddb7e0 编写于 作者: L luohui2320@gmail.com

Add SDIO stack support, current only support SDSC and SDHC card

git-svn-id: https://rt-thread.googlecode.com/svn/trunk@1771 bbd45198-f89e-11dd-88c7-29a3b14d5316
上级 3ac0b7b9
......@@ -8,8 +8,8 @@ src_drv = ['console.c']
if GetDepend('RT_USING_LED'):
src_drv += ['led.c']
#if GetDepend('RT_USING_DFS'):
#src_drv += ['sdcard.c']
if GetDepend('RT_USING_MMCSD'):
src_drv += ['at91_mci.c']
if GetDepend('RT_USING_LWIP'):
src_drv += ['macb.c']
......
......@@ -36,6 +36,11 @@
#include <devfs.h>
#endif
#ifdef RT_USING_MMCSD
#include <mmcsd_core.h>
#include "at91_mci.h"
#endif
#ifdef RT_USING_LWIP
#include <netif/ethernetif.h>
#include <arch/sys_arch_init.h>
......@@ -101,6 +106,19 @@ void rt_init_thread_entry(void* parameter)
}
#endif
#ifdef RT_USING_MMCSD
rt_mmcsd_core_init();
rt_mmcsd_blk_init();
at91_mci_init();
rt_thread_delay(RT_TICK_PER_SECOND*2);
/* mount sd card fat partition 1 as root directory */
if (dfs_mount("sd0", "/", "elm", 0, 0) == 0)
{
rt_kprintf("File System initialized!\n");
}
else
rt_kprintf("File System initialzation failed!\n");
#endif
}
#endif
......@@ -109,6 +127,8 @@ void rt_init_thread_entry(void* parameter)
/* register ethernetif device */
eth_system_device_init();
rt_hw_macb_init();
/* re-init device driver */
//rt_device_init_all();
/* init lwip system */
lwip_sys_init();
rt_kprintf("TCP/IP initialized!\n");
......
此差异已折叠。
/*
* File : at91_mci.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://openlab.rt-thread.com/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-06-09 weety first version
*/
#ifndef __AT91_MCI_H__
#define __AT91_MCI_H__
#define AT91_MCI_CR 0x00 /* Control Register */
#define AT91_MCI_MCIEN (1 << 0) /* Multi-Media Interface Enable */
#define AT91_MCI_MCIDIS (1 << 1) /* Multi-Media Interface Disable */
#define AT91_MCI_PWSEN (1 << 2) /* Power Save Mode Enable */
#define AT91_MCI_PWSDIS (1 << 3) /* Power Save Mode Disable */
#define AT91_MCI_SWRST (1 << 7) /* Software Reset */
#define AT91_MCI_MR 0x04 /* Mode Register */
#define AT91_MCI_CLKDIV (0xff << 0) /* Clock Divider */
#define AT91_MCI_PWSDIV (7 << 8) /* Power Saving Divider */
#define AT91_MCI_RDPROOF (1 << 11) /* Read Proof Enable [SAM926[03] only] */
#define AT91_MCI_WRPROOF (1 << 12) /* Write Proof Enable [SAM926[03] only] */
#define AT91_MCI_PDCFBYTE (1 << 13) /* PDC Force Byte Transfer [SAM926[03] only] */
#define AT91_MCI_PDCPADV (1 << 14) /* PDC Padding Value */
#define AT91_MCI_PDCMODE (1 << 15) /* PDC-orientated Mode */
#define AT91_MCI_BLKLEN (0xfff << 18) /* Data Block Length */
#define AT91_MCI_DTOR 0x08 /* Data Timeout Register */
#define AT91_MCI_DTOCYC (0xf << 0) /* Data Timeout Cycle Number */
#define AT91_MCI_DTOMUL (7 << 4) /* Data Timeout Multiplier */
#define AT91_MCI_DTOMUL_1 (0 << 4)
#define AT91_MCI_DTOMUL_16 (1 << 4)
#define AT91_MCI_DTOMUL_128 (2 << 4)
#define AT91_MCI_DTOMUL_256 (3 << 4)
#define AT91_MCI_DTOMUL_1K (4 << 4)
#define AT91_MCI_DTOMUL_4K (5 << 4)
#define AT91_MCI_DTOMUL_64K (6 << 4)
#define AT91_MCI_DTOMUL_1M (7 << 4)
#define AT91_MCI_SDCR 0x0c /* SD Card Register */
#define AT91_MCI_SDCSEL (3 << 0) /* SD Card Selector */
#define AT91_MCI_SDCBUS (1 << 7) /* 1-bit or 4-bit bus */
#define AT91_MCI_ARGR 0x10 /* Argument Register */
#define AT91_MCI_CMDR 0x14 /* Command Register */
#define AT91_MCI_CMDNB (0x3f << 0) /* Command Number */
#define AT91_MCI_RSPTYP (3 << 6) /* Response Type */
#define AT91_MCI_RSPTYP_NONE (0 << 6)
#define AT91_MCI_RSPTYP_48 (1 << 6)
#define AT91_MCI_RSPTYP_136 (2 << 6)
#define AT91_MCI_SPCMD (7 << 8) /* Special Command */
#define AT91_MCI_SPCMD_NONE (0 << 8)
#define AT91_MCI_SPCMD_INIT (1 << 8)
#define AT91_MCI_SPCMD_SYNC (2 << 8)
#define AT91_MCI_SPCMD_ICMD (4 << 8)
#define AT91_MCI_SPCMD_IRESP (5 << 8)
#define AT91_MCI_OPDCMD (1 << 11) /* Open Drain Command */
#define AT91_MCI_MAXLAT (1 << 12) /* Max Latency for Command to Response */
#define AT91_MCI_TRCMD (3 << 16) /* Transfer Command */
#define AT91_MCI_TRCMD_NONE (0 << 16)
#define AT91_MCI_TRCMD_START (1 << 16)
#define AT91_MCI_TRCMD_STOP (2 << 16)
#define AT91_MCI_TRDIR (1 << 18) /* Transfer Direction */
#define AT91_MCI_TRTYP (3 << 19) /* Transfer Type */
#define AT91_MCI_TRTYP_BLOCK (0 << 19)
#define AT91_MCI_TRTYP_MULTIPLE (1 << 19)
#define AT91_MCI_TRTYP_STREAM (2 << 19)
#define AT91_MCI_BLKR 0x18 /* Block Register */
#define AT91_MCI_BLKR_BCNT(n) ((0xffff & (n)) << 0) /* Block count */
#define AT91_MCI_BLKR_BLKLEN(n) ((0xffff & (n)) << 16) /* Block lenght */
#define AT91_MCI_RSPR(n) (0x20 + ((n) * 4)) /* Response Registers 0-3 */
#define AT91_MCR_RDR 0x30 /* Receive Data Register */
#define AT91_MCR_TDR 0x34 /* Transmit Data Register */
#define AT91_MCI_SR 0x40 /* Status Register */
#define AT91_MCI_CMDRDY (1U << 0) /* Command Ready */
#define AT91_MCI_RXRDY (1U << 1) /* Receiver Ready */
#define AT91_MCI_TXRDY (1U << 2) /* Transmit Ready */
#define AT91_MCI_BLKE (1U << 3) /* Data Block Ended */
#define AT91_MCI_DTIP (1U << 4) /* Data Transfer in Progress */
#define AT91_MCI_NOTBUSY (1U << 5) /* Data Not Busy */
#define AT91_MCI_ENDRX (1U << 6) /* End of RX Buffer */
#define AT91_MCI_ENDTX (1U << 7) /* End fo TX Buffer */
#define AT91_MCI_SDIOIRQA (1U << 8) /* SDIO Interrupt for Slot A */
#define AT91_MCI_SDIOIRQB (1U << 9) /* SDIO Interrupt for Slot B */
#define AT91_MCI_RXBUFF (1U << 14) /* RX Buffer Full */
#define AT91_MCI_TXBUFE (1U << 15) /* TX Buffer Empty */
#define AT91_MCI_RINDE (1U << 16) /* Response Index Error */
#define AT91_MCI_RDIRE (1U << 17) /* Response Direction Error */
#define AT91_MCI_RCRCE (1U << 18) /* Response CRC Error */
#define AT91_MCI_RENDE (1U << 19) /* Response End Bit Error */
#define AT91_MCI_RTOE (1U << 20) /* Reponse Time-out Error */
#define AT91_MCI_DCRCE (1U << 21) /* Data CRC Error */
#define AT91_MCI_DTOE (1U << 22) /* Data Time-out Error */
#define AT91_MCI_OVRE (1U << 30) /* Overrun */
#define AT91_MCI_UNRE (1U << 31) /* Underrun */
#define AT91_MCI_IER 0x44 /* Interrupt Enable Register */
#define AT91_MCI_IDR 0x48 /* Interrupt Disable Register */
#define AT91_MCI_IMR 0x4c /* Interrupt Mask Register */
extern rt_int32_t at91_mci_init(void);
#endif
......@@ -118,6 +118,8 @@
//#define RT_USING_LED
#define RT_USING_MMCSD
#define RT_USING_DBGU
/* #define RT_USING_UART0 */
/* #define RT_USING_UART1 */
......
Import('RTT_ROOT')
from building import *
src = Split("""
block_dev.c
mmcsd_core.c
sd.c
""")
# The set of source files associated with this SConscript file.
path = [RTT_ROOT + '/components/mmcsd']
group = DefineGroup('MMCSD', src, depend = ['RT_USING_MMCSD'], CPPPATH = path)
Return('group')
/*
* File : block_dev.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include <dfs_fs.h>
#include "list.h"
#include "mmcsd_core.h"
#include "mmcsd_cmd.h"
static rt_list_t blk_devices;
struct mmcsd_blk_device {
struct rt_mmcsd_card *card;
rt_list_t list;
struct rt_device dev;
struct dfs_partition part;
struct rt_device_blk_geometry geometry;
};
#ifndef RT_MMCSD_MAX_PARTITION
#define RT_MMCSD_MAX_PARTITION 16
#endif
static rt_int32_t mmcsd_num_wr_blocks(struct rt_mmcsd_card *card)
{
rt_int32_t err;
rt_uint32_t blocks;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t timeout_us;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = APP_CMD;
cmd.arg = card->rca << 16;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 0);
if (err)
return -RT_ERROR;
if (!controller_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_SEND_NUM_WR_BLKS;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
data.timeout_ns = card->tacc_ns * 100;
data.timeout_clks = card->tacc_clks * 100;
timeout_us = data.timeout_ns / 1000;
timeout_us += data.timeout_clks * 1000 /
(card->host->io_cfg.clock / 1000);
if (timeout_us > 100000)
{
data.timeout_ns = 100000000;
data.timeout_clks = 0;
}
data.blksize = 4;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = &blocks;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(card->host, &req);
if (cmd.err || data.err)
return -RT_ERROR;
return blocks;
}
static rt_err_t rt_mmcsd_req_blk(struct rt_mmcsd_card *card, rt_uint32_t sector, void *buf, rt_size_t blks, rt_uint8_t dir)
{
struct rt_mmcsd_cmd cmd, stop;
struct rt_mmcsd_data data;
struct rt_mmcsd_req req;
struct rt_mmcsd_host *host = card->host;
rt_uint32_t r_cmd, w_cmd;
mmcsd_host_lock(host);
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&stop, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.arg = sector;
if (!(card->card_type & CARD_TYPE_SDHC))
{
cmd.arg <<= 9;
}
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = SECTOR_SIZE;
data.blks = blks;
if (blks > 1)
{
if (!controller_is_spi(card->host) || !dir)
{
req.stop = &stop;
stop.cmd_code = STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = RESP_SPI_R1B | RESP_R1B | CMD_AC;
}
r_cmd = READ_MULTIPLE_BLOCK;
w_cmd = WRITE_MULTIPLE_BLOCK;
}
else
{
req.stop = NULL;
r_cmd = READ_SINGLE_BLOCK;
w_cmd = WRITE_BLOCK;
}
if (!dir)
{
cmd.cmd_code = r_cmd;
data.flags |= DATA_DIR_READ;
}
else
{
cmd.cmd_code = w_cmd;
data.flags |= DATA_DIR_WRITE;
}
mmcsd_set_data_timeout(&data, card);
data.buf = buf;
mmcsd_send_request(host, &req);
if (!controller_is_spi(card->host) && dir != 0)
{
do
{
rt_int32_t err;
cmd.cmd_code = SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 5);
if (err)
{
rt_kprintf("error %d requesting status\n", err);
break;
}
/*
* Some cards mishandle the status bits,
* so make sure to check both the busy
* indication and the card state.
*/
} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
(R1_CURRENT_STATE(cmd.resp[0]) == 7));
}
mmcsd_host_unlock(host);
if (cmd.err || data.err || stop.err)
{
rt_kprintf("mmcsd request blocks error\n");
rt_kprintf("%d,%d,%d, 0x%08x,0x%08x\n", cmd.err, data.err, stop.err, data.flags, sector);
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t rt_mmcsd_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_mmcsd_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
switch (cmd)
{
case RT_DEVICE_CTRL_BLK_GETGEOME:
rt_memcpy(args, &blk_dev->geometry, sizeof(struct rt_device_blk_geometry));
break;
default: break;
}
return RT_EOK;
}
static rt_size_t rt_mmcsd_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_err_t err;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if ( dev == RT_NULL )
{
rt_set_errno(-DFS_STATUS_EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, buffer, size, 0);
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-DFS_STATUS_EIO);
return 0;
}
return size;
}
static rt_size_t rt_mmcsd_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_err_t err;
struct mmcsd_blk_device *blk_dev = (struct mmcsd_blk_device *)dev->user_data;
struct dfs_partition *part = &blk_dev->part;
if ( dev == RT_NULL )
{
rt_set_errno(-DFS_STATUS_EINVAL);
return 0;
}
rt_sem_take(part->lock, RT_WAITING_FOREVER);
err = rt_mmcsd_req_blk(blk_dev->card, part->offset + pos, (void *)buffer, size, 1);
rt_sem_release(part->lock);
/* the length of reading must align to SECTOR SIZE */
if (err)
{
rt_set_errno(-DFS_STATUS_EIO);
return 0;
}
return size;
}
static rt_int32_t mmcsd_set_blksize(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_cmd cmd;
int err;
/* Block-addressed cards ignore MMC_SET_BLOCKLEN. */
if (card->card_type & CARD_TYPE_SDHC)
return 0;
mmcsd_host_lock(card->host);
cmd.cmd_code = SET_BLOCKLEN;
cmd.arg = 512;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 5);
mmcsd_host_unlock(card->host);
if (err)
{
rt_kprintf("MMCSD: unable to set block size to %d: %d\n",
cmd.arg, err);
return -RT_ERROR;
}
return 0;
}
rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card)
{
rt_int32_t err = 0;
rt_uint8_t i, status;
rt_uint8_t *sector;
char dname[4];
char sname[8];
struct mmcsd_blk_device *blk_dev = RT_NULL;
err = mmcsd_set_blksize(card);
if(err)
{
return err;
}
/* get the first sector to read partition table */
sector = (rt_uint8_t*) rt_malloc (SECTOR_SIZE);
if (sector == RT_NULL)
{
rt_kprintf("allocate partition sector buffer failed\n");
return -RT_ENOMEM;
}
status = rt_mmcsd_req_blk(card, 0, sector, 1, 0);
if (status == RT_EOK)
{
for(i=0; i < RT_MMCSD_MAX_PARTITION; i++)
{
blk_dev = rt_malloc(sizeof(struct mmcsd_blk_device));
if (!blk_dev)
{
rt_kprintf("mmcsd:malloc mem failde\n");
break;
}
rt_memset((void *)blk_dev, 0, sizeof(struct mmcsd_blk_device));
/* get the first partition */
status = dfs_filesystem_get_partition(&blk_dev->part, sector, i);
if (status == RT_EOK)
{
rt_snprintf(dname, 4, "sd%d", i);
rt_snprintf(sname, 8, "sem_sd%d", i);
blk_dev->part.lock = rt_sem_create(sname, 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
blk_dev->dev.user_data = blk_dev;
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1<<9;
blk_dev->geometry.block_size = card->card_blksize;
blk_dev->geometry.sector_count = blk_dev->part.size;
rt_device_register(&blk_dev->dev, dname,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
list_insert_after(&blk_devices, &blk_dev->list);
}
else
{
if(i == 0)
{
/* there is no partition table */
blk_dev->part.offset = 0;
blk_dev->part.size = 0;
blk_dev->part.lock = rt_sem_create("sem_sd0", 1, RT_IPC_FLAG_FIFO);
/* register mmcsd device */
blk_dev->dev.type = RT_Device_Class_Block;
blk_dev->dev.init = rt_mmcsd_init;
blk_dev->dev.open = rt_mmcsd_open;
blk_dev->dev.close = rt_mmcsd_close;
blk_dev->dev.read = rt_mmcsd_read;
blk_dev->dev.write = rt_mmcsd_write;
blk_dev->dev.control = rt_mmcsd_control;
blk_dev->dev.user_data = blk_dev;
blk_dev->card = card;
blk_dev->geometry.bytes_per_sector = 1<<9;
blk_dev->geometry.block_size = card->card_blksize;
if (card->card_type | CARD_TYPE_SDHC)
{
blk_dev->geometry.sector_count = (card->csd.c_size + 1) * 1024;
}
else
{
blk_dev->geometry.sector_count =
card->card_capacity * 1024 / 512;
}
rt_device_register(&blk_dev->dev, "sd0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
list_insert_after(&blk_devices, &blk_dev->list);
break;
}
else
{
rt_free(blk_dev);
blk_dev = RT_NULL;
break;
}
}
}
}
else
{
rt_kprintf("read mmcsd first sector failed\n");
err = -RT_ERROR;
}
/* release sector buffer */
rt_free(sector);
return err;
}
void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card)
{
rt_list_t *l;
struct mmcsd_blk_device *blk_dev;
for (l = (&blk_devices)->next; l != &blk_devices; l = l->next)
{
blk_dev = (struct mmcsd_blk_device *)list_entry(l, struct mmcsd_blk_device, list);
if (blk_dev->card == card)
{
rt_device_unregister(&blk_dev->dev);
list_remove(&blk_dev->list);
rt_free(blk_dev);
}
}
}
void rt_mmcsd_blk_init(void)
{
list_init(&blk_devices);
}
/*
* File : list.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006 - 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-01-15 weety copy from kservice APIs
*/
#ifndef __RT_LIST_H__
#define __RT_LIST_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @addtogroup list
*/
/*@{*/
/**
* @brief initialize a list
*
* @param l list to be initialized
*/
rt_inline void list_init(rt_list_t *l)
{
l->next = l->prev = l;
}
/**
* @brief insert a node after a list
*
* @param l list to insert it
* @param n new node to be inserted
*/
rt_inline void list_insert_after(rt_list_t *l, rt_list_t *n)
{
l->next->prev = n;
n->next = l->next;
l->next = n;
n->prev = l;
}
/**
* @brief insert a node before a list
*
* @param n new node to be inserted
* @param l list to insert it
*/
rt_inline void list_insert_before(rt_list_t *l, rt_list_t *n)
{
l->prev->next = n;
n->prev = l->prev;
l->prev = n;
n->next = l;
}
/**
* @brief remove node from list.
* @param n the node to remove from the list.
*/
rt_inline void list_remove(rt_list_t *n)
{
n->next->prev = n->prev;
n->prev->next = n->next;
n->next = n->prev = n;
}
/**
* @brief tests whether a list is empty
* @param l the list to test.
*/
rt_inline int list_isempty(const rt_list_t *l)
{
return l->next == l;
}
/**
* @brief get the struct for this entry
* @param node the entry point
* @param type the type of structure
* @param member the name of list in structure
*/
#define list_entry(node, type, member) \
((type *)((char *)(node) - (unsigned long)(&((type *)0)->member)))
/*@}*/
#ifdef __cplusplus
}
#endif
#endif
/*
* File : mmcsd_card.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#ifndef __MMCSD_CARD_H__
#define __MMCSD_CARD_H__
#include "mmcsd_host.h"
#ifdef __cplusplus
extern "C" {
#endif
#define SD_SCR_BUS_WIDTH_1 (1 << 0)
#define SD_SCR_BUS_WIDTH_4 (1 << 2)
struct rt_mmcsd_cid {
rt_uint8_t mid; /* ManufacturerID */
rt_uint8_t prv; /* Product Revision */
rt_uint16_t oid; /* OEM/Application ID */
rt_uint32_t psn; /* Product Serial Number */
rt_uint8_t pnm[5]; /* Product Name */
rt_uint8_t reserved1;/* reserved */
rt_uint16_t mdt; /* Manufacturing Date */
rt_uint8_t crc; /* CID CRC */
rt_uint8_t reserved2;/* not used, always 1 */
};
struct rt_mmcsd_csd {
rt_uint8_t csd_structure; /* CSD register version */
rt_uint8_t taac;
rt_uint8_t nsac;
rt_uint8_t tran_speed; /* max data transfer rate */
rt_uint16_t card_cmd_class; /* card command classes */
rt_uint8_t rd_blk_len; /* max read data block length */
rt_uint8_t rd_blk_part;
rt_uint8_t wr_blk_misalign;
rt_uint8_t rd_blk_misalign;
rt_uint8_t dsr_imp; /* DSR implemented */
rt_uint8_t c_size_mult; /* CSD 1.0 , device size multiplier */
rt_uint32_t c_size; /* device size */
rt_uint8_t r2w_factor;
rt_uint8_t wr_blk_len; /* max wtire data block length */
rt_uint8_t wr_blk_partial;
rt_uint8_t csd_crc;
};
struct rt_sd_scr {
rt_uint8_t sd_version;
rt_uint8_t sd_bus_widths;
};
struct rt_mmcsd_card {
struct rt_mmcsd_host *host;
rt_uint32_t rca; /* card addr */
rt_uint32_t resp_cid[4]; /* card CID register */
rt_uint32_t resp_csd[4]; /* card CSD register */
rt_uint32_t resp_scr[2]; /* card SCR register */
rt_uint16_t tacc_clks; /* data access time by ns */
rt_uint32_t tacc_ns; /* data access time by clk cycles */
rt_uint32_t max_data_rate; /* max data transfer rate */
rt_uint32_t card_capacity; /* card capacity, unit:KB */
rt_uint32_t card_blksize; /* card block size */
rt_uint32_t card_type;
#define CARD_TYPE_MMC (1 << 0) /* MMC card */
#define CARD_TYPE_SD (1 << 1) /* SD card */
#define CARD_TYPE_SDIO (1 << 2) /* SDIO card */
#define CARD_TYPE_SDHC (1 << 3) /* SDHC card */
struct rt_sd_scr scr;
struct rt_mmcsd_csd csd;
rt_uint32_t hs_max_data_rate; /* max data transfer rate in high speed mode */
rt_uint32_t flags;
#define CARD_MODE_HIGHSPEED (1 << 0)
};
#ifdef __cplusplus
}
#endif
#endif
/*
* File : mmcsd_cmd.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#ifndef __CMD_H__
#define __CMD_H__
#ifdef __cplusplus
extern "C" {
#endif
/* class 1 */
#define GO_IDLE_STATE 0 /* bc */
#define SEND_OP_COND 1 /* bcr [31:0] OCR R3 */
#define ALL_SEND_CID 2 /* bcr R2 */
#define SET_RELATIVE_ADDR 3 /* ac [31:16] RCA R1 */
#define SET_DSR 4 /* bc [31:16] RCA */
#define SWITCH 6 /* ac [31:0] See below R1b */
#define SELECT_CARD 7 /* ac [31:16] RCA R1 */
#define SEND_EXT_CSD 8 /* adtc R1 */
#define SEND_CSD 9 /* ac [31:16] RCA R2 */
#define SEND_CID 10 /* ac [31:16] RCA R2 */
#define READ_DAT_UNTIL_STOP 11 /* adtc [31:0] dadr R1 */
#define STOP_TRANSMISSION 12 /* ac R1b */
#define SEND_STATUS 13 /* ac [31:16] RCA R1 */
#define GO_INACTIVE_STATE 15 /* ac [31:16] RCA */
#define SPI_READ_OCR 58 /* spi spi_R3 */
#define SPI_CRC_ON_OFF 59 /* spi [0:0] flag spi_R1 */
/* class 2 */
#define SET_BLOCKLEN 16 /* ac [31:0] block len R1 */
#define READ_SINGLE_BLOCK 17 /* adtc [31:0] data addr R1 */
#define READ_MULTIPLE_BLOCK 18 /* adtc [31:0] data addr R1 */
/* class 3 */
#define WRITE_DAT_UNTIL_STOP 20 /* adtc [31:0] data addr R1 */
/* class 4 */
#define SET_BLOCK_COUNT 23 /* adtc [31:0] data addr R1 */
#define WRITE_BLOCK 24 /* adtc [31:0] data addr R1 */
#define WRITE_MULTIPLE_BLOCK 25 /* adtc R1 */
#define PROGRAM_CID 26 /* adtc R1 */
#define PROGRAM_CSD 27 /* adtc R1 */
/* class 6 */
#define SET_WRITE_PROT 28 /* ac [31:0] data addr R1b */
#define CLR_WRITE_PROT 29 /* ac [31:0] data addr R1b */
#define SEND_WRITE_PROT 30 /* adtc [31:0] wpdata addr R1 */
/* class 5 */
#define ERASE_GROUP_START 35 /* ac [31:0] data addr R1 */
#define ERASE_GROUP_END 36 /* ac [31:0] data addr R1 */
#define ERASE 38 /* ac R1b */
/* class 9 */
#define FAST_IO 39 /* ac <Complex> R4 */
#define GO_IRQ_STATE 40 /* bcr R5 */
/* class 7 */
#define LOCK_UNLOCK 42 /* adtc R1b */
/* class 8 */
#define APP_CMD 55 /* ac [31:16] RCA R1 */
#define GEN_CMD 56 /* adtc [0] RD/WR R1 */
/* SD commands type argument response */
/* class 0 */
/* This is basically the same command as for MMC with some quirks. */
#define SD_SEND_RELATIVE_ADDR 3 /* bcr R6 */
#define SD_SEND_IF_COND 8 /* bcr [11:0] See below R7 */
/* class 10 */
#define SD_SWITCH 6 /* adtc [31:0] See below R1 */
/* Application commands */
#define SD_APP_SET_BUS_WIDTH 6 /* ac [1:0] bus width R1 */
#define SD_APP_SEND_NUM_WR_BLKS 22 /* adtc R1 */
#define SD_APP_OP_COND 41 /* bcr [31:0] OCR R3 */
#define SD_APP_SEND_SCR 51 /* adtc R1 */
#define SCR_SPEC_VER_0 0 /* Implements system specification 1.0 - 1.01 */
#define SCR_SPEC_VER_1 1 /* Implements system specification 1.10 */
#define SCR_SPEC_VER_2 2 /* Implements system specification 2.00 */
#ifdef __cplusplus
}
#endif
#endif
/*
* File : mmcsd_core.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include "mmcsd_core.h"
#include "mmcsd_card.h"
#include "mmcsd_cmd.h"
#include "sd.h"
#ifndef RT_MMCSD_STACK_SIZE
#define RT_MMCSD_STACK_SIZE 1024
#endif
#ifndef RT_MMCSD_THREAD_PREORITY
#define RT_MMCSD_THREAD_PREORITY 0x40
#endif
//static struct rt_semaphore mmcsd_sem;
static struct rt_thread mmcsd_detect_thread;
static rt_uint8_t mmcsd_stack[RT_MMCSD_STACK_SIZE];
static struct rt_mailbox mmcsd_detect_mb;
static rt_uint32_t mmcsd_detect_mb_pool[4];
void mmcsd_host_lock(struct rt_mmcsd_host *host)
{
rt_sem_take(&host->bus_lock, RT_WAITING_FOREVER);
}
void mmcsd_host_unlock(struct rt_mmcsd_host *host)
{
rt_sem_release(&host->bus_lock);
}
void mmcsd_req_complete(struct rt_mmcsd_host *host)
{
rt_sem_release(&host->sem_ack);
}
void mmcsd_send_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req)
{
req->cmd->data = req->data;
host->ops->request(host, req);
rt_sem_take(&host->sem_ack, RT_WAITING_FOREVER);
}
rt_int32_t mmcsd_send_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, int retries)
{
struct rt_mmcsd_req req;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(cmd->resp, 0, sizeof(cmd->resp));
req.cmd = cmd;
cmd->data = RT_NULL;
mmcsd_send_request(host, &req);
return cmd->err;
}
rt_int32_t mmcsd_go_idle(struct rt_mmcsd_host *host)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
if (!controller_is_spi(host)) {
mmcsd_set_chip_select(host, MMCSD_CS_HIGH);
mmcsd_delay_ms(1);
}
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_NONE | CMD_BC;
err = mmcsd_send_cmd(host, &cmd, 0);
mmcsd_delay_ms(1);
if (!controller_is_spi(host))
{
mmcsd_set_chip_select(host, MMCSD_CS_IGNORE);
mmcsd_delay_ms(1);
}
return err;
}
rt_int32_t mmcsd_spi_read_ocr(struct rt_mmcsd_host *host, rt_int32_t high_capacity, rt_uint32_t *ocr)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SPI_READ_OCR;
cmd.arg = high_capacity ? (1 << 30) : 0;
cmd.flags = RESP_SPI_R3;
err = mmcsd_send_cmd(host, &cmd, 0);
*ocr = cmd.resp[1];
return err;
}
rt_int32_t mmcsd_all_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = ALL_SEND_CID;
cmd.arg = 0;
cmd.flags = RESP_R2 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
rt_int32_t mmcsd_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid)
{
rt_int32_t err, i;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t *buf = RT_NULL;
if (!controller_is_spi(host))
{
if (!host->card)
return -RT_ERROR;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SEND_CID;
cmd.arg = host->card->rca << 16;
cmd.flags = RESP_R2 | CMD_AC;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
buf = rt_malloc(16);
if (!buf)
{
rt_kprintf("malloc mem failed\n");
return -RT_ENOMEM;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SEND_CID;
cmd.arg = 0;
/* NOTE HACK: the RESP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 16;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = buf;
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
rt_free(buf);
return -RT_ERROR;
}
for (i = 0;i < 4;i++)
cid[i] = buf[i];
rt_free(buf);
return 0;
}
rt_int32_t mmcsd_get_csd(struct rt_mmcsd_card *card, rt_uint32_t *csd)
{
rt_int32_t err, i;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint32_t *buf = RT_NULL;
if (!controller_is_spi(card->host))
{
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SEND_CSD;
cmd.arg = card->rca << 16;
cmd.flags = RESP_R2 | CMD_AC;
err = mmcsd_send_cmd(card->host, &cmd, 3);
if (err)
return err;
rt_memcpy(csd, cmd.resp, sizeof(rt_uint32_t) * 4);
return 0;
}
buf = rt_malloc(16);
if (!buf)
{
rt_kprintf("malloc mem failed\n");
return -RT_ENOMEM;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SEND_CSD;
cmd.arg = 0;
/* NOTE HACK: the RESP_SPI_R1 is always correct here, but we
* rely on callers to never use this with "native" calls for reading
* CSD or CID. Native versions of those commands use the R2 type,
* not R1 plus a data block.
*/
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 16;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = buf;
/*
* The spec states that CSR and CID accesses have a timeout
* of 64 clock cycles.
*/
data.timeout_ns = 0;
data.timeout_clks = 64;
mmcsd_send_request(card->host, &req);
if (cmd.err || data.err)
{
rt_free(buf);
return -RT_ERROR;
}
for (i = 0;i < 4;i++)
csd[i] = buf[i];
rt_free(buf);
return 0;
}
static rt_int32_t _mmcsd_select_card(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card)
{
rt_int32_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SELECT_CARD;
if (card)
{
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
}
else
{
cmd.arg = 0;
cmd.flags = RESP_NONE | CMD_AC;
}
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
return 0;
}
rt_int32_t mmcsd_select_card(struct rt_mmcsd_card *card)
{
return _mmcsd_select_card(card->host, card);
}
rt_int32_t mmcsd_deselect_cards(struct rt_mmcsd_card *card)
{
return _mmcsd_select_card(card->host, RT_NULL);
}
rt_int32_t mmcsd_spi_use_crc(struct rt_mmcsd_host *host, rt_int32_t use_crc)
{
struct rt_mmcsd_cmd cmd;
rt_int32_t err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SPI_CRC_ON_OFF;
cmd.flags = RESP_SPI_R1;
cmd.arg = use_crc;
err = mmcsd_send_cmd(host, &cmd, 0);
if (!err)
host->spi_use_crc = use_crc;
return err;
}
rt_inline void mmcsd_set_iocfg(struct rt_mmcsd_host *host)
{
struct rt_mmcsd_io_cfg *io_cfg = &host->io_cfg;
mmcsd_dbg("clock %uHz busmode %u powermode %u cs %u Vdd %u "
"width %u \n",
io_cfg->clock, io_cfg->bus_mode,
io_cfg->power_mode, io_cfg->chip_select, io_cfg->vdd,
io_cfg->bus_width);
host->ops->set_iocfg(host, io_cfg);
}
/*
* Control chip select pin on a host.
*/
void mmcsd_set_chip_select(struct rt_mmcsd_host *host, rt_int32_t mode)
{
host->io_cfg.chip_select = mode;
mmcsd_set_iocfg(host);
}
/*
* Sets the host clock to the highest possible frequency that
* is below "hz".
*/
void mmcsd_set_clock(struct rt_mmcsd_host *host, rt_uint32_t clk)
{
if (clk < host->freq_min)
{
rt_kprintf("clock too low\n");
}
host->io_cfg.clock = clk;
mmcsd_set_iocfg(host);
}
/*
* Change the bus mode (open drain/push-pull) of a host.
*/
void mmcsd_set_bus_mode(struct rt_mmcsd_host *host, rt_uint32_t mode)
{
host->io_cfg.bus_mode = mode;
mmcsd_set_iocfg(host);
}
/*
* Change data bus width of a host.
*/
void mmcsd_set_bus_width(struct rt_mmcsd_host *host, rt_uint32_t width)
{
host->io_cfg.bus_width = width;
mmcsd_set_iocfg(host);
}
void mmcsd_set_data_timeout(struct rt_mmcsd_data *data, const struct rt_mmcsd_card *card)
{
rt_uint32_t mult;
if (card->card_type & CARD_TYPE_SDIO)
{
data->timeout_ns = 1000000000; /* SDIO card 1s */
data->timeout_clks = 0;
return;
}
/*
* SD cards use a 100 multiplier rather than 10
*/
mult = (card->card_type & CARD_TYPE_SD) ? 100 : 10;
/*
* Scale up the multiplier (and therefore the timeout) by
* the r2w factor for writes.
*/
if (data->flags & DATA_DIR_WRITE)
mult <<= card->csd.r2w_factor;
data->timeout_ns = card->tacc_ns * mult;
data->timeout_clks = card->tacc_clks * mult;
/*
* SD cards also have an upper limit on the timeout.
*/
if (card->card_type & CARD_TYPE_SD)
{
rt_uint32_t timeout_us, limit_us;
timeout_us = data->timeout_ns / 1000;
timeout_us += data->timeout_clks * 1000 /
(card->host->io_cfg.clock / 1000);
if (data->flags & DATA_DIR_WRITE)
/*
* The limit is really 250 ms, but that is
* insufficient for some crappy cards.
*/
limit_us = 300000;
else
limit_us = 100000;
/*
* SDHC cards always use these fixed values.
*/
if (timeout_us > limit_us || card->card_type & CARD_TYPE_SDHC)
{
data->timeout_ns = limit_us * 1000; /* SDHC card fixed 250ms */
data->timeout_clks = 0;
}
}
if (controller_is_spi(card->host))
{
if (data->flags & DATA_DIR_WRITE)
{
if (data->timeout_ns < 1000000000)
data->timeout_ns = 1000000000; /* 1s */
}
else
{
if (data->timeout_ns < 100000000)
data->timeout_ns = 100000000; /* 100ms */
}
}
}
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
rt_uint32_t mmcsd_select_voltage(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
int bit;
ocr &= host->valid_ocr;
bit = ffs(ocr);
if (bit)
{
bit -= 1;
ocr &= 3 << bit;
host->io_cfg.vdd = bit;
mmcsd_set_iocfg(host);
}
else
{
rt_kprintf("host doesn't support card's voltages\n");
ocr = 0;
}
return ocr;
}
static void mmcsd_power_up(struct rt_mmcsd_host *host)
{
int bit = fls(host->valid_ocr) - 1;
host->io_cfg.vdd = bit;
if (controller_is_spi(host))
{
host->io_cfg.chip_select = MMCSD_CS_HIGH;
host->io_cfg.bus_mode = MMCSD_BUSMODE_PUSHPULL;
}
else
{
host->io_cfg.chip_select = MMCSD_CS_IGNORE;
host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN;
}
host->io_cfg.power_mode = MMCSD_POWER_UP;
host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1;
mmcsd_set_iocfg(host);
/*
* This delay should be sufficient to allow the power supply
* to reach the minimum voltage.
*/
mmcsd_delay_ms(10);
host->io_cfg.clock = host->freq_min;
host->io_cfg.power_mode = MMCSD_POWER_ON;
mmcsd_set_iocfg(host);
/*
* This delay must be at least 74 clock sizes, or 1 ms, or the
* time required to reach a stable voltage.
*/
mmcsd_delay_ms(10);
}
static void mmcsd_power_off(struct rt_mmcsd_host *host)
{
host->io_cfg.clock = 0;
host->io_cfg.vdd = 0;
if (!controller_is_spi(host))
{
host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN;
host->io_cfg.chip_select = MMCSD_CS_IGNORE;
}
host->io_cfg.power_mode = MMCSD_POWER_OFF;
host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1;
mmcsd_set_iocfg(host);
}
void mmcsd_change(struct rt_mmcsd_host *host)
{
rt_mb_send(&mmcsd_detect_mb, (rt_uint32_t)host);
}
void mmcsd_detect(void *param)
{
struct rt_mmcsd_host *host;
rt_uint32_t ocr;
rt_int32_t err;
while (1)
{
if (rt_mb_recv(&mmcsd_detect_mb, (rt_uint32_t*)&host, RT_WAITING_FOREVER) == RT_EOK)
{
mmcsd_host_lock(host);
mmcsd_power_up(host);
mmcsd_go_idle(host);
mmcsd_send_if_cond(host, host->valid_ocr);
/*
* detect SD card
*/
err = mmcsd_send_app_op_cond(host, 0, &ocr);
if (!err)
{
if (init_sd(host, ocr))
mmcsd_power_off(host);
mmcsd_host_unlock(host);
continue;
}
mmcsd_host_unlock(host);
}
}
}
struct rt_mmcsd_host *mmcsd_alloc_host(void)
{
struct rt_mmcsd_host *host;
host = rt_malloc(sizeof(struct rt_mmcsd_host));
if (!host)
{
rt_kprintf("alloc host failed\n");
return RT_NULL;
}
rt_memset(host, 0, sizeof(struct rt_mmcsd_host));
rt_sem_init(&host->bus_lock, "sd_bus_lock", 1, RT_IPC_FLAG_FIFO);
rt_sem_init(&host->sem_ack, "sd_ack", 0, RT_IPC_FLAG_FIFO);
return host;
}
void mmcsd_free_host(struct rt_mmcsd_host *host)
{
rt_sem_detach(&host->bus_lock);
rt_sem_detach(&host->sem_ack);
rt_free(host);
}
void rt_mmcsd_core_init(void)
{
rt_err_t ret;
/* init detect sd cart thread */
/* init mailbox and create detect sd card thread */
ret = rt_mb_init(&mmcsd_detect_mb, "mmcsdmb",
&mmcsd_detect_mb_pool[0], sizeof(mmcsd_detect_mb_pool),
RT_IPC_FLAG_FIFO);
RT_ASSERT(ret == RT_EOK);
ret = rt_thread_init(&mmcsd_detect_thread, "mmcsd_detect", mmcsd_detect, RT_NULL,
&mmcsd_stack[0], RT_MMCSD_STACK_SIZE, RT_MMCSD_THREAD_PREORITY, 20);
if (ret == RT_EOK)
{
rt_thread_startup(&mmcsd_detect_thread);
}
}
/*
* File : mmcsd_core.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#ifndef __CORE_H__
#define __CORE_H__
#include <rtthread.h>
#include "mmcsd_host.h"
#include "mmcsd_card.h"
#include "mmcsd_cmd.h"
#ifdef __cplusplus
extern "C" {
#endif
#ifdef RT_MMCSD_DBG
#define mmcsd_dbg(fmt, ...) rt_kprintf(fmt, ##__VA_ARGS__)
#else
#define mmcsd_dbg(fmt, ...)
#endif
struct rt_mmcsd_data {
rt_uint32_t blksize;
rt_uint32_t blks;
rt_uint32_t *buf;
rt_int32_t err;
rt_uint32_t flags;
#define DATA_DIR_WRITE (1 << 0)
#define DATA_DIR_READ (1 << 1)
#define DATA_STREAM (1 << 2)
rt_uint32_t timeout_ns;
rt_uint32_t timeout_clks;
};
struct rt_mmcsd_cmd {
rt_uint32_t cmd_code;
rt_uint32_t arg;
rt_uint32_t resp[4];
rt_uint32_t flags;
/*rsponse types
*bits:0~3
*/
#define RESP_MASK (0xF)
#define RESP_NONE (0)
#define RESP_R1 (1 << 0)
#define RESP_R1B (2 << 0)
#define RESP_R2 (3 << 0)
#define RESP_R3 (4 << 0)
#define RESP_R4 (5 << 0)
#define RESP_R6 (6 << 0)
#define RESP_R7 (7 << 0)
/*command types
*bits:4~5
*/
#define CMD_MASK (3 << 4) /* command type */
#define CMD_AC (0 << 4)
#define CMD_ADTC (1 << 4)
#define CMD_BC (2 << 4)
#define CMD_BCR (3 << 4)
#define resp_type(cmd) ((cmd)->flags & RESP_MASK)
/*spi rsponse types
*bits:6~8
*/
#define RESP_SPI_MASK (0x7 << 6)
#define RESP_SPI_R1 (1 << 6)
#define RESP_SPI_R1B (2 << 6)
#define RESP_SPI_R2 (3 << 6)
#define RESP_SPI_R3 (4 << 6)
#define RESP_SPI_R4 (5 << 6)
#define RESP_SPI_R5 (6 << 6)
#define RESP_SPI_R7 (7 << 6)
#define spi_resp_type(cmd) ((cmd)->flags & RESP_SPI_MASK)
/*
* These are the command types.
*/
#define cmd_type(cmd) ((cmd)->flags & CMD_MASK)
rt_int32_t err;
struct rt_mmcsd_data *data;
};
struct rt_mmcsd_req {
struct rt_mmcsd_data *data;
struct rt_mmcsd_cmd *cmd;
struct rt_mmcsd_cmd *stop;
};
/*the following is response bit*/
#define R1_OUT_OF_RANGE (1 << 31) /* er, c */
#define R1_ADDRESS_ERROR (1 << 30) /* erx, c */
#define R1_BLOCK_LEN_ERROR (1 << 29) /* er, c */
#define R1_ERASE_SEQ_ERROR (1 << 28) /* er, c */
#define R1_ERASE_PARAM (1 << 27) /* ex, c */
#define R1_WP_VIOLATION (1 << 26) /* erx, c */
#define R1_CARD_IS_LOCKED (1 << 25) /* sx, a */
#define R1_LOCK_UNLOCK_FAILED (1 << 24) /* erx, c */
#define R1_COM_CRC_ERROR (1 << 23) /* er, b */
#define R1_ILLEGAL_COMMAND (1 << 22) /* er, b */
#define R1_CARD_ECC_FAILED (1 << 21) /* ex, c */
#define R1_CC_ERROR (1 << 20) /* erx, c */
#define R1_ERROR (1 << 19) /* erx, c */
#define R1_UNDERRUN (1 << 18) /* ex, c */
#define R1_OVERRUN (1 << 17) /* ex, c */
#define R1_CID_CSD_OVERWRITE (1 << 16) /* erx, c, CID/CSD overwrite */
#define R1_WP_ERASE_SKIP (1 << 15) /* sx, c */
#define R1_CARD_ECC_DISABLED (1 << 14) /* sx, a */
#define R1_ERASE_RESET (1 << 13) /* sr, c */
#define R1_STATUS(x) (x & 0xFFFFE000)
#define R1_CURRENT_STATE(x) ((x & 0x00001E00) >> 9) /* sx, b (4 bits) */
#define R1_READY_FOR_DATA (1 << 8) /* sx, a */
#define R1_APP_CMD (1 << 5) /* sr, c */
#define R1_SPI_IDLE (1 << 0)
#define R1_SPI_ERASE_RESET (1 << 1)
#define R1_SPI_ILLEGAL_COMMAND (1 << 2)
#define R1_SPI_COM_CRC (1 << 3)
#define R1_SPI_ERASE_SEQ (1 << 4)
#define R1_SPI_ADDRESS (1 << 5)
#define R1_SPI_PARAMETER (1 << 6)
/* R1 bit 7 is always zero */
#define R2_SPI_CARD_LOCKED (1 << 8)
#define R2_SPI_WP_ERASE_SKIP (1 << 9) /* or lock/unlock fail */
#define R2_SPI_LOCK_UNLOCK_FAIL R2_SPI_WP_ERASE_SKIP
#define R2_SPI_ERROR (1 << 10)
#define R2_SPI_CC_ERROR (1 << 11)
#define R2_SPI_CARD_ECC_ERROR (1 << 12)
#define R2_SPI_WP_VIOLATION (1 << 13)
#define R2_SPI_ERASE_PARAM (1 << 14)
#define R2_SPI_OUT_OF_RANGE (1 << 15) /* or CSD overwrite */
#define R2_SPI_CSD_OVERWRITE R2_SPI_OUT_OF_RANGE
#define CARD_BUSY 0x80000000 /* Card Power up status bit */
/**
* fls - find last (most-significant) bit set
* @x: the word to search
*
* This is defined the same way as ffs.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
rt_inline rt_uint32_t fls(rt_uint32_t val)
{
rt_uint32_t bit = 32;
if (!val)
return 0;
if (!(val & 0xffff0000u))
{
val <<= 16;
bit -= 16;
}
if (!(val & 0xff000000u))
{
val <<= 8;
bit -= 8;
}
if (!(val & 0xf0000000u))
{
val <<= 4;
bit -= 4;
}
if (!(val & 0xc0000000u))
{
val <<= 2;
bit -= 2;
}
if (!(val & 0x80000000u))
{
val <<= 1;
bit -= 1;
}
return bit;
}
#if !defined(__GNUC__)
rt_inline rt_uint32_t ffs(rt_uint32_t x)
{
int r = 1;
if (!x)
return 0;
if (!(x & 0xffff)) {
x >>= 16;
r += 16;
}
if (!(x & 0xff)) {
x >>= 8;
r += 8;
}
if (!(x & 0xf)) {
x >>= 4;
r += 4;
}
if (!(x & 3)) {
x >>= 2;
r += 2;
}
if (!(x & 1)) {
x >>= 1;
r += 1;
}
return r;
}
#endif
void mmcsd_host_lock(struct rt_mmcsd_host *host);
void mmcsd_host_unlock(struct rt_mmcsd_host *host);
void mmcsd_req_complete(struct rt_mmcsd_host *host);
void mmcsd_send_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req);
rt_int32_t mmcsd_send_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, int retries);
rt_int32_t mmcsd_go_idle(struct rt_mmcsd_host *host);
rt_int32_t mmcsd_spi_read_ocr(struct rt_mmcsd_host *host, rt_int32_t high_capacity, rt_uint32_t *ocr);
rt_int32_t mmcsd_all_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid);
rt_int32_t mmcsd_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid);
rt_int32_t mmcsd_get_csd(struct rt_mmcsd_card *card, rt_uint32_t *csd);
rt_int32_t mmcsd_select_card(struct rt_mmcsd_card *card);
rt_int32_t mmcsd_deselect_cards(struct rt_mmcsd_card *host);
rt_int32_t mmcsd_spi_use_crc(struct rt_mmcsd_host *host, rt_int32_t use_crc);
void mmcsd_set_chip_select(struct rt_mmcsd_host *host, rt_int32_t mode);
void mmcsd_set_clock(struct rt_mmcsd_host *host, rt_uint32_t clk);
void mmcsd_set_bus_mode(struct rt_mmcsd_host *host, rt_uint32_t mode);
void mmcsd_set_bus_width(struct rt_mmcsd_host *host, rt_uint32_t width);
void mmcsd_set_data_timeout(struct rt_mmcsd_data *data, const struct rt_mmcsd_card *card);
rt_uint32_t mmcsd_select_voltage(struct rt_mmcsd_host *host, rt_uint32_t ocr);
void mmcsd_change(struct rt_mmcsd_host *host);
void mmcsd_detect(void *param);
struct rt_mmcsd_host *mmcsd_alloc_host(void);
void mmcsd_free_host(struct rt_mmcsd_host *host);
void rt_mmcsd_core_init(void);
void rt_mmcsd_blk_init(void);
rt_int32_t rt_mmcsd_blk_probe(struct rt_mmcsd_card *card);
void rt_mmcsd_blk_remove(struct rt_mmcsd_card *card);
#ifdef __cplusplus
}
#endif
#endif
/*
* File : mmcsd_host.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#ifndef __HOST_H__
#define __HOST_H__
#include <rtthread.h>
#ifdef __cplusplus
extern "C" {
#endif
struct rt_mmcsd_io_cfg {
rt_uint32_t clock; /* clock rate */
rt_uint16_t vdd;
/* vdd stores the bit number of the selected voltage range from below. */
rt_uint8_t bus_mode; /* command output mode */
#define MMCSD_BUSMODE_OPENDRAIN 1
#define MMCSD_BUSMODE_PUSHPULL 2
rt_uint8_t chip_select; /* SPI chip select */
#define MMCSD_CS_IGNORE 0
#define MMCSD_CS_HIGH 1
#define MMCSD_CS_LOW 2
rt_uint8_t power_mode; /* power supply mode */
#define MMCSD_POWER_OFF 0
#define MMCSD_POWER_UP 1
#define MMCSD_POWER_ON 2
rt_uint8_t bus_width; /* data bus width */
#define MMCSD_BUS_WIDTH_1 0
#define MMCSD_BUS_WIDTH_4 2
#define MMCSD_BUS_WIDTH_8 3
};
struct rt_mmcsd_host;
struct rt_mmcsd_req;
struct rt_mmcsd_host_ops {
void (*request)(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req);
void (*set_iocfg)(struct rt_mmcsd_host *host, struct rt_mmcsd_io_cfg *io_cfg);
rt_int32_t (*get_card_status)(struct rt_mmcsd_host *host);
};
struct rt_mmcsd_host {
struct rt_mmcsd_card *card;
const struct rt_mmcsd_host_ops *ops;
rt_uint32_t freq_min;
rt_uint32_t freq_max;
struct rt_mmcsd_io_cfg io_cfg;
rt_uint32_t valid_ocr; /* current valid OCR */
#define VDD_165_195 (1 << 7) /* VDD voltage 1.65 - 1.95 */
#define VDD_20_21 (1 << 8) /* VDD voltage 2.0 ~ 2.1 */
#define VDD_21_22 (1 << 9) /* VDD voltage 2.1 ~ 2.2 */
#define VDD_22_23 (1 << 10) /* VDD voltage 2.2 ~ 2.3 */
#define VDD_23_24 (1 << 11) /* VDD voltage 2.3 ~ 2.4 */
#define VDD_24_25 (1 << 12) /* VDD voltage 2.4 ~ 2.5 */
#define VDD_25_26 (1 << 13) /* VDD voltage 2.5 ~ 2.6 */
#define VDD_26_27 (1 << 14) /* VDD voltage 2.6 ~ 2.7 */
#define VDD_27_28 (1 << 15) /* VDD voltage 2.7 ~ 2.8 */
#define VDD_28_29 (1 << 16) /* VDD voltage 2.8 ~ 2.9 */
#define VDD_29_30 (1 << 17) /* VDD voltage 2.9 ~ 3.0 */
#define VDD_30_31 (1 << 18) /* VDD voltage 3.0 ~ 3.1 */
#define VDD_31_32 (1 << 19) /* VDD voltage 3.1 ~ 3.2 */
#define VDD_32_33 (1 << 20) /* VDD voltage 3.2 ~ 3.3 */
#define VDD_33_34 (1 << 21) /* VDD voltage 3.3 ~ 3.4 */
#define VDD_34_35 (1 << 22) /* VDD voltage 3.4 ~ 3.5 */
#define VDD_35_36 (1 << 23) /* VDD voltage 3.5 ~ 3.6 */
rt_uint32_t flags; /* define device capabilities */
#define MMCSD_BUSWIDTH_4 (1 << 0)
#define MMCSD_BUSWIDTH_8 (1 << 1)
#define MMCSD_MUTBLKWRITE (1 << 2)
#define MMCSD_HOST_IS_SPI (1 << 3)
#define controller_is_spi(host) (host->flags & MMCSD_HOST_IS_SPI)
rt_uint32_t spi_use_crc;
struct rt_semaphore bus_lock;
struct rt_semaphore sem_ack;
void *private_data;
};
rt_inline void mmcsd_delay_ms(rt_uint32_t ms)
{
if (ms < 1000 / RT_TICK_PER_SECOND)
{
rt_thread_delay(1);
}
else
{
rt_thread_delay(ms/(1000 / RT_TICK_PER_SECOND));
}
}
#ifdef __cplusplus
}
#endif
#endif
/*
* File : sd.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include "mmcsd_core.h"
#include "mmcsd_cmd.h"
static const rt_uint32_t tran_unit[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const rt_uint8_t tran_value[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const rt_uint32_t tacc_uint[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const rt_uint8_t tacc_value[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
rt_inline rt_uint32_t GET_BITS(rt_uint32_t *resp, rt_uint32_t start, rt_uint32_t size)
{
const rt_int32_t __size = size;
const rt_uint32_t __mask = (__size < 32 ? 1 << __size : 0) - 1;
const rt_int32_t __off = 3 - ((start) / 32);
const rt_int32_t __shft = (start) & 31;
rt_uint32_t __res;
__res = resp[__off] >> __shft;
if (__size + __shft > 32)
__res |= resp[__off-1] << ((32 - __shft) % 32);
return __res & __mask;
}
static rt_int32_t mmcsd_parse_csd(struct rt_mmcsd_card *card)
{
struct rt_mmcsd_csd *csd = &card->csd;
rt_uint32_t *resp = card->resp_csd;
csd->csd_structure = GET_BITS(resp, 126, 2);
switch (csd->csd_structure) {
case 0:
csd->taac = GET_BITS(resp, 112, 8);
csd->nsac = GET_BITS(resp, 104, 8);
csd->tran_speed = GET_BITS(resp, 96, 8);
csd->card_cmd_class = GET_BITS(resp, 84, 12);
csd->rd_blk_len = GET_BITS(resp, 80, 4);
csd->rd_blk_part = GET_BITS(resp, 79, 1);
csd->wr_blk_misalign = GET_BITS(resp, 78, 1);
csd->rd_blk_misalign = GET_BITS(resp, 77, 1);
csd->dsr_imp = GET_BITS(resp, 76, 1);
csd->c_size = GET_BITS(resp, 62, 12);
csd->c_size_mult = GET_BITS(resp, 47, 3);
csd->r2w_factor = GET_BITS(resp, 26, 3);
csd->wr_blk_len = GET_BITS(resp, 22, 4);
csd->wr_blk_partial = GET_BITS(resp, 21, 1);
csd->csd_crc = GET_BITS(resp, 1, 7);
card->card_blksize = 1 << csd->rd_blk_len;
card->card_capacity = (csd->c_size + 1) << (csd->c_size_mult + 2);
card->card_capacity *= card->card_blksize;
card->card_capacity >>= 10; /* unit:KB */
card->tacc_clks = csd->nsac * 100;
card->tacc_ns = (tacc_uint[csd->taac&0x07] * tacc_value[(csd->taac&0x78)>>3] + 9) / 10;
card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3];
#if 0
val = GET_BITS(resp, 115, 4);
unit = GET_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_uint[unit] * tacc_value[val] + 9) / 10;
csd->tacc_clks = GET_BITS(resp, 104, 8) * 100;
val = GET_BITS(resp, 99, 4);
unit = GET_BITS(resp, 96, 3);
csd->max_data_rate = tran_unit[unit] * tran_value[val];
csd->ccc = GET_BITS(resp, 84, 12);
unit = GET_BITS(resp, 47, 3);
val = GET_BITS(resp, 62, 12);
csd->device_size = (1 + val) << (unit + 2);
csd->read_bl_len = GET_BITS(resp, 80, 4);
csd->write_bl_len = GET_BITS(resp, 22, 4);
csd->r2w_factor = GET_BITS(resp, 26, 3);
#endif
break;
case 1:
card->card_type |= CARD_TYPE_SDHC;
/*This field is fixed to 0Eh, which indicates 1 ms.
The host should not use TAAC, NSAC, and R2W_FACTOR
to calculate timeout and should uses fixed timeout
values for read and write operations*/
csd->taac = GET_BITS(resp, 112, 8);
csd->nsac = GET_BITS(resp, 104, 8);
csd->tran_speed = GET_BITS(resp, 96, 8);
csd->card_cmd_class = GET_BITS(resp, 84, 12);
csd->rd_blk_len = GET_BITS(resp, 80, 4);
csd->rd_blk_part = GET_BITS(resp, 79, 1);
csd->wr_blk_misalign = GET_BITS(resp, 78, 1);
csd->rd_blk_misalign = GET_BITS(resp, 77, 1);
csd->dsr_imp = GET_BITS(resp, 76, 1);
csd->c_size = GET_BITS(resp, 48, 22);
csd->r2w_factor = GET_BITS(resp, 26, 3);
csd->wr_blk_len = GET_BITS(resp, 22, 4);
csd->wr_blk_partial = GET_BITS(resp, 21, 1);
csd->csd_crc = GET_BITS(resp, 1, 7);
card->card_blksize = 512;
card->card_capacity = (csd->c_size + 1) * 512; /* unit:KB */
card->tacc_clks = 0;
card->tacc_ns = 0;
card->max_data_rate = tran_unit[csd->tran_speed&0x07] * tran_value[(csd->tran_speed&0x78)>>3];
#if 0
csd->tacc_ns = 0;
csd->tacc_clks = 0;
val = GET_BITS(resp, 99, 4);
unit = GET_BITS(resp, 96, 3);
csd->max_data_rate = tran_unit[unit] * tran_value[val];
csd->ccc = GET_BITS(resp, 84, 12);
val = GET_BITS(resp, 48, 22);
csd->device_size = (1 + val) << 10;
csd->read_bl_len = 9;
csd->write_bl_len = 9;
/* host should not use this factor and should use 250ms for write timeout */
csd->r2w_factor = 2;
#endif
break;
default:
rt_kprintf("unrecognised CSD structure version %d\n", csd->csd_structure);
return -RT_ERROR;
}
rt_kprintf("SD card capacity %d KB\n", card->card_capacity);
return 0;
}
static rt_int32_t mmcsd_parse_scr(struct rt_mmcsd_card *card)
{
struct rt_sd_scr *scr = &card->scr;
rt_uint32_t resp[4];
resp[3] = card->resp_scr[1];
resp[2] = card->resp_scr[0];
scr->sd_version = GET_BITS(resp, 56, 4);
scr->sd_bus_widths = GET_BITS(resp, 48, 4);
return 0;
}
static rt_int32_t mmcsd_switch(struct rt_mmcsd_card *card)
{
rt_int32_t err;
struct rt_mmcsd_host *host = card->host;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
rt_uint8_t *buf;
buf = rt_malloc(64);
if (!buf)
{
rt_kprintf("alloc memory failed\n");
return -RT_ENOMEM;
}
if (!(card->card_type & CARD_TYPE_SD))
goto err;
if (card->scr.sd_version < SCR_SPEC_VER_1)
goto err;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SWITCH;
cmd.arg = 0x00FFFFF1;
cmd.flags = RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
mmcsd_set_data_timeout(&data, card);
data.blksize = 64;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = (rt_uint32_t *)buf;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
goto err1;
}
if (buf[13] & 0x02)
card->hs_max_data_rate = 50000000;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SWITCH;
cmd.arg = 0x80FFFFF1;
cmd.flags = RESP_R1 | CMD_ADTC;
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
mmcsd_set_data_timeout(&data, card);
data.blksize = 64;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = (rt_uint32_t *)buf;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
req.cmd = &cmd;
req.data = &data;
mmcsd_send_request(host, &req);
if (cmd.err || data.err)
{
goto err1;
}
if ((buf[16] & 0xF) != 1)
{
rt_kprintf("switching card to high speed failed\n");
goto err;
}
card->flags |= CARD_MODE_HIGHSPEED;
err:
rt_free(buf);
return 0;
err1:
if (cmd.err)
{
err = cmd.err;
}
if (data.err)
{
err = data.err;
}
return err;
}
static rt_err_t mmcsd_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
cmd.cmd_code = APP_CMD;
if (card)
{
cmd.arg = card->rca << 16;
cmd.flags = RESP_R1 | CMD_AC;
}
else
{
cmd.arg = 0;
cmd.flags = RESP_R1 | CMD_BCR;
}
err = mmcsd_send_cmd(host, &cmd, 0);
if (err)
return err;
/* Check that card supported application commands */
if (!controller_is_spi(host) && !(cmd.resp[0] & R1_APP_CMD))
return -RT_ERROR;
return RT_EOK;
}
rt_err_t mmcsd_send_app_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card,
struct rt_mmcsd_cmd *cmd, int retry)
{
struct rt_mmcsd_req req;
rt_uint32_t i;
rt_err_t err;
err = -RT_ERROR;
/*
* We have to resend MMC_APP_CMD for each attempt so
* we cannot use the retries field in mmc_command.
*/
for (i = 0;i <= retry;i++)
{
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
err = mmcsd_app_cmd(host, card);
if (err)
{
/* no point in retrying; no APP commands allowed */
if (controller_is_spi(host))
{
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
break;
}
continue;
}
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(cmd->resp, 0, sizeof(cmd->resp));
req.cmd = cmd;
//cmd->data = NULL;
mmcsd_send_request(host, &req);
err = cmd->err;
if (!cmd->err)
break;
/* no point in retrying illegal APP commands */
if (controller_is_spi(host))
{
if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
break;
}
}
return err;
}
rt_err_t mmcsd_app_set_bus_width(struct rt_mmcsd_card *card, rt_int32_t width)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_SET_BUS_WIDTH;
cmd.flags = RESP_R1 | CMD_AC;
switch (width)
{
case MMCSD_BUS_WIDTH_1:
cmd.arg = MMCSD_BUS_WIDTH_1;
break;
case MMCSD_BUS_WIDTH_4:
cmd.arg = MMCSD_BUS_WIDTH_4;
break;
default:
return -RT_ERROR;
}
err = mmcsd_send_app_cmd(card->host, card, &cmd, 3);
if (err)
return err;
return RT_EOK;
}
rt_err_t mmcsd_send_app_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t *rocr)
{
struct rt_mmcsd_cmd cmd;
rt_uint32_t i;
rt_err_t err = RT_EOK;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_APP_OP_COND;
if (controller_is_spi(host))
cmd.arg = ocr & (1 << 30); /* SPI only defines one bit */
else
cmd.arg = ocr;
cmd.flags = RESP_SPI_R1 | RESP_R3 | CMD_BCR;
for (i = 100; i; i--)
{
err = mmcsd_send_app_cmd(host, RT_NULL, &cmd, 3);
if (err)
break;
/* if we're just probing, do a single pass */
if (ocr == 0)
break;
/* otherwise wait until reset completes */
if (controller_is_spi(host))
{
if (!(cmd.resp[0] & R1_SPI_IDLE))
break;
}
else
{
if (cmd.resp[0] & CARD_BUSY)
break;
}
err = -RT_ETIMEOUT;
mmcsd_delay_ms(10); //delay 10ms
}
if (rocr && !controller_is_spi(host))
*rocr = cmd.resp[0];
return err;
}
/*
* To support SD 2.0 cards, we must always invoke SD_SEND_IF_COND
* before SD_APP_OP_COND. This command will harmlessly fail for
* SD 1.0 cards.
*/
rt_err_t mmcsd_send_if_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
struct rt_mmcsd_cmd cmd;
rt_err_t err;
rt_uint8_t pattern;
cmd.cmd_code = SD_SEND_IF_COND;
cmd.arg = ((ocr & 0xFF8000) != 0) << 8 | 0xAA;
cmd.flags = RESP_SPI_R7 | RESP_R7 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 0);
if (err)
return err;
if (controller_is_spi(host))
pattern = cmd.resp[1] & 0xFF;
else
pattern = cmd.resp[0] & 0xFF;
if (pattern != 0xAA)
return -RT_ERROR;
return RT_EOK;
}
rt_err_t mmcsd_get_card_addr(struct rt_mmcsd_host *host, rt_uint32_t *rca)
{
rt_err_t err;
struct rt_mmcsd_cmd cmd;
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
cmd.cmd_code = SD_SEND_RELATIVE_ADDR;
cmd.arg = 0;
cmd.flags = RESP_R6 | CMD_BCR;
err = mmcsd_send_cmd(host, &cmd, 3);
if (err)
return err;
*rca = cmd.resp[0] >> 16;
return RT_EOK;
}
#define be32_to_cpu(x) ((rt_uint32_t)( \
(((rt_uint32_t)(x) & (rt_uint32_t)0x000000ffUL) << 24) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0x0000ff00UL) << 8) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0x00ff0000UL) >> 8) | \
(((rt_uint32_t)(x) & (rt_uint32_t)0xff000000UL) >> 24)))
rt_int32_t mmcsd_get_scr(struct rt_mmcsd_card *card, rt_uint32_t *scr)
{
rt_int32_t err;
struct rt_mmcsd_req req;
struct rt_mmcsd_cmd cmd;
struct rt_mmcsd_data data;
err = mmcsd_app_cmd(card->host, card);
if (err)
return err;
rt_memset(&req, 0, sizeof(struct rt_mmcsd_req));
rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd));
rt_memset(&data, 0, sizeof(struct rt_mmcsd_data));
req.cmd = &cmd;
req.data = &data;
cmd.cmd_code = SD_APP_SEND_SCR;
cmd.arg = 0;
cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC;
data.blksize = 8;
data.blks = 1;
data.flags = DATA_DIR_READ;
data.buf = scr;
mmcsd_set_data_timeout(&data, card);
mmcsd_send_request(card->host, &req);
if (cmd.err)
return cmd.err;
if (data.err)
return data.err;
scr[0] = be32_to_cpu(scr[0]);
scr[1] = be32_to_cpu(scr[1]);
return 0;
}
static rt_int32_t mmcsd_sd_init_card(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
struct rt_mmcsd_card *card;
rt_int32_t err;
rt_uint32_t resp[4];
rt_uint32_t max_data_rate;
mmcsd_go_idle(host);
/*
* If SD_SEND_IF_COND indicates an SD 2.0
* compliant card and we should set bit 30
* of the ocr to indicate that we can handle
* block-addressed SDHC cards.
*/
err = mmcsd_send_if_cond(host, ocr);
if (!err)
ocr |= 1 << 30;
err = mmcsd_send_app_op_cond(host, ocr, RT_NULL);
if (err)
goto err;
if (controller_is_spi(host))
err = mmcsd_get_cid(host, resp);
else
err = mmcsd_all_get_cid(host, resp);
if (err)
goto err;
card = rt_malloc(sizeof(struct rt_mmcsd_card));
if (!card)
{
rt_kprintf("malloc card failed\n");
err = -RT_ENOMEM;
goto err;
}
rt_memset(card, 0, sizeof(struct rt_mmcsd_card));
card->card_type = CARD_TYPE_SD;
card->host = host;
rt_memcpy(card->resp_cid, resp, sizeof(card->resp_cid));
/*
* For native busses: get card RCA and quit open drain mode.
*/
if (!controller_is_spi(host))
{
err = mmcsd_get_card_addr(host, &card->rca);
if (err)
goto err1;
mmcsd_set_bus_mode(host, MMCSD_BUSMODE_PUSHPULL);
}
err = mmcsd_get_csd(card, card->resp_csd);
if (err)
goto err1;
err = mmcsd_parse_csd(card);
if (err)
goto err1;
if (!controller_is_spi(host))
{
err = mmcsd_select_card(card);
if (err)
goto err1;
}
err = mmcsd_get_scr(card, card->resp_scr);
if (err)
goto err1;
mmcsd_parse_scr(card);
if (controller_is_spi(host))
{
err = mmcsd_spi_use_crc(host, 1);
if (err)
goto err1;
}
/*
* change SD card to high-speed, only SD2.0 spec
*/
err = mmcsd_switch(card);
if (err)
goto err1;
/* set bus speed */
max_data_rate = (unsigned int)-1;
if (card->flags & CARD_MODE_HIGHSPEED)
{
if (max_data_rate > card->hs_max_data_rate)
max_data_rate = card->hs_max_data_rate;
}
else if (max_data_rate > card->max_data_rate)
{
max_data_rate = card->max_data_rate;
}
mmcsd_set_clock(host, max_data_rate);
/*switch bus width*/
if ((host->flags & MMCSD_BUSWIDTH_4) &&
(card->scr.sd_bus_widths & SD_SCR_BUS_WIDTH_4))
{
err = mmcsd_app_set_bus_width(card, MMCSD_BUS_WIDTH_4);
if (err)
goto err1;
mmcsd_set_bus_width(host, MMCSD_BUS_WIDTH_4);
}
host->card = card;
return 0;
err1:
rt_free(card);
err:
return err;
}
/*
* Starting point for SD card init.
*/
rt_int32_t init_sd(struct rt_mmcsd_host *host, rt_uint32_t ocr)
{
rt_int32_t err;
rt_uint32_t current_ocr;
/*
* We need to get OCR a different way for SPI.
*/
if (controller_is_spi(host)) {
mmcsd_go_idle(host);
err = mmcsd_spi_read_ocr(host, 0, &ocr);
if (err)
goto err;
}
if (ocr & VDD_165_195) {
rt_kprintf(" SD card claims to support the "
"incompletely defined 'low voltage range'. This "
"will be ignored.\n");
ocr &= ~VDD_165_195;
}
current_ocr = mmcsd_select_voltage(host, ocr);
/*
* Can we support the voltage(s) of the card(s)?
*/
if (!current_ocr) {
err = -RT_ERROR;
goto err;
}
/*
* Detect and init the card.
*/
err = mmcsd_sd_init_card(host, current_ocr);
if (err)
goto err;
mmcsd_host_unlock(host);
err = rt_mmcsd_blk_probe(host->card);
if (err)
goto remove_card;
mmcsd_host_lock(host);
return 0;
remove_card:
mmcsd_host_lock(host);
rt_mmcsd_blk_remove(host->card);
rt_free(host->card);
host->card = RT_NULL;
err:
rt_kprintf("init SD card failed\n");
return err;
}
#ifndef __SD_H__
#define __SD_H__
/*
* File : sd.h
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2006, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2011-07-25 weety first version
*/
#include <rtthread.h>
#include "mmcsd_host.h"
#ifdef __cplusplus
extern "C" {
#endif
rt_err_t mmcsd_send_if_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr);
rt_err_t mmcsd_send_app_op_cond(struct rt_mmcsd_host *host, rt_uint32_t ocr, rt_uint32_t *rocr);
rt_int32_t init_sd(struct rt_mmcsd_host *host, rt_uint32_t ocr);
#ifdef __cplusplus
}
#endif
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册