misc.cpp 38.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/**
 * \file src/gopt/impl/misc.cpp
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */

#include "megbrain/gopt/misc.h"
#include "megbrain/graph/grad_impl.h"
#include "megbrain/opr/cond.h"
#include "megbrain/opr/io.h"
#include "megbrain/opr/tensor_manip.h"
#include "megbrain/opr/utility.h"
#include "megbrain/serialization/serializer.h"
#include "megbrain/serialization/opr_shallow_copy.h"
20
#include "../../core/impl/graph/cg_impl.h"
21

22 23 24 25 26 27 28 29 30 31
#include "megbrain/utils/hash_ct.h"
#include "midout.h"

MIDOUT_DECL(megbrain_misc)
#define MIDOUT_B(tag) \
    MIDOUT_BEGIN(megbrain_misc, midout_iv(MGB_HASH_STR(tag))) {
#define MIDOUT_E \
    }            \
    MIDOUT_END();

32 33 34 35 36 37 38 39 40 41
using namespace mgb;
using namespace gopt;

/* ================ RemoveNonComputingOprPass ================ */

const char* RemoveNonComputingOprPass::name() const {
    return "remove_non_computing_opr";
}

void RemoveNonComputingOprPass::apply(OptState& opt) const {
42
    MIDOUT_B("RemoveNonComputingOprPass::apply")
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    auto rewriter = opt.graph().make_rewriter();
    auto on_opr = [&](OperatorNodeBase* opr) {
        auto type = opr->dyn_typeinfo();
        if (type == opr::MarkNoBroadcastElemwise::typeinfo() ||
#if MGB_ENABLE_GRAD
            type == opr::SetGrad::typeinfo() ||
#endif
            type == opr::Identity::typeinfo()) {
            // remove marker oprs
            auto src = opr->output(0);
            auto dst = rewriter.get_var(opr->input(0));
            rewriter.replace_var(src, dst, mgb_cstr_log(type->name));
            return;
        }

        if (type == opr::Split::typeinfo()) {
            // check split on const scalar: useful for grad wrt Concat
            auto iv = SymbolVar{opr->input(0)}.as_immutable_scalar();
            if (iv.valid()) {
                bool shape_known = true;
                for (auto i : opr->output()) {
                    if (!cg::is_static_var_shape(i)) {
                        shape_known = false;
                        break;
                    }
                }
                if (shape_known) {
                    for (auto i : opr->output()) {
                        auto iv_src = opr::ImmutableTensor::make(
                                *i->owner_graph(), iv.val(), i->comp_node());
                        auto vnew = opr::Broadcast::make(
                                            iv_src, opr::GetVarShape::make(i))
                                            .node();
                        rewriter.replace_var(
                                i, vnew, mgb_cstr_log("const split output"));
                    }
                    return;
                }
            }
        }

        rewriter.auto_replace_outputs(opr);
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
89
    MIDOUT_E
90 91 92 93 94 95 96 97 98
}

/* ================ ExpandVirtualGradPass ================ */

const char* ExpandVirtualGradPass::name() const {
    return "expand_virtual_grad";
}

void ExpandVirtualGradPass::apply(OptState& opt) const {
99
    MIDOUT_B("ExpandVirtualGradPass::apply")
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
#if MGB_ENABLE_GRAD
    opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);
    auto rewriter = opt.graph().make_rewriter();
    auto on_opr = [&](OperatorNodeBase* opr) {
        if (!opr->same_type<opr::VirtualGrad>()) {
            rewriter.auto_replace_outputs(opr);
            return;
        }
        // Create opr and replace var but no need to copy old opr_properties
        // to new oprs because grad_manager would handle it.
        opt.call_with_opr(opr, [&]{
            auto target = opr->input(0), wrt = opr->input(1),
                 grad = cg::grad(target, wrt).node();
            auto src = opr->output(0);
            grad = GraphOptimizer::var_replace_lookup(grad);
            rewriter.replace_var(
                    src, grad,
                    mgb_ssprintf_log("grad(%s, %s)", target->cname(), wrt->cname())
                            .c_str());
        }, OprPropertyFlag::NONE);
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
#else
    MGB_MARK_USED_VAR(opt);
#endif
127
    MIDOUT_E
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
}

/* ================= DelayBroadcastPass ================ */

bool DelayBroadcastPass::allowed_opr(OperatorNodeBase* opr) {
    static const ThinHashSet<Typeinfo*> allowed_opr_type{
            opr::Broadcast::typeinfo(),

            // should include all oprs below that doesn't explictly change the
            // input's shape.
            opr::TypeCvt::typeinfo(),
            opr::Elemwise::typeinfo(),
    };
    return allowed_opr_type.count(opr->dyn_typeinfo());
};

const char* DelayBroadcastPass::name() const {
    return "delay_broadcast";
}

void DelayBroadcastPass::apply(OptState& opt) const {
    // Extract a chain, make sure the oprs on the chain are
    // read by only one operator.
    // The endpoint of the chain meet one of the following three conditions:
    //      1. more than one opr depend on it.
    //      2. only one opr depends on it, but can not be on the chain.
    //      3. endponit of the graph.
    // When processing the chain from endpoint,
    // find the opr that is not the Broadcast, set it to the new endpoint
    // Find all broadcasts from the chain from new endpoint,
    // remove them from the chain, and add them back right after the endpoint.

    // TypeCvt's order may change, so disable the check.
161
    MIDOUT_B("DelayBroadcastPass::apply")
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    opt.set_var_replace_check_flag(VarReplaceCheckFlag::NOCHECK);

    auto unique_reader_chk = UniqReaderCheck{opt.graph()};
    auto rewriter = opt.graph().make_rewriter();
    ThinHashSet<OperatorNodeBase*> visited;
    ThinHashMap<OperatorNodeBase*, bool> dep_on_bcast;

    // map from opr to the input in unary-bcast chain
    // value is (valid, input idx)
    ThinHashMap<OperatorNodeBase*, std::pair<bool, uint32_t>> opr2chain_inp_idx;

    auto is_opr_endpoint = [&](OperatorNodeBase* opr) -> bool {
        if (!unique_reader_chk(opr->output(0)))
            return true;
        if (opt.graph().endpoint_contain(opr->output(0)))
            return true;
        return false;
    };

    auto opr_in_chain = [&](OperatorNodeBase* opr, VarNode** chain_input,
                            bool could_be_endpoint) {
        if (!allowed_opr(opr))
            return false;
        auto chain_input_ins = opr2chain_inp_idx.insert({opr, {}});
        auto&& chain_input_pair = chain_input_ins.first->second;
        if (chain_input_ins.second) {
            if (opr->same_type<opr::Broadcast>()) {
                mgb_assert(opr->input().size() == 2);
                chain_input_pair = {true, 0};
            } else {
                int idx = -1;
                chain_input_pair = {false,
                                    std::numeric_limits<uint32_t>::max()};
                for (size_t i = 0; i < opr->input().size(); ++i) {
                    auto var = opr->input()[i];
                    if (!(cg::is_const_var_shape(var) &&
                          var->shape().is_scalar())) {
                        if (idx < 0) {
                            idx = i;
                        } else {
                            return false;
                        }
                    }
                }
                if (idx != -1) {
                    chain_input_pair = {true, static_cast<uint32_t>(idx)};
                }
            }
        }
        if (!chain_input_pair.first) {
            return false;
        }
        *chain_input = opr->input()[chain_input_pair.second];
        if (!could_be_endpoint)
            return unique_reader_chk(opr->output(0));
        return true;
    };

    auto build_chain =
            [&](const std::vector<cg::OperatorNodeBase*>& oprs) -> VarNode* {
        VarNode* prev = nullptr;
        // note that reversed opr seq is the correct topo order
        for (auto opr : reverse_adaptor(oprs)) {
            auto inp_idx = opr2chain_inp_idx.at(opr).second;
            if (!prev)
                prev = rewriter.get_var(opr->input(inp_idx));
            if (!opr->same_type<opr::Broadcast>()) {
                VarNodeArray new_inp = opr->input();
                new_inp.at(inp_idx) = prev;
                opt.call_with_opr(opr, [&] {
                    // create new opr with the original opr's properties
                    auto new_opr = serialization::copy_opr_shallow(
                        *opr, new_inp, opr->config());
                    prev = new_opr->output(0);
                });
            }
        }
        return prev;
    };

    auto process_chain_from_endpoint = [&](OperatorNodeBase* opr) {

        auto auto_replace_with_context = [&](OperatorNodeBase* opr) {
            opt.call_with_opr(opr, [&]{
                rewriter.auto_replace_outputs(opr);
            });
        };

        if (!dep_on_bcast[opr]) {
            auto_replace_with_context(opr);
            return;
        }
        SmallVector<OperatorNodeBase*> trailing_bcasts;

        auto replace_trailing_bcasts = [&]() {
            for (auto opr : reverse_adaptor(trailing_bcasts)) {
                auto_replace_with_context(opr);
            }
        };

        // Find the latest opr that is not the Broadcast.
        VarNode* chain_input;
        for (; opr_in_chain(opr, &chain_input, true) && !visited.count(opr);
             opr = chain_input->owner_opr()) {
            if (!opr->same_type<opr::Broadcast>()) {
                break;
            }
            visited.insert(opr);
            trailing_bcasts.push_back(opr);
        }

        std::vector<cg::OperatorNodeBase*> all_oprs, broadcasts;
        // Get the varnode array and find all broadcasts.
        for (OperatorNodeBase* iter = opr;
             opr_in_chain(iter, &chain_input, iter == opr);
             iter = chain_input->owner_opr()) {
            if (visited.count(iter))
                break;
            if (iter->same_type<opr::Broadcast>()) {
                broadcasts.push_back(iter);
            }
            visited.insert(iter);
            all_oprs.push_back(iter);
        }
        if (broadcasts.empty()) {
            auto_replace_with_context(opr);
            replace_trailing_bcasts();
            return;
        }

        // we only need to process the chain from first broadcast
        while (all_oprs.back() != broadcasts.back()) {
            all_oprs.pop_back();
        }

        auto prev = build_chain(all_oprs);
        for (auto broadcast : reverse_adaptor(broadcasts)) {
            // add it back to operator.
            opt.call_with_opr(broadcast, [&]{
                // create new opr with the original opr's properties
                auto new_broadcast =
                    opr::Broadcast::make(
                        prev, rewriter.get_var(broadcast->input(1)), {})
                        .node();
                prev = new_broadcast;
            });
        }
        // Following line would not trigger opr properties check.
        // The new oprs created before are all constructed in a temporary
        // context, so no opr insertion registered in current context.
        // We have reordered the oprs on the chain, so check the last
        // opr on the chain is meaningless since sometimes prev->owner_opr()
        // is a broadcast but \p opr not.
        rewriter.replace_var(opr->output(0), prev,
                             mgb_cstr_log("insert broadcast %s"));
        replace_trailing_bcasts();
    };

    auto on_opr = [&](OperatorNodeBase* opr) {
        VarNode* chain_input;
        dep_on_bcast[opr] = opr->same_type<opr::Broadcast>() ||
                            (opr_in_chain(opr, &chain_input, true) &&
                             dep_on_bcast[chain_input->owner_opr()]);
        if (opr_in_chain(opr, &chain_input, true)) {
            if (is_opr_endpoint(opr))
                process_chain_from_endpoint(opr);
            else
                rewriter.auto_replace_outputs(opr);
        } else {
            for (auto inp : opr->input()) {
                if (opr_in_chain(inp->owner_opr(), &chain_input, true) &&
                    !visited.count(inp->owner_opr())) {
                    process_chain_from_endpoint(inp->owner_opr());
                }
            }
            rewriter.auto_replace_outputs(opr);
        }
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
343
    MIDOUT_E
344 345 346 347 348 349 350 351 352
}

/* ======================= RecompTypeCvtPass ====================== */

const char* RecompTypeCvtPass::name() const {
    return "recomp_typecvt_pass";
}

void RecompTypeCvtPass::apply(OptState& opt) const {
353
    MIDOUT_B("RecompTypeCvtPass::apply")
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    auto rewriter = opt.graph().make_rewriter();

    auto allowed_typecvt = [](OperatorNodeBase* opr) -> OperatorNodeBase* {
        if (!opr->same_type<opr::TypeCvt>())
            return nullptr;
        if (opr->input().size() != 1 || opr->output().size() != 1)
            return nullptr;
        if (opr->input(0)->dtype().size() < opr->output(0)->dtype().size()) {
            return opr;
        }
        return nullptr;
    };

    size_t step = 0;
    auto opr2step = ThinHashMap<OperatorNodeBase*, size_t>();
    auto on_opr = [&](OperatorNodeBase* opr) {
        VarNodeArray rewritten_inputs;
        step++;
        bool any_inp_changed = false;
        for (auto inp : opr->input()) {
            bool inp_changed = false;
            if (auto typecvt = allowed_typecvt(inp->owner_opr())) {
                auto iter = opr2step.find(typecvt);
                if (iter != opr2step.end()) {
                    size_t prev_step = iter->second;
                    if (step - prev_step > m_threshold) {
                        OperatorNodeConfig config = opr->config();
381
                        config.update_instance_id(opr);
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
                        opt.call_with_opr(typecvt, [&]{
                            auto new_typecvt =
                                    opr::TypeCvt::make(
                                            rewriter.get_var(typecvt->input(0)),
                                            typecvt->output(0)->dtype(), config)
                                            .node();
                            new_typecvt->owner_opr()
                                    ->node_prop()
                                    .attribute()
                                    .priority = std::numeric_limits<int>::max();
                            rewritten_inputs.push_back(new_typecvt);
                        }, OprPropertyFlag::ALL ^ OprPropertyFlag::PRIORITY);
                        inp_changed = true;
                    }
                } else {
                    opr2step[typecvt] = step;
                }
            }
            if (!inp_changed)
                rewritten_inputs.push_back(rewriter.get_var(inp));
            if (inp_changed || inp != rewriter.get_var(inp))
                any_inp_changed = true;
        }
        if (any_inp_changed) {
            auto new_opr = serialization::copy_opr_shallow(
                    *opr, rewritten_inputs, opr->config());
            if (new_opr != opr) {
                for (size_t i = 0; i < opr->output().size(); ++i)
                    if (!opr->output(i)->contain_flag(
                                VarNode::Flag::VOLATILE_CONTENT))
                        rewriter.replace_var(opr->output(i), new_opr->output(i),
                                             mgb_cstr_log(""));
            }
        }
    };
    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
419
    MIDOUT_E
420 421 422 423 424 425 426 427 428
}

/* ======================= CombineAstypeAndReducePass ====================== */

const char* CombineAstypeAndReducePass::name() const {
    return "combine_astype_and_reduce";
}

void CombineAstypeAndReducePass::apply(OptState& opt) const {
429
    MIDOUT_B("CombineAstypeAndReducePass::apply")
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
    auto rewriter = opt.graph().make_rewriter();

    using DataType = opr::Reduce::Param::DataType;

    auto get_data_type = [](DType before, DType after) {
#if !MEGDNN_DISABLE_FLOAT16
        if (before == dtype::Float16() && after == dtype::Float32())
            return DataType::FLOAT_O32xC32;
#endif
        return DataType::DEFAULT;
    };

    auto on_opr = [&](OperatorNodeBase* opr) {
        if (auto reduce = try_cast_as_op<opr::Reduce>(opr)) {
            auto inp = rewriter.get_var(reduce->input(0));
            if (inp->owner_opr()->same_type<opr::TypeCvt>()) {
                auto data_type = get_data_type(
                        inp->owner_opr()->input(0)->dtype(), inp->dtype());

                if (data_type != DataType::DEFAULT) {
                    opr::Reduce::Param param = reduce->param();
                    param.data_type = data_type;
                    VarNode* target_shape = nullptr;
                    if (param.axis < -MEGDNN_MAX_NDIM ||
                        param.axis >= MEGDNN_MAX_NDIM) {
                        mgb_assert(reduce->input().size() > 1);
                        target_shape = reduce->input(1);
                    } else {
                        mgb_assert(reduce->input().size() == 1);
                    }
                    auto new_var =
                            opr::Reduce::make(inp->owner_opr()->input(0), param,
                                              target_shape, opr->config())
                                    .node();
                    rewriter.replace_var(opr->output(0), new_var,
                                         mgb_cstr_log("replace reduce"));
                    return;
                }
            }
        }
        rewriter.auto_replace_outputs(opr);
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
475
    MIDOUT_E
476 477 478 479 480 481 482 483 484
}

/* ================ CondExecConstPredicateFolding ================ */
const char* CondExecConstPredicateFolding::name() const {
    return "cond_exec_const_predicate_folding";
}

void CondExecConstPredicateFolding::apply(OptState& opt) const {
#if MGB_ENABLE_COND_EXEC
485
    MIDOUT_B("CondExecConstPredicateFolding::apply")
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
    if (!cg::ExecutionMask::have_alive_instance()) {
        return;
    }

    // replace var with unmasked version for active branches, and mark inactive
    // branches in const_mask

    ConstVarPropogate const_prop{ConstVarType::IMMUTABLE};

    auto&& mgr = opt.graph().comp_graph()->static_infer_manager();
    // value of PPV
    auto get_ppvv = [&](VarNode* var) -> const int* {
        const_prop.add_opr(var->owner_opr());
        if (const_prop.is_const(var)) {
            return mgr.infer_value(var).ptr<int>();
        }
        return nullptr;
    };
    // mask to ppvv value
    ThinHashMap<cg::ExecutionMask*, int> const_mask;

    auto rewriter = opt.graph().make_rewriter();

    auto handle_merge = [&](opr::CondExecMerge& opr) -> bool {
        SmallVector<size_t> active_br;
        size_t nr_out = opr.param().nr_output,
               nr_branch = opr.branch_masks().size();
        for (size_t i = 0; i < nr_branch; ++i) {
            auto iter = const_mask.find(opr.branch_masks()[i]);
            if (iter == const_mask.end()) {
                return false;
            }
            if (iter->second) {
                active_br.push_back(i);
            }
        }

        using Mode = opr::CondExecMerge::Param::Mode;
        auto mode = opr.param().mode;

        if (mode == Mode::EXACT_ONE || mode == Mode::EXACT_ONE_SAME_SHAPE) {
            mgb_assert(active_br.size() == 1,
                       "%zu branches are active for EXACT_ONE CondExecMark %s",
                       active_br.size(), opr.cname());
        }

        SymbolVarArray ovars(nr_out);
        if (active_br.empty()) {
            if (mode == Mode::SUM) {
                auto shp_inp = opr.input().data() + nr_out * nr_branch;
                for (size_t i = 0; i < nr_out; ++i) {
                    auto shp = rewriter.get_var(shp_inp[i]);
                    if (cg::ExecutionMask::get_from_opr(shp->owner_opr())) {
                        // output should have no mask
                        return false;
                    }
                    ovars[i] = SymbolVar{opr.output(i)}
                                       .make_scalar_dt(0)
                                       .broadcast(shp);
                }
            } else {
                mgb_assert(mode == Mode::SUM_COND_OUT);
                auto mask = cg::ExecutionMask::get_from_opr(&opr);
                mgb_assert(mask && mask->owner() == opr.input().back());
                auto ppvv = get_ppvv(mask->owner());
                mgb_assert(ppvv && !ppvv[0]);
                const_mask[mask] = 0;
                // mark as false and do nothing more
                return false;
            }
        } else {
            auto inp = [&](size_t br, size_t oidx) {
                return rewriter.get_var(opr.input(br * nr_out + oidx));
            };
            for (auto br_idx : active_br) {
                for (size_t i = 0; i < nr_out; ++i) {
                    auto sum = ovars[i];
                    if (!sum.node()) {
                        sum = inp(br_idx, i);
                    } else {
                        sum = sum + inp(br_idx, i);
                    }
                    ovars[i] = sum;
                }
            }
        }

        for (size_t i = 0; i < nr_out; ++i) {
            rewriter.replace_var(opr.output(i), ovars[i].node(),
                                 mgb_cstr_log("const merge"));
        }

        return true;
    };

    auto on_opr = [&](OperatorNodeBase* opr) {
        auto opr_type = opr->dyn_typeinfo();
        if (opr_type->is<opr::CondExecMark>()) {
            if (auto ppvv = get_ppvv(opr->input().back())) {
                auto mask = cg::ExecutionMask::get_from_opr(opr);
                mgb_assert(mask && mask->owner() == opr->input().back());
                if (ppvv[0]) {
                    for (size_t i = 0; i < opr->output().size(); ++i) {
                        rewriter.replace_var(opr->output(i),
                                             rewriter.get_var(opr->input(i)),
                                             mgb_cstr_log("const true mark"));
                    }
                    const_mask[mask] = 1;
                } else {
                    const_mask[mask] = 0;
                }
            }
            return;
        }
        if (opr_type->is<opr::CondExecMerge>()) {
            if (!handle_merge(opr->cast_final<opr::CondExecMerge>())) {
                for (auto i : opr->output()) {
                    rewriter.replace_var(
                            i, i,
                            mgb_cstr_log("keep when not all inputs have const "
                                         "mask"));
                }
            }
            return;
        }
        rewriter.auto_replace_outputs(opr);
    };

    opt.graph().iter(on_opr);
    for (auto i : opt.graph().endpoint_vars()) {
        auto mask = cg::ExecutionMask::get_from_opr(i.node()->owner_opr());
        if (mask) {
            auto iter = const_mask.find(mask);
            if (iter != const_mask.end()) {
                mgb_throw_if(!iter->second, GraphError,
                             "endpoint is not reachable due to conditional "
                             "execution: %s",
                             cg::dump_var_info({i}).c_str());
            }
        }
    }

    rewriter.apply_inplace();
629
    MIDOUT_E
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656

#endif  // MGB_ENABLE_COND_EXEC
}

/* ======================= RemoveRedundantTypeCvtPass ====================== */

const char* RemoveRedundantTypeCvtPass::name() const {
    return "remove_redundant_typecvt";
}

bool RemoveRedundantTypeCvtPass::should_remove(DType A, DType B) {
    if (A.category() == B.category() &&
        (B.category() == DTypeCategory::INT ||
         B.category() == DTypeCategory::FLOAT) &&
        B.size() >= A.size()) {
        return true;
    }
    if (B.enumv() == DTypeEnum::Float32 &&
        (A.category() == DTypeCategory::QUANTIZED ||
         // Integers with <= 24 bits can be expressed precisely in Float32.
         (A.category() == DTypeCategory::INT && A.size() * 8 <= 24))) {
        return true;
    }
    return false;
}

void RemoveRedundantTypeCvtPass::apply(OptState& opt) const {
657
    MIDOUT_B("RemoveRedundantTypeCvtPass::apply")
658 659 660 661
    auto rewriter = opt.graph().make_rewriter();

    auto on_opr = [&](OperatorNodeBase* opr) {
        if (auto tc0 = try_cast_as_op<opr::TypeCvt>(opr)) {
662 663
            auto inp0 = rewriter.get_var(tc0->input(0));
            if (auto tc1 = try_cast_as_op<opr::TypeCvt>(inp0)) {
664
                if (should_remove(tc0->param(), tc1->param())) {
665 666
                    auto inp1 = tc1->input(0);
                    mgb_assert(!rewriter.has_manual_replace(inp1));
667 668
                    // TypeCvt returns the input var if its dtype is already
                    // dest_type
669
                    auto fold = opr::TypeCvt::make(inp1, tc0->param());
670 671 672 673
                    rewriter.replace_var(
                            tc0->output(0), fold.node(),
                            mgb_cstr_log("cvt_b(cvt_a(x)) -> cvt_b(x)"));
                }
674
                return;
675 676
            }
        }
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
        rewriter.auto_replace_outputs(opr);
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
    MIDOUT_E
}

/* ======================= RemoveRedundantCopyPass ====================== */

const char* RemoveRedundantCopyPass::name() const {
    return "remove_redundant_copy";
}

bool RemoveRedundantCopyPass::should_remove(const CompNode& A,
                                            const CompNode& B) {
    //! if A and B has the same memnode and cpu <-> atlas/cpu <-> cuda, as only
    //! these two compnode support crosscncopy
    if (A.mem_node() == B.mem_node() ||
        ((A.device_type() == CompNode::DeviceType::CPU ||
          A.device_type() == CompNode::DeviceType::MULTITHREAD) &&
         (B.device_type() == CompNode::DeviceType::ATLAS ||
          B.device_type() == CompNode::DeviceType::CUDA)) ||
        ((B.device_type() == CompNode::DeviceType::CPU ||
          B.device_type() == CompNode::DeviceType::MULTITHREAD) &&
         (A.device_type() == CompNode::DeviceType::ATLAS ||
          A.device_type() == CompNode::DeviceType::CUDA))) {
        return true;
    } else {
        return false;
    }
}

void RemoveRedundantCopyPass::apply(OptState& opt) const {
    MIDOUT_B("RemoveRedundantCopyPass::apply")
    auto rewriter = opt.graph().make_rewriter();

    auto on_opr = [&](OperatorNodeBase* opr) {
        if (auto copy0 = try_cast_as_op<opr::Copy>(opr)) {
            auto inp0 = rewriter.get_var(copy0->input(0));
            if (auto copy1= try_cast_as_op<opr::Copy>(inp0)) {
                auto inp1 = copy1->input(0);
                if (should_remove(inp1->comp_node(),
                                  copy0->output(0)->comp_node())) {
                    mgb_assert(!rewriter.has_manual_replace(inp1));
                    if (inp1->comp_node() == copy0->output(0)->comp_node()) {
                        rewriter.replace_var(
                                copy0->output(0), inp1,
                                mgb_cstr_log("copy(copy(a0, a1), a0) -> "
                                             "a0"));
                        return;
                    } else {
                        auto fold = opr::Copy::make(
                                inp1, copy0->output(0)->comp_node());
                        rewriter.replace_var(
                                copy0->output(0), fold.node(),
                                mgb_cstr_log("copy(copy(a0, a1), a2) -> "
                                             "copy(a0, a2)"));
                        return;
                    }
                }
            }
        }
740 741 742 743 744
        rewriter.auto_replace_outputs(opr);
    };

    opt.graph().iter(on_opr);
    rewriter.apply_inplace();
745
    MIDOUT_E
746 747
}

748 749 750 751 752 753 754 755 756 757
#if MGB_ENABLE_OPR_MM
#include "megbrain/opr/collective_comm.h"

/* ======================= PackAllReduceScanPass ====================== */

const char* PackAllReduceScanPass::name() const {
    return "pack_allreduce_scan";
}

void PackAllReduceScanPass::apply(OptState& opt) const {
758
    MIDOUT_B("PackAllReduceScanPass::apply")
759 760 761 762 763 764 765 766 767 768 769 770 771 772
    auto comp_graph = opt.graph().comp_graph();
    if (comp_graph->options().allreduce_pack_max_size == 0) return;
    auto cb_scan = [this] (OperatorNodeBase* opr) {
        if (check_pattern(opr)) {
            auto& comm = opr->cast_final_safe<opr::CollectiveComm>();
            VarNode* target = comm.input(0)->owner_opr()->input(0);
            // only pack allreduces of grads of the same target
            // in case two allreduces depend on each other
            size_t id = target->id();
            uint64_t hash = XXHash().update(&id, sizeof(size_t)).digest();
            comm.set_pack_hash(hash);
        }
    };
    opt.graph().iter(cb_scan);
773
    MIDOUT_E
774 775 776 777 778 779
}

bool PackAllReduceScanPass::check_pattern(OperatorNodeBase* opr) {
    if (!opr->same_type<opr::CollectiveComm>()) return false;
    auto& comm = opr->cast_final_safe<opr::CollectiveComm>();
    if (comm.param().mode != opr::CollectiveComm::Param::Mode::ALL_REDUCE_SUM) return false;
780
    if (comm.local_grad()) return false;
781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
    if (comm.input().size() != 1) return false;

    auto grad = comm.input(0)->owner_opr();
    if (!grad->same_type<opr::VirtualGrad>()) return false;
    if (grad->input().size() != 2 or grad->output().size() != 1) return false;

    auto param = grad->input(1)->owner_opr();
    if (!param->same_type<opr::SharedDeviceTensor>() and
        !param->same_type<opr::VolatileSharedDeviceTensor>()) return false;
    if (param->input().size() != 0) return false;

    return true;
}

/* ======================= PackAllReduceReplacePass ====================== */

const char* PackAllReduceReplacePass::name() const {
    return "pack_allreduce_replace";
}

class PackAllReduceReplacePass::GroupInfo {
public:
    GroupInfo(int _device, DType _dtype,
            size_t _nr_devices, bool _is_root, int _rank,
            std::shared_ptr<opr::GroupClient> _group_client,
            const std::string& _backend);

    uint64_t hash(uint64_t extra) const;

    int device;
    DType dtype;
    size_t nr_devices;
    bool is_root;
    int rank;
    std::shared_ptr<opr::GroupClient> group_client;
    std::string backend;
};

PackAllReduceReplacePass::GroupInfo::GroupInfo(
        int _device, DType _dtype,
        size_t _nr_devices, bool _is_root, int _rank,
        std::shared_ptr<opr::GroupClient> _group_client,
        const std::string& _backend) :
    device(_device), dtype(_dtype),
    nr_devices(_nr_devices), is_root(_is_root), rank(_rank),
    group_client(_group_client), backend(_backend) {
}

uint64_t PackAllReduceReplacePass::GroupInfo::hash(uint64_t extra) const {
    DTypeEnum ev = dtype.enumv();
    const std::string& server_addr = group_client->get_addr();
    return XXHash()
        .update(&extra, sizeof(uint64_t))
        .update(&device, sizeof(int))
        .update(&ev, sizeof(DTypeEnum))
        .update(&nr_devices, sizeof(size_t))
        .update(&is_root, sizeof(bool))
        .update(&rank, sizeof(int))
        .update(server_addr.c_str(), server_addr.size())
        .update(backend.c_str(), backend.size())
        .digest();
}

uint64_t PackAllReduceReplacePass::collect_groups(OperatorNodeBase* opr,
        ThinHashMap<uint64_t, std::shared_ptr<GroupInfo>>& group_info,
        ThinHashMap<uint64_t, cg::OprNodeArray>& groups) {
    // check CollectiveComm oprs that have been marked in PackAllReduceScanPass
    if (!opr->same_type<opr::CollectiveComm>()) return 0;
    opr::CollectiveComm& comm = opr->cast_final_safe<opr::CollectiveComm>();
    if (comm.pack_hash() == 0) return 0;  // pack_hash not set

    VarNode* var = comm.input(0);
    auto info = std::make_shared<GroupInfo>(
        var->comp_node().locator().device,
        var->dtype(),
        comm.nr_devices(),
        comm.is_root(),
        comm.rank(),
        comm.group_client(),
        comm.backend()
    );
    uint64_t hash = info->hash(comm.pack_hash());
    if (group_info.find(hash) == group_info.end()) {
        group_info.emplace(hash, info);
    }
    groups[hash].push_back(opr);
    return hash;
}

void PackAllReduceReplacePass::divide_packs(
        const ThinHashMap<uint64_t, cg::OprNodeArray>& groups,
        ThinHashMap<uint64_t, std::vector<cg::OprNodeArray>>& packs,
        size_t max_size) {
    cg::OprNodeArray pack;
    size_t sum = 0;
    for (auto it : groups) {
        uint64_t hash = it.first;
        const cg::OprNodeArray& group = it.second;
        for (size_t i = 0; i < group.size(); i++) {
            OperatorNodeBase* opr = group[i];
            VarNode* var = opr->input(0);
            const TensorShape* shape = var->owner_graph()
                    ->static_infer_manager().infer_shape_fallible(var);
            if (shape == nullptr) continue;
            pack.push_back(opr);
            sum += var->dtype().size(shape->total_nr_elems());
            if (sum >= max_size) {
                if (pack.size() > 1) packs[hash].push_back(pack);
                pack.clear();
                sum = 0;
            }
        }
        if (pack.size() > 1) packs[hash].push_back(pack);
        pack.clear();
        sum = 0;
    }
}

void PackAllReduceReplacePass::insert_packed_oprs(
        size_t pack_id,
        const cg::OprNodeArray& pack,
        std::shared_ptr<GroupInfo> info,
        ThinHashMap<VarNode*, VarNode*>& replace_map, int priority) {
    // set priority
    mgb_assert(pack.size() > 0);
    auto graph = pack[0]->owner_graph();
    auto on_opr_inserted = [priority] (const cg::event::OprInserted& event) {
        event.opr->node_prop().attribute().priority = priority;
    };
    auto handler = graph->event().register_receiver<cg::event::OprInserted>(on_opr_inserted);

    // flatten inputs and record shapes and partition
    std::vector<SymbolVar> shapes;
    SymbolVarArray flattens;
    SymbolVarArray partition;
    for (size_t i = 0; i < pack.size(); i++) {
        VarNode* var = pack[i]->input(0);
        auto shape = opr::GetVarShape::make(SymbolVar(var));
        shapes.push_back(shape);
        SymbolVar flatten = SymbolVar(var).flatten();
        flattens.push_back(flatten);
        partition.push_back(opr::Reduce::make(shape, {opr::Reduce::Mode::PRODUCT, 0}));
    }

    // concat
    SymbolVar concat = opr::Concat::make(flattens, 0);

    // allreduce
    std::string key = ssprintf("grad_pack_%zu", pack_id);
    auto param = opr::CollectiveComm::Param::Mode::ALL_REDUCE_SUM;
    SymbolVar allreduce = opr::CollectiveComm::make({concat}, graph,
932
        key, info->nr_devices, info->is_root, info->rank, false,
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        info->group_client, param, info->dtype, info->backend)[0];

    // split according to recorded partition
    SymbolVarArray splits = opr::Split::make(allreduce,
        opr::Split::Options::make_partition(0, partition));

    // reshape and insert results into replace_map
    mgb_assert(pack.size() == splits.size());
    for (size_t i = 0; i < pack.size(); i++) {
        VarNode* reshape = splits[i].reshape(shapes[i]).node();
        replace_map[pack[i]->output(0)] = reshape;
    }
}

void PackAllReduceReplacePass::apply(OptState& opt) const {
948
    MIDOUT_B("PackAllReduceReplacePass::apply")
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
    // get graph options
    auto comp_graph = opt.graph().comp_graph();
    size_t max_size = comp_graph->options().allreduce_pack_max_size * 1024 * 1024;
    size_t ignore_first = comp_graph->options().allreduce_pack_ignore_first;
    if (max_size == 0) return;

    // get topo order
    auto& topo_sorter = static_cast<cg::ComputingGraphImpl*>(comp_graph)->topo_sorter();
    cg::CompSeqExtraInfo extra_info;
    VarNodeArray endpoints = to_var_node_array(opt.graph().endpoint_vars());
    const cg::OprNodeArray* seq = topo_sorter.get_comp_seq(extra_info, endpoints);
    topo_sorter.restore_opr_prop();

    // collect allreduce groups from topo sequence
    ThinHashMap<uint64_t, std::shared_ptr<GroupInfo>> group_info;
    ThinHashMap<uint64_t, cg::OprNodeArray> groups;
    for (size_t i = 0; i < seq->size(); i++) {
        if (seq->at(i)->same_type<opr::CollectiveComm>()) {
            // ignore the first several allreduces
            if (ignore_first > 0) {
                --ignore_first;
            } else {
                collect_groups(seq->at(i), group_info, groups);
            }
        }
    }

    // divide groups into packs
    ThinHashMap<uint64_t, std::vector<cg::OprNodeArray>> packs;
    divide_packs(groups, packs, max_size);

    // make sure that oprs inserted in this pass (reshape, concat, allreduce,
    // split, reshape) have higher priority than existing operators
    int priority = -seq->size() - 100;

    // insert packed operators and generate replace_map
    ThinHashMap<VarNode*, VarNode*> replace_map;
    size_t pack_id = 0;
    for (auto it : packs) {
        uint64_t hash = it.first;
        for (auto pack : it.second) {
            opt.call_with_opr(pack[0], [&]() {
                insert_packed_oprs(pack_id, pack, group_info[hash], replace_map, priority);
            }, OprPropertyFlag::NONE);
            pack_id += 1;
        }
    }

    // replace vars
    auto rewriter = opt.graph().make_rewriter();
    auto cb_replace = [&](OperatorNodeBase* opr) {
        for (auto i : opr->input()) {
            auto iter = replace_map.find(i);
            if (iter != replace_map.end()) {
                rewriter.replace_var(i, iter->second, nullptr);
            }
        }
        rewriter.auto_replace_outputs(opr);
    };
    opt.graph().iter(cb_replace);
    rewriter.apply_inplace();
1010
    MIDOUT_E
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
}

#else

/* ======================= PackAllReduceScanPass ====================== */

const char* PackAllReduceScanPass::name() const {
    return "pack_allreduce_scan";
}

void PackAllReduceScanPass::apply(OptState& opt) const {
}

bool PackAllReduceScanPass::check_pattern(OperatorNodeBase* opr) {
    return true;
}

/* ======================= PackAllReduceReplacePass ====================== */

const char* PackAllReduceReplacePass::name() const {
    return "pack_allreduce_replace";
}

void PackAllReduceReplacePass::apply(OptState& opt) const {}

uint64_t PackAllReduceReplacePass::collect_groups(
        OperatorNodeBase* opr,
        ThinHashMap<uint64_t, std::shared_ptr<GroupInfo>>& group_info,
        ThinHashMap<uint64_t, cg::OprNodeArray>& groups) {
    return 0;
}

void PackAllReduceReplacePass::divide_packs(
        const ThinHashMap<uint64_t, cg::OprNodeArray>& groups,
        ThinHashMap<uint64_t, std::vector<cg::OprNodeArray>>& packs,
        size_t max_size) {
}

void PackAllReduceReplacePass::insert_packed_oprs(
        size_t pack_id,
        const cg::OprNodeArray& pack,
        std::shared_ptr<GroupInfo> info,
        ThinHashMap<VarNode*, VarNode*>& replace_map, int priority) {
}

#endif  // MGB_ENABLE_OPR_MM

1058
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}}