“fa818db6896e111e123240823af99c65436612a1”上不存在“...tools/AbstractCommandInstaller/config_bg.properties”
arm_fir_q15.c 26.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
/* ----------------------------------------------------------------------
 * Project:      CMSIS DSP Library
 * Title:        arm_fir_q15.c
 * Description:  Q15 FIR filter processing function
 *
 * $Date:        23 April 2021
 * $Revision:    V1.9.0
 *
 * Target Processor: Cortex-M and Cortex-A cores
 * -------------------------------------------------------------------- */
/*
 * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "dsp/filtering_functions.h"

/**
  @ingroup groupFilters
 */

/**
  @addtogroup FIR
  @{
 */

/**
  @brief         Processing function for the Q15 FIR filter.
  @param[in]     S          points to an instance of the Q15 FIR filter structure
  @param[in]     pSrc       points to the block of input data
  @param[out]    pDst       points to the block of output data
  @param[in]     blockSize  number of samples to process
  @return        none

  @par           Scaling and Overflow Behavior
                   The function is implemented using a 64-bit internal accumulator.
                   Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
                   The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
                   There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
                   After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
                   Lastly, the accumulator is saturated to yield a result in 1.15 format.

  @remark
                   Refer to \ref arm_fir_fast_q15() for a faster but less precise implementation of this function.
 */
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)

#define MVE_ASRL_SAT16(acc, shift)          ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)


#define FIR_Q15_CORE(pOutput, nbAcc, nbVecTaps, pSample, vecCoeffs)        \
        for (int j = 0; j < nbAcc; j++) {                                  \
            const q15_t    *pSmp = &pSample[j];                            \
            q63_t           acc[4];                                        \
                                                                           \
            acc[j] = 0;                                                    \
            for (int i = 0; i < nbVecTaps; i++) {                          \
                vecIn0 = vld1q(pSmp + 8 * i);                  \
                acc[j] = vmlaldavaq(acc[j], vecIn0, vecCoeffs[i]);         \
            }                                                              \
            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc[j], 15);               \
        }

#define FIR_Q15_MAIN_CORE()                                                                  \
{                                                                                            \
    q15_t          *pState = S->pState;     /* State pointer */                              \
    const q15_t    *pCoeffs = S->pCoeffs;   /* Coefficient pointer */                        \
    q15_t          *pStateCur;              /* Points to the current sample of the state */  \
    const q15_t    *pSamples;               /* Temporary pointer to the sample buffer */     \
    q15_t          *pOutput;                /* Temporary pointer to the output buffer */     \
    const q15_t    *pTempSrc;               /* Temporary pointer to the source data */       \
    q15_t          *pTempDest;              /* Temporary pointer to the destination buffer */\
    uint32_t        numTaps = S->numTaps;   /* Number of filter coefficients in the filter */\
    int32_t         blkCnt;                                                                  \
    q15x8_t         vecIn0;                                                                  \
                                                                                             \
    /*                                                                                       \
     * load coefs                                                                            \
     */                                                                                      \
    q15x8_t         vecCoeffs[NBVECTAPS];                                                    \
                                                                                             \
    for (int i = 0; i < NBVECTAPS; i++)                                                      \
        vecCoeffs[i] = vldrhq_s16(pCoeffs + 8 * i);                                          \
                                                                                             \
    /*                                                                                       \
     * pState points to state array which contains previous frame (numTaps - 1) samples      \
     * pStateCur points to the location where the new input data should be written           \
     */                                                                                      \
    pStateCur = &(pState[(numTaps - 1u)]);                                                   \
    pTempSrc = pSrc;                                                                         \
    pSamples = pState;                                                                       \
    pOutput = pDst;                                                                          \
                                                                                             \
    blkCnt = blockSize >> 2;                                                                 \
    while (blkCnt > 0) {                                                                     \
        /*                                                                                   \
         * Save 4 input samples in the history buffer                                        \
         */                                                                                  \
        vstrhq_s32(pStateCur, vldrhq_s32(pTempSrc));                                         \
        pStateCur += 4;                                                                      \
        pTempSrc += 4;                                                                       \
                                                                                             \
        FIR_Q15_CORE(pOutput, 4, NBVECTAPS, pSamples, vecCoeffs);                            \
        pSamples += 4;                                                                       \
                                                                                             \
        blkCnt--;                                                                            \
    }                                                                                        \
                                                                                             \
    /* tail */                                                                               \
    int32_t        residual = blockSize & 3;                                                \
                                                                                             \
    for (int i = 0; i < residual; i++)                                                       \
        *pStateCur++ = *pTempSrc++;                                                          \
                                                                                             \
    FIR_Q15_CORE(pOutput, residual, NBVECTAPS, pSamples, vecCoeffs);                         \
                                                                                             \
    /*                                                                                       \
     * Copy the samples back into the history buffer start                                   \
     */                                                                                      \
    pTempSrc = &pState[blockSize];                                                           \
    pTempDest = pState;                                                                      \
                                                                                             \
    /* current compiler limitation */                                                        \
    blkCnt = (numTaps - 1) >> 3;                                                             \
    while (blkCnt > 0)                                                                       \
    {                                                                                        \
        vstrhq_s16(pTempDest, vldrhq_s16(pTempSrc));                                         \
        pTempSrc += 8;                                                                       \
        pTempDest += 8;                                                                      \
        blkCnt--;                                                                            \
    }                                                                                        \
    blkCnt = (numTaps - 1) & 7;                                                              \
    if (blkCnt > 0)                                                                          \
    {                                                                                        \
        mve_pred16_t p = vctp16q(blkCnt);                                                    \
        vstrhq_p_s16(pTempDest, vldrhq_z_s16(pTempSrc, p), p);                               \
    }                                                                                        \
}

static void arm_fir_q15_25_32_mve(const arm_fir_instance_q15 * S,
  const q15_t * __restrict pSrc,
  q15_t * __restrict pDst, uint32_t blockSize)
{
    #define NBTAPS 32
    #define NBVECTAPS (NBTAPS / 8)
    FIR_Q15_MAIN_CORE();
    #undef NBVECTAPS
    #undef NBTAPS
}

static void arm_fir_q15_17_24_mve(const arm_fir_instance_q15 * S,
  const q15_t * __restrict pSrc,
  q15_t * __restrict pDst, uint32_t blockSize)
{
    #define NBTAPS 24
    #define NBVECTAPS (NBTAPS / 8)
    FIR_Q15_MAIN_CORE();
    #undef NBVECTAPS
    #undef NBTAPS
}


static void arm_fir_q15_9_16_mve(const arm_fir_instance_q15 * S,
  const q15_t * __restrict pSrc,
  q15_t * __restrict pDst, uint32_t blockSize)
{
    #define NBTAPS 16
    #define NBVECTAPS (NBTAPS / 8)
    FIR_Q15_MAIN_CORE();
    #undef NBVECTAPS
    #undef NBTAPS
}

static void arm_fir_q15_1_8_mve(const arm_fir_instance_q15 * S,
  const q15_t * __restrict pSrc,
  q15_t * __restrict pDst, uint32_t blockSize)
{
    #define NBTAPS 8
    #define NBVECTAPS (NBTAPS / 8)
    FIR_Q15_MAIN_CORE();
    #undef NBVECTAPS
    #undef NBTAPS
}


void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  const q15_t * pSrc,
        q15_t * pDst,
        uint32_t blockSize)
{
    q15_t    *pState = S->pState;   /* State pointer */
    const q15_t    *pCoeffs = S->pCoeffs; /* Coefficient pointer */
    q15_t    *pStateCur;        /* Points to the current sample of the state */
    const q15_t    *pSamples;         /* Temporary pointer to the sample buffer */
    q15_t    *pOutput;          /* Temporary pointer to the output buffer */
    const q15_t    *pTempSrc;         /* Temporary pointer to the source data */
    q15_t    *pTempDest;        /* Temporary pointer to the destination buffer */
    uint32_t  numTaps = S->numTaps; /* Number of filter coefficients in the filter */
    uint32_t  blkCnt;
    q15x8_t vecIn0;
    uint32_t  tapsBlkCnt = (numTaps + 7) / 8;
    q63_t     acc0, acc1, acc2, acc3;


int32_t nbTaps = (numTaps + 7) >> 3;

switch(nbTaps) {

    case 1:
        arm_fir_q15_1_8_mve(S, pSrc, pDst, blockSize);
        return;
    case 2:
        arm_fir_q15_9_16_mve(S, pSrc, pDst, blockSize);
        return;
    case 3:
        arm_fir_q15_17_24_mve(S, pSrc, pDst, blockSize);
        return;
    case 4:
        arm_fir_q15_25_32_mve(S, pSrc, pDst, blockSize);
        return;
    }
    /*
     * pState points to state array which contains previous frame (numTaps - 1) samples
     * pStateCur points to the location where the new input data should be written
     */
    pStateCur   = &(pState[(numTaps - 1u)]);
    pTempSrc    = pSrc;
    pSamples    = pState;
    pOutput     = pDst;
    blkCnt      = blockSize >> 2;

    while (blkCnt > 0U)
    {
        const q15_t    *pCoeffsTmp = pCoeffs;
        const q15_t    *pSamplesTmp = pSamples;

        acc0 = 0LL;
        acc1 = 0LL;
        acc2 = 0LL;
        acc3 = 0LL;

        /*
         * Save 8 input samples in the history buffer
         */
        vst1q(pStateCur, vld1q(pTempSrc));
        pStateCur += 8;
        pTempSrc += 8;

        int       i = tapsBlkCnt;
        while (i > 0)
        {
            /*
             * load 8 coefs
             */
            q15x8_t vecCoeffs = *(q15x8_t *) pCoeffsTmp;

            vecIn0 = vld1q(pSamplesTmp);
            acc0 =  vmlaldavaq(acc0, vecIn0, vecCoeffs);

            vecIn0 = vld1q(&pSamplesTmp[1]);
            acc1 = vmlaldavaq(acc1, vecIn0, vecCoeffs);

            vecIn0 = vld1q(&pSamplesTmp[2]);
            acc2 = vmlaldavaq(acc2, vecIn0, vecCoeffs);

            vecIn0 = vld1q(&pSamplesTmp[3]);
            acc3 = vmlaldavaq(acc3, vecIn0, vecCoeffs);

            pSamplesTmp += 8;
            pCoeffsTmp += 8;
            /*
             * Decrement the taps block loop counter
             */
            i--;
        }

        *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
        *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
        *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
        *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc3, 15);

        pSamples += 4;
        /*
         * Decrement the sample block loop counter
         */
        blkCnt--;
    }

    uint32_t  residual = blockSize & 3;
    switch (residual)
    {
    case 3:
        {
            const q15_t    *pCoeffsTmp = pCoeffs;
            const q15_t    *pSamplesTmp = pSamples;

            acc0 = 0LL;
            acc1 = 0LL;
            acc2 = 0LL;

            /*
             * Save 8 input samples in the history buffer
             */
            *(q15x8_t *) pStateCur = *(q15x8_t *) pTempSrc;
            pStateCur += 8;
            pTempSrc += 8;

            int       i = tapsBlkCnt;
            while (i > 0)
            {
                /*
                 * load 8 coefs
                 */
                q15x8_t vecCoeffs = *(q15x8_t *) pCoeffsTmp;

                vecIn0 = vld1q(pSamplesTmp);
                acc0 = vmlaldavaq(acc0, vecIn0, vecCoeffs);

                vecIn0 = vld1q(&pSamplesTmp[2]);
                acc1 = vmlaldavaq(acc1, vecIn0, vecCoeffs);

                vecIn0 = vld1q(&pSamplesTmp[4]);
                acc2 = vmlaldavaq(acc2, vecIn0, vecCoeffs);

                pSamplesTmp += 8;
                pCoeffsTmp += 8;
                /*
                 * Decrement the taps block loop counter
                 */
                i--;
            }

            acc0 = asrl(acc0, 15);
            acc1 = asrl(acc1, 15);
            acc2 = asrl(acc2, 15);

            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc2, 15);
        }
        break;

    case 2:
        {
            const q15_t    *pCoeffsTmp = pCoeffs;
            const q15_t    *pSamplesTmp = pSamples;

            acc0 = 0LL;
            acc1 = 0LL;
            /*
             * Save 8 input samples in the history buffer
             */
            vst1q(pStateCur, vld1q(pTempSrc));
            pStateCur += 8;
            pTempSrc += 8;

            int       i = tapsBlkCnt;
            while (i > 0)
            {
                /*
                 * load 8 coefs
                 */
                q15x8_t vecCoeffs = *(q15x8_t *) pCoeffsTmp;

                vecIn0 = vld1q(pSamplesTmp);
                acc0 = vmlaldavaq(acc0, vecIn0, vecCoeffs);

                vecIn0 = vld1q(&pSamplesTmp[2]);
                acc1 = vmlaldavaq(acc1, vecIn0, vecCoeffs);

                pSamplesTmp += 8;
                pCoeffsTmp += 8;
                /*
                 * Decrement the taps block loop counter
                 */
                i--;
            }

            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc1, 15);
        }
        break;

    case 1:
        {
            const q15_t    *pCoeffsTmp = pCoeffs;
            const q15_t    *pSamplesTmp = pSamples;

            acc0 = 0LL;

            /*
             * Save 8 input samples in the history buffer
             */
            vst1q(pStateCur, vld1q(pTempSrc));
            pStateCur += 8;
            pTempSrc += 8;

            int       i = tapsBlkCnt;
            while (i > 0)
            {
                /*
                 * load 8 coefs
                 */
                q15x8_t vecCoeffs = *(q15x8_t *) pCoeffsTmp;

                vecIn0 = vld1q(pSamplesTmp);
                acc0 = vmlaldavaq(acc0, vecIn0, vecCoeffs);

                pSamplesTmp += 8;
                pCoeffsTmp += 8;
                /*
                 * Decrement the taps block loop counter
                 */
                i--;
            }

            *pOutput++ = (q15_t) MVE_ASRL_SAT16(acc0, 15);
        }
        break;
    }

    /*
     * Copy the samples back into the history buffer start
     */
    pTempSrc = &pState[blockSize];
    pTempDest = pState;

    blkCnt = numTaps >> 3;
    while (blkCnt > 0U)
    {
        vst1q(pTempDest, vld1q(pTempSrc));
        pTempSrc += 8;
        pTempDest += 8;
        blkCnt--;
    }
    blkCnt = numTaps & 7;
    if (blkCnt > 0U)
    {
        mve_pred16_t p0 = vctp16q(blkCnt);
        vstrhq_p_s16(pTempDest, vld1q(pTempSrc), p0);
    }
}

#else
void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  const q15_t * pSrc,
        q15_t * pDst,
        uint32_t blockSize)
{
        q15_t *pState = S->pState;                     /* State pointer */
  const q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
        q15_t *pStateCurnt;                            /* Points to the current sample of the state */
        q15_t *px;                                     /* Temporary pointer for state buffer */
  const q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
        q63_t acc0;                                    /* Accumulators */
        uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
        uint32_t tapCnt, blkCnt;                       /* Loop counters */

#if defined (ARM_MATH_LOOPUNROLL)
        q63_t acc1, acc2, acc3;                        /* Accumulators */
        q31_t x0, x1, x2, c0;                          /* Temporary variables to hold state and coefficient values */
#endif

  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1U)]);

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 output values simultaneously.
   * The variables acc0 ... acc3 hold output values that are being computed:
   *
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
   *    acc1 =  b[numTaps-1] * x[n-numTaps]   + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps]   + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]
   */
  blkCnt = blockSize >> 2U;

  while (blkCnt > 0U)
  {
    /* Copy 4 new input samples into the state buffer. */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
    px = pState;

    /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:  x[n-N], x[n-N-1] */
    x0 = read_q15x2_ia (&px);

    /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
    x2 = read_q15x2_ia (&px);

    /* Loop over the number of taps.  Unroll by a factor of 4.
       Repeat until we've computed numTaps-(numTaps%4) coefficients. */
    tapCnt = numTaps >> 2U;

    while (tapCnt > 0U)
    {
      /* Read the first two coefficients using SIMD:  b[N] and b[N-1] coefficients */
      c0 = read_q15x2_ia ((q15_t **) &pb);

      /* acc0 +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */
      acc0 = __SMLALD(x0, c0, acc0);

      /* acc2 +=  b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack  x[n-N-1] and x[n-N-2] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read state x[n-N-4], x[n-N-5] */
      x0 = read_q15x2_ia (&px);

      /* acc1 +=  b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-3] and x[n-N-4] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* acc3 +=  b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Read coefficients b[N-2], b[N-3] */
      c0 = read_q15x2_ia ((q15_t **) &pb);

      /* acc0 +=  b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
      acc0 = __SMLALD(x2, c0, acc0);

      /* Read state x[n-N-6], x[n-N-7] with offset */
      x2 = read_q15x2_ia (&px);

      /* acc2 +=  b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
      acc2 = __SMLALD(x0, c0, acc2);

      /* acc1 +=  b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-5] and x[n-N-6] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* acc3 +=  b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Decrement tap count */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps.
       This is always be 2 taps since the filter length is even. */
    if ((numTaps & 0x3U) != 0U)
    {
      /* Read last two coefficients */
      c0 = read_q15x2_ia ((q15_t **) &pb);

      /* Perform the multiply-accumulates */
      acc0 = __SMLALD(x0, c0, acc0);
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read last state variables */
      x0 = read_q15x2 (px);

      /* Perform the multiply-accumulates */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* Perform the multiply-accumulates */
      acc3 = __SMLALDX(x1, c0, acc3);
    }

    /* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
       Then store the 4 outputs in the destination buffer. */
#ifndef ARM_MATH_BIG_ENDIAN
    write_q15x2_ia (&pDst, __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16));
    write_q15x2_ia (&pDst, __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16));
#else
    write_q15x2_ia (&pDst, __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16));
    write_q15x2_ia (&pDst, __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16));
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4U;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Loop unrolling: Compute remaining output samples */
  blkCnt = blockSize % 0x4U;

#else

  /* Initialize blkCnt with number of taps */
  blkCnt = blockSize;

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  while (blkCnt > 0U)
  {
    /* Copy two samples into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Use SIMD to hold states and coefficients */
    px = pState;
    pb = pCoeffs;

    tapCnt = numTaps >> 1U;

    while (tapCnt > 0U)
    {
      acc0 += (q31_t) *px++ * *pb++;
        acc0 += (q31_t) *px++ * *pb++;

      tapCnt--;
    }


    /* The result is in 2.30 format. Convert to 1.15 with saturation.
       Then store the output in the destination buffer. */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1U;

    /* Decrement loop counter */
    blkCnt--;
  }

  /* Processing is complete.
     Now copy the last numTaps - 1 samples to the start of the state buffer.
     This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

#if defined (ARM_MATH_LOOPUNROLL)

  /* Loop unrolling: Compute 4 taps at a time */
  tapCnt = (numTaps - 1U) >> 2U;

  /* Copy data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1U) % 0x4U;

#else

  /* Initialize tapCnt with number of taps */
  tapCnt = (numTaps - 1U);

#endif /* #if defined (ARM_MATH_LOOPUNROLL) */

  /* Copy remaining data */
  while (tapCnt > 0U)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement loop counter */
    tapCnt--;
  }

}
#endif /* defined(ARM_MATH_MVEI) */

/**
  @} end of FIR group
 */