api_graphql_styleguide.md 11.2 KB
Newer Older
B
Bob Van Landuyt 已提交
1 2 3 4
# GraphQL API

## Authentication

5 6
Authentication happens through the `GraphqlController`, right now this
uses the same authentication as the Rails application. So the session
B
Bob Van Landuyt 已提交
7 8 9 10 11 12 13
can be shared.

It is also possible to add a `private_token` to the querystring, or
add a `HTTP_PRIVATE_TOKEN` header.

### Authorization

14
Fields can be authorized using the same abilities used in the Rails
15
app. This can be done by supplying the `authorize` option:
B
Bob Van Landuyt 已提交
16 17

```ruby
18 19 20
module Types
  class QueryType < BaseObject
    graphql_name 'Query'
B
Bob Van Landuyt 已提交
21

22
    field :project, Types::ProjectType, null: true, resolver: Resolvers::ProjectResolver, authorize: :read_project
B
Bob Van Landuyt 已提交
23
  end
24 25 26 27 28 29 30 31 32 33
end
```

Fields can be authorized against multiple abilities, in which case all
ability checks must pass. This requires explicitly passing a block to `field`:

```ruby
field :project, Types::ProjectType, null: true, resolver: Resolvers::ProjectResolver do
  authorize [:read_project, :another_ability]
end
B
Bob Van Landuyt 已提交
34 35 36 37
```

The object found by the resolve call is used for authorization.

38 39 40 41 42
TIP: **Tip:**
When authorizing collections, try to load only what the currently
authenticated user is allowed to view with our existing finders first.
This minimizes database queries and unnecessary authorization checks of
the loaded records.
B
Bob Van Landuyt 已提交
43 44 45 46 47 48 49 50 51 52 53

## Types

When exposing a model through the GraphQL API, we do so by creating a
new type in `app/graphql/types`.

When exposing properties in a type, make sure to keep the logic inside
the definition as minimal as possible. Instead, consider moving any
logic into a presenter:

```ruby
54
class Types::MergeRequestType < BaseObject
B
Bob Van Landuyt 已提交
55 56 57 58 59 60 61 62 63 64 65 66
  present_using MergeRequestPresenter

  name 'MergeRequest'
end
```

An existing presenter could be used, but it is also possible to create
a new presenter specifically for GraphQL.

The presenter is initialized using the object resolved by a field, and
the context.

B
Bob Van Landuyt 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
### Connection Types

GraphQL uses [cursor based
pagination](https://graphql.org/learn/pagination/#pagination-and-edges)
to expose collections of items. This provides the clients with a lot
of flexibility while also allowing the backend to use different
pagination models.

To expose a collection of resources we can use a connection type. This wraps the array with default pagination fields. For example a query for project-pipelines could look like this:

```
query($project_path: ID!) {
  project(fullPath: $project_path) {
    pipelines(first: 2) {
      pageInfo {
        hasNextPage
        hasPreviousPage
      }
      edges {
        cursor
        node {
          id
          status
        }
      }
    }
  }
}
```

This would return the first 2 pipelines of a project and related
pagination info., ordered by descending ID. The returned data would
look like this:

```json
{
  "data": {
    "project": {
      "pipelines": {
        "pageInfo": {
          "hasNextPage": true,
          "hasPreviousPage": false
        },
        "edges": [
          {
            "cursor": "Nzc=",
            "node": {
              "id": "77",
              "status": "FAILED"
            }
          },
          {
            "cursor": "Njc=",
            "node": {
              "id": "67",
              "status": "FAILED"
            }
          }
        ]
      }
    }
  }
}
```

To get the next page, the cursor of the last known element could be
passed:

```
query($project_path: ID!) {
  project(fullPath: $project_path) {
    pipelines(first: 2, after: "Njc=") {
      pageInfo {
        hasNextPage
        hasPreviousPage
      }
      edges {
        cursor
        node {
          id
          status
        }
      }
    }
  }
}
```

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
### Exposing permissions for a type

To expose permissions the current user has on a resource, you can call
the `expose_permissions` passing in a separate type representing the
permissions for the resource.

For example:

```ruby
module Types
  class MergeRequestType < BaseObject
    expose_permissions Types::MergeRequestPermissionsType
  end
end
```

The permission type inherits from `BasePermissionType` which includes
some helper methods, that allow exposing permissions as non-nullable
booleans:

```ruby
class MergeRequestPermissionsType < BasePermissionType
  present_using MergeRequestPresenter

  graphql_name 'MergeRequestPermissions'

  abilities :admin_merge_request, :update_merge_request, :create_note

  ability_field :resolve_note,
                description: 'Whether or not the user can resolve disussions on the merge request'
  permission_field :push_to_source_branch, method: :can_push_to_source_branch?
end
```

- **`permission_field`**: Will act the same as `graphql-ruby`'s
  `field` method but setting a default description and type and making
  them non-nullable. These options can still be overridden by adding
  them as arguments.
- **`ability_field`**: Expose an ability defined in our policies. This
  takes behaves the same way as `permission_field` and the same
  arguments can be overridden.
- **`abilities`**: Allows exposing several abilities defined in our
  policies at once. The fields for these will all have be non-nullable
  booleans with a default description.

200 201 202 203 204 205 206 207 208 209 210 211 212 213
## Resolvers

To find objects to display in a field, we can add resolvers to
`app/graphql/resolvers`.

Arguments can be defined within the resolver, those arguments will be
made available to the fields using the resolver.

We already have a `FullPathLoader` that can be included in other
resolvers to quickly find Projects and Namespaces which will have a
lot of dependant objects.

To limit the amount of queries performed, we can use `BatchLoader`.

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
## Mutations

Mutations are used to change any stored values, or to trigger
actions. In the same way a GET-request should not modify data, we
cannot modify data in a regular GraphQL-query. We can however in a
mutation.

### Fields

In the most common situations, a mutation would return 2 fields:

- The resource being modified
- A list of errors explaining why the action could not be
  performed. If the mutation succeeded, this list would be empty.

By inheriting any new mutations from `Mutations::BaseMutation` the
`errors` field is automatically added. A `clientMutationId` field is
also added, this can be used by the client to identify the result of a
single mutation when multiple are performed within a single request.

### Building Mutations

Mutations live in `app/graphql/mutations` ideally grouped per
resources they are mutating, similar to our services. They should
inherit `Mutations::BaseMutation`. The fields defined on the mutation
will be returned as the result of the mutation.

Always provide a consistent GraphQL-name to the mutation, this name is
used to generate the input types and the field the mutation is mounted
on. The name should look like `<Resource being modified><Mutation
class name>`, for example the `Mutations::MergeRequests::SetWip`
mutation has GraphQL name `MergeRequestSetWip`.

Arguments required by the mutation can be defined as arguments
required for a field. These will be wrapped up in an input type for
the mutation. For example, the `Mutations::MergeRequests::SetWip`
with GraphQL-name `MergeRequestSetWip` defines these arguments:

```ruby
argument :project_path, GraphQL::ID_TYPE,
         required: true,
         description: "The project the merge request to mutate is in"

argument :iid, GraphQL::ID_TYPE,
         required: true,
         description: "The iid of the merge request to mutate"

argument :wip,
         GraphQL::BOOLEAN_TYPE,
         required: false,
         description: <<~DESC
                      Whether or not to set the merge request as a WIP.
                      If not passed, the value will be toggled.
                      DESC
```

This would automatically generate an input type called
`MergeRequestSetWipInput` with the 3 arguments we specified and the
`clientMutationId`.

These arguments are then passed to the `resolve` method of a mutation
as keyword arguments. From here, we can call the service that will
modify the resource.

The `resolve` method should then return a hash with the same field
names as defined on the mutation and an `errors` array. For example,
the `Mutations::MergeRequests::SetWip` defines a `merge_request`
field:

```ruby
field :merge_request,
      Types::MergeRequestType,
      null: true,
      description: "The merge request after mutation"
```

This means that the hash returned from `resolve` in this mutation
should look like this:

```ruby
{
  # The merge request modified, this will be wrapped in the type
  # defined on the field
  merge_request: merge_request,
  # An array if strings if the mutation failed after authorization
  errors: merge_request.errors.full_messages
}
```

To make the mutation available it should be defined on the mutation
type that lives in `graphql/types/mutation_types`. The
`mount_mutation` helper method will define a field based on the
GraphQL-name of the mutation:

```ruby
module Types
  class MutationType < BaseObject
    include Gitlab::Graphql::MountMutation

    graphql_name "Mutation"

    mount_mutation Mutations::MergeRequests::SetWip
  end
end
```

Will generate a field called `mergeRequestSetWip` that
`Mutations::MergeRequests::SetWip` to be resolved.

### Authorizing resources

To authorize resources inside a mutation, we can include the
`Gitlab::Graphql::Authorize::AuthorizeResource` concern in the
mutation.

This allows us to provide the required abilities on the mutation like
this:

```ruby
module Mutations
  module MergeRequests
    class SetWip < Base
      graphql_name 'MergeRequestSetWip'

      authorize :update_merge_request
    end
  end
end
```

We can then call `authorize!` in the `resolve` method, passing in the resource we
want to validate the abilities for.

Alternatively, we can add a `find_object` method that will load the
object on the mutation. This would allow you to use the
`authorized_find!` and `authorized_find!` helper methods.

When a user is not allowed to perform the action, or an object is not
found, we should raise a
`Gitlab::Graphql::Errors::ResourceNotAvailable` error. Which will be
correctly rendered to the clients.

B
Bob Van Landuyt 已提交
356 357 358
## Testing

_full stack_ tests for a graphql query or mutation live in
359
`spec/requests/api/graphql`.
B
Bob Van Landuyt 已提交
360 361

When adding a query, the `a working graphql query` shared example can
362 363 364 365 366
be used to test if the query renders valid results.

Using the `GraphqlHelpers#all_graphql_fields_for`-helper, a query
including all available fields can be constructed. This makes it easy
to add a test rendering all possible fields for a query.
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391

To test GraphQL mutation requests, `GraphqlHelpers` provides 2
helpers: `graphql_mutation` which takes the name of the mutation, and
a hash with the input for the mutation. This will return a struct with
a mutation query, and prepared variables.

This struct can then be passed to the `post_graphql_mutation` helper,
that will post the request with the correct params, like a GraphQL
client would do.

To access the response of a mutation, the `graphql_mutation_response`
helper is available.

Using these helpers, we can build specs like this:

```ruby
let(:mutation) do
  graphql_mutation(
    :merge_request_set_wip,
    project_path: 'gitlab-org/gitlab-ce',
    iid: '1',
    wip: true
  )
end

G
George Tsiolis 已提交
392
it 'returns a successful response' do
393 394 395 396 397 398
   post_graphql_mutation(mutation, current_user: user)

   expect(response).to have_gitlab_http_status(:success)
   expect(graphql_mutation_response(:merge_request_set_wip)['errors']).to be_empty
end
```