typecvt.h 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * \file dnn/src/x86/elemwise_helper/kimpl/typecvt.h
 * MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
 *
 * Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 */
#pragma once

#include <immintrin.h>
14
#ifdef WIN32
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
#include <avx2intrin.h>
#include <avxintrin.h>
#include <fmaintrin.h>
#include <smmintrin.h>
#endif
#include "src/common/utils.h"
#include "src/x86/elemwise_helper/kimpl/op_unary_base.h"
#include "src/x86/quantized_converter.h"
#include "src/x86/utils.h"

namespace megdnn {
namespace x86 {

#define CONVERT_INT8_INT32                                       \
    __m128i val_0 = _mm_cvtepi8_epi32(vsrc);                     \
    __m128i val_1 = _mm_cvtepi8_epi32(_mm_bsrli_si128(vsrc, 4)); \
    __m128i val_2 = _mm_cvtepi8_epi32(_mm_bsrli_si128(vsrc, 8)); \
    __m128i val_3 = _mm_cvtepi8_epi32(_mm_bsrli_si128(vsrc, 12));

#define CONVERT_UINT8_INT32                                      \
    __m128i val_0 = _mm_cvtepu8_epi32(vsrc);                     \
    __m128i val_1 = _mm_cvtepu8_epi32(_mm_bsrli_si128(vsrc, 4)); \
    __m128i val_2 = _mm_cvtepu8_epi32(_mm_bsrli_si128(vsrc, 8)); \
    __m128i val_3 = _mm_cvtepu8_epi32(_mm_bsrli_si128(vsrc, 12));

#define CONVERT_INT32_F32                   \
    __m128 fval_0 = _mm_cvtepi32_ps(val_0); \
    __m128 fval_1 = _mm_cvtepi32_ps(val_1); \
    __m128 fval_2 = _mm_cvtepi32_ps(val_2); \
    __m128 fval_3 = _mm_cvtepi32_ps(val_3);

template <SIMDType simd_type, typename src_ctype,
          typename dst_ctype = src_ctype>
struct TypeCvtOp;

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_quint8, dt_quint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_quint8, dt_quint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_quint8* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }

    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128i operator()(const __m128i& vsrc) const {
        CONVERT_UINT8_INT32
        auto vitem0 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_0, vszp)),
                                 this->vscale);
        auto vitem1 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_1, vszp)),
                                 this->vscale);
        auto vitem2 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_2, vszp)),
                                 this->vscale);
        auto vitem3 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_3, vszp)),
                                 this->vscale);
        auto result0 = QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem0, vitem1}}, this->vdzp);
        auto result1 = QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem2, vitem3}}, this->vdzp);
        return _mm_set_epi64x(result1, result0);
    }

    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<uint8_t*>(dst) = saturate<uint8_t, float>(
                std::round((src.as_uint8() - szp) * scale) + dzp, 0, 255);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint8, dt_quint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint8, dt_quint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_quint8* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128i operator()(const __m128i& vsrc) const {
        CONVERT_INT8_INT32
        CONVERT_INT32_F32
        auto vitem0 = _mm_mul_ps(fval_0, this->vscale);
        auto vitem1 = _mm_mul_ps(fval_1, this->vscale);
        auto vitem2 = _mm_mul_ps(fval_2, this->vscale);
        auto vitem3 = _mm_mul_ps(fval_3, this->vscale);
        auto result0 = QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem0, vitem1}}, this->vdzp);
        auto result1 = QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem2, vitem3}}, this->vdzp);
        return _mm_set_epi64x(result1, result0);
    }

    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<uint8_t*>(dst) = saturate<uint8_t, float>(
                std::round(src.as_int8() * scale) + dzp, 0, 255);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint32, dt_quint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint32, dt_quint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128ix2& vsrc, dt_quint8* dst) const {
        _mm_storel_epi64(reinterpret_cast<__m128i*>(dst),
                         _mm_set1_epi64x(operator()(vsrc)));
    }
    int64_t operator()(const __m128ix2& vsrc) const {
        auto vitem0 = _mm_mul_ps(_mm_cvtepi32_ps(vsrc.val[0]), this->vscale);
        auto vitem1 = _mm_mul_ps(_mm_cvtepi32_ps(vsrc.val[1]), this->vscale);
        auto result = QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem0, vitem1}}, this->vdzp);
        return result;
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<uint8_t*>(dst) = saturate<uint8_t, float>(
                std::round(src.as_int32() * scale) + dzp, 0, 255);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_float32, dt_quint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_float32, dt_quint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128x2& vsrc, dt_quint8* dst) const {
        _mm_storel_epi64(reinterpret_cast<__m128i*>(dst),
                         _mm_set1_epi64x(operator()(vsrc)));
    }
    int64_t operator()(const __m128x2& vsrc) const {
        auto vitem0 = _mm_mul_ps(vsrc.val[0], this->vscale);
        auto vitem1 = _mm_mul_ps(vsrc.val[1], this->vscale);
        return QConverter::convert<int64_t, __m128x2, __m128i>(
                {{vitem0, vitem1}}, this->vdzp);
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<uint8_t*>(dst) =
                saturate<uint8_t, float>(std::round(src * scale) + dzp, 0, 255);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint8, dt_qint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint8, dt_qint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_qint8* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));

        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128i operator()(const __m128i& vsrc) const {
        CONVERT_INT8_INT32
        CONVERT_INT32_F32
        auto vitem0 = _mm_mul_ps(fval_0, this->vscale);
        auto vitem1 = _mm_mul_ps(fval_1, this->vscale);
        auto vitem2 = _mm_mul_ps(fval_2, this->vscale);
        auto vitem3 = _mm_mul_ps(fval_3, this->vscale);
        auto result0 =
                QConverter::convert<int64_t, __m128x2>({{vitem0, vitem1}});
        auto result1 =
                QConverter::convert<int64_t, __m128x2>({{vitem2, vitem3}});
        return _mm_set_epi64x(result1, result0);
    }

    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<uint8_t*>(dst) = saturate<int8_t, float>(
                std::round(src.as_int8() * scale), -128, 127);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_quint8, dt_qint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_quint8, dt_qint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_qint8* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128i operator()(const __m128i& vsrc) const {
        CONVERT_UINT8_INT32
        auto vitem0 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_0, vszp)),
                                 this->vscale);
        auto vitem1 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_1, vszp)),
                                 this->vscale);
        auto vitem2 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_2, vszp)),
                                 this->vscale);
        auto vitem3 = _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_3, vszp)),
                                 this->vscale);
        auto result0 =
                QConverter::convert<int64_t, __m128x2>({{vitem0, vitem1}});
        auto result1 =
                QConverter::convert<int64_t, __m128x2>({{vitem2, vitem3}});
        return _mm_set_epi64x(result1, result0);
    }

    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int8_t*>(dst) = saturate<int8_t, float>(
                std::round((src.as_uint8() - szp) * scale), -128, 127);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint32, dt_qint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint32, dt_qint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128ix2& vsrc, dt_qint8* dst) const {
        _mm_storel_epi64(reinterpret_cast<__m128i*>(dst),
                         _mm_set1_epi64x(operator()(vsrc)));
    }
    int64_t operator()(const __m128ix2& vsrc) const {
        auto vitem0 = _mm_mul_ps(_mm_cvtepi32_ps(vsrc.val[0]), this->vscale);
        auto vitem1 = _mm_mul_ps(_mm_cvtepi32_ps(vsrc.val[1]), this->vscale);
        return QConverter::convert<int64_t, __m128x2>({{vitem0, vitem1}});
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int8_t*>(dst) = saturate<int8_t, float>(
                std::round(src.as_int32() * scale), -128, 127);
    }
};

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
template <>
struct TypeCvtOp<SIMDType::AVX2, dt_qint32, dt_qint8>
        : UnaryOpBase<SIMDType::AVX2, dt_qint32, dt_qint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 8;

    MEGDNN_ATTRIBUTE_TARGET("avx2")
    void operator()(const __m256ix2& vsrc, dt_qint8* dst) const {
        _mm_store_si128((__m128i*)(dst), (operator()(vsrc)));
    }

    MEGDNN_ATTRIBUTE_TARGET("avx2")
    __m128i operator()(const __m256ix2& vsrc) const {
        auto cvtps_src0 = _mm256_cvtepi32_ps(vsrc.val[0]);
        auto cvtps_src1 = _mm256_cvtepi32_ps(vsrc.val[1]);
        auto vitem0 = _mm256_mul_ps(cvtps_src0, _mm256_set1_ps(this->scale));
        auto vitem1 = _mm256_mul_ps(cvtps_src1, _mm256_set1_ps(this->scale));
        return QConverter::convert<__m128i, __m256x2>({{vitem0, vitem1}});
    }

    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int8_t*>(dst) = saturate<int8_t, float>(
                std::round(src.as_int32() * scale), -128, 127);
    }
};

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_float32, dt_qint8>
        : UnaryOpBase<SIMDType::SSE4_2, dt_float32, dt_qint8> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128x2 vsrc, dt_qint8* dst) const {
        _mm_storel_epi64(reinterpret_cast<__m128i*>(dst),
                         _mm_set1_epi64x(operator()(vsrc)));
    }
    int64_t operator()(const __m128x2& vsrc) const {
        auto vitem0 = _mm_mul_ps(vsrc.val[0], this->vscale);
        auto vitem1 = _mm_mul_ps(vsrc.val[1], this->vscale);
        return QConverter::convert<int64_t, __m128x2>({{vitem0, vitem1}});
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int8_t*>(dst) =
                saturate<int8_t, float>(std::round(src * scale), -128, 127);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_quint8, dt_qint32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_quint8, dt_qint32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_qint32* dst) const {
        auto result0 = operator()(vsrc.val[0]);
        auto result1 = operator()(vsrc.val[1]);
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[0]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[1]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[2]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[3]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[0]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[1]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[2]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[3]);
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128ix4 operator()(const __m128i& vsrc) const {
        CONVERT_UINT8_INT32
        auto vitem0 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_0, this->vszp)),
                           this->vscale);
        auto vitem1 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_1, this->vszp)),
                           this->vscale);
        auto vitem2 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_2, this->vszp)),
                           this->vscale);
        auto vitem3 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_3, this->vszp)),
                           this->vscale);
        return {{QConverter::convert<__m128i, __m128>(vitem0),
                 QConverter::convert<__m128i, __m128>(vitem1),
                 QConverter::convert<__m128i, __m128>(vitem2),
                 QConverter::convert<__m128i, __m128>(vitem3)}};
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int32_t*>(dst) =
                std::round((src.as_uint8() - szp) * scale);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint8, dt_qint32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint8, dt_qint32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_qint32* dst) const {
        auto result0 = operator()(vsrc.val[0]);
        auto result1 = operator()(vsrc.val[1]);
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[0]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[1]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[2]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result0.val[3]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[0]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[1]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[2]);
        dst += 4;
        _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), result1.val[3]);
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128ix4 operator()(const __m128i& vsrc) const {
        CONVERT_INT8_INT32
        CONVERT_INT32_F32
        auto vitem0 = _mm_mul_ps(fval_0, this->vscale);
        auto vitem1 = _mm_mul_ps(fval_1, this->vscale);
        auto vitem2 = _mm_mul_ps(fval_2, this->vscale);
        auto vitem3 = _mm_mul_ps(fval_3, this->vscale);
        return {{QConverter::convert<__m128i, __m128>(vitem0),
                 QConverter::convert<__m128i, __m128>(vitem1),
                 QConverter::convert<__m128i, __m128>(vitem2),
                 QConverter::convert<__m128i, __m128>(vitem3)}};
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int32_t*>(dst) = std::round(src.as_int8() * scale);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint32, dt_qint32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint32, dt_qint32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128ix2& vsrc, dt_qint32* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }
    __m128i operator()(const __m128i& vsrc) const {
        auto vitem0 = _mm_mul_ps(_mm_cvtepi32_ps(vsrc), this->vscale);
        return QConverter::convert<__m128i, __m128>(vitem0);
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int32_t*>(dst) = std::round(src.as_int32() * scale);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_float32, dt_qint32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_float32, dt_qint32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128x2& vsrc, dt_qint32* dst) const {
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_si128(
                reinterpret_cast<__m128i*>(dst), operator()(vsrc.val[1]));
    }
    __m128i operator()(const __m128& vsrc) const {
        auto vitem0 = _mm_mul_ps(vsrc, this->vscale);
        return QConverter::convert<__m128i, __m128>(vitem0);
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<int32_t*>(dst) = std::round(src * scale);
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_quint8, dt_float32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_quint8, dt_float32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_float32* dst) const {
        auto result0 = operator()(vsrc.val[0]);
        auto result1 = operator()(vsrc.val[1]);
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[0]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[1]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[2]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[3]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[0]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[1]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[2]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[3]);
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128x4 operator()(const __m128i& vsrc) const {
        CONVERT_UINT8_INT32
        auto vitem0 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_0, this->vszp)),
                           this->vscale);
        auto vitem1 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_1, this->vszp)),
                           this->vscale);
        auto vitem2 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_2, this->vszp)),
                           this->vscale);
        auto vitem3 =
                _mm_mul_ps(_mm_cvtepi32_ps(_mm_sub_epi32(val_3, this->vszp)),
                           this->vscale);
        return {{vitem0, vitem1, vitem2, vitem3}};
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<float*>(dst) = (src.as_uint8() - szp) * scale;
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint8, dt_float32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint8, dt_float32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 16;

    void operator()(const __m128ix2& vsrc, dt_float32* dst) const {
        auto result0 = operator()(vsrc.val[0]);
        auto result1 = operator()(vsrc.val[1]);
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[0]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[1]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[2]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result0.val[3]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[0]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[1]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[2]);
        dst += 4;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), result1.val[3]);
    }
    MEGDNN_ATTRIBUTE_TARGET("sse4.1")
    __m128x4 operator()(const __m128i& vsrc) const {
        CONVERT_INT8_INT32
        CONVERT_INT32_F32
        auto vitem0 = _mm_mul_ps(fval_0, this->vscale);
        auto vitem1 = _mm_mul_ps(fval_1, this->vscale);
        auto vitem2 = _mm_mul_ps(fval_2, this->vscale);
        auto vitem3 = _mm_mul_ps(fval_3, this->vscale);
        return {{vitem0, vitem1, vitem2, vitem3}};
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<float*>(dst) = src.as_int8() * scale;
    }
};

template <>
struct TypeCvtOp<SIMDType::SSE4_2, dt_qint32, dt_float32>
        : UnaryOpBase<SIMDType::SSE4_2, dt_qint32, dt_float32> {
    using UnaryOpBase::UnaryOpBase;
    constexpr static size_t SIMD_WIDTH = 4;

    void operator()(const __m128ix2& vsrc, dt_float32* dst) const {
        _mm_storeu_ps(reinterpret_cast<float*>(dst), operator()(vsrc.val[0]));
        dst += SIMD_WIDTH;
        _mm_storeu_ps(reinterpret_cast<float*>(dst), operator()(vsrc.val[1]));
    }
    __m128 operator()(const __m128i& vsrc) const {
        return _mm_mul_ps(_mm_cvtepi32_ps(vsrc), this->vscale);
    }
    void operator()(src_ctype src, dst_ctype* dst) {
        *reinterpret_cast<float*>(dst) = src.as_int32() * scale;
    }
};

template <>
struct TypeCvtOp<SIMDType::NONE, dt_float32, dt_float32>
        : UnaryOpBase<SIMDType::NONE, dt_float32, dt_float32> {
    using UnaryOpBase::UnaryOpBase;

    float operator()(float& src) const { return src; }
};

#undef CONVERT_INT8_INT32
#undef CONVERT_UINT8_INT32
#undef CONVERT_INT32_F32
}  // namespace x86
}  // namespace megdnn
   // vim: syntax=cpp.doxygen