migrate.c 48.9 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4 5 6 7 8 9 10 11
/*
 * Memory Migration functionality - linux/mm/migration.c
 *
 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
 *
 * Page migration was first developed in the context of the memory hotplug
 * project. The main authors of the migration code are:
 *
 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
 * Hirokazu Takahashi <taka@valinux.co.jp>
 * Dave Hansen <haveblue@us.ibm.com>
C
Christoph Lameter 已提交
12
 * Christoph Lameter
C
Christoph Lameter 已提交
13 14 15
 */

#include <linux/migrate.h>
16
#include <linux/export.h>
C
Christoph Lameter 已提交
17
#include <linux/swap.h>
18
#include <linux/swapops.h>
C
Christoph Lameter 已提交
19
#include <linux/pagemap.h>
20
#include <linux/buffer_head.h>
C
Christoph Lameter 已提交
21
#include <linux/mm_inline.h>
22
#include <linux/nsproxy.h>
C
Christoph Lameter 已提交
23
#include <linux/pagevec.h>
24
#include <linux/ksm.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
29
#include <linux/writeback.h>
30 31
#include <linux/mempolicy.h>
#include <linux/vmalloc.h>
32
#include <linux/security.h>
33
#include <linux/memcontrol.h>
34
#include <linux/syscalls.h>
N
Naoya Horiguchi 已提交
35
#include <linux/hugetlb.h>
36
#include <linux/hugetlb_cgroup.h>
37
#include <linux/gfp.h>
38
#include <linux/balloon_compaction.h>
39
#include <linux/mmu_notifier.h>
C
Christoph Lameter 已提交
40

41 42
#include <asm/tlbflush.h>

43 44 45
#define CREATE_TRACE_POINTS
#include <trace/events/migrate.h>

C
Christoph Lameter 已提交
46 47 48
#include "internal.h"

/*
49
 * migrate_prep() needs to be called before we start compiling a list of pages
50 51
 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
 * undesirable, use migrate_prep_local()
C
Christoph Lameter 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 */
int migrate_prep(void)
{
	/*
	 * Clear the LRU lists so pages can be isolated.
	 * Note that pages may be moved off the LRU after we have
	 * drained them. Those pages will fail to migrate like other
	 * pages that may be busy.
	 */
	lru_add_drain_all();

	return 0;
}

66 67 68 69 70 71 72 73
/* Do the necessary work of migrate_prep but not if it involves other CPUs */
int migrate_prep_local(void)
{
	lru_add_drain();

	return 0;
}

74 75 76 77
/*
 * Put previously isolated pages back onto the appropriate lists
 * from where they were once taken off for compaction/migration.
 *
78 79 80
 * This function shall be used whenever the isolated pageset has been
 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 * and isolate_huge_page().
81 82 83 84 85 86
 */
void putback_movable_pages(struct list_head *l)
{
	struct page *page;
	struct page *page2;

C
Christoph Lameter 已提交
87
	list_for_each_entry_safe(page, page2, l, lru) {
88 89 90 91
		if (unlikely(PageHuge(page))) {
			putback_active_hugepage(page);
			continue;
		}
92
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
93
		dec_zone_page_state(page, NR_ISOLATED_ANON +
94
				page_is_file_cache(page));
95
		if (unlikely(isolated_balloon_page(page)))
96 97 98
			balloon_page_putback(page);
		else
			putback_lru_page(page);
C
Christoph Lameter 已提交
99 100 101
	}
}

102 103 104
/*
 * Restore a potential migration pte to a working pte entry
 */
105 106
static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
				 unsigned long addr, void *old)
107 108 109 110 111 112 113
{
	struct mm_struct *mm = vma->vm_mm;
	swp_entry_t entry;
 	pmd_t *pmd;
	pte_t *ptep, pte;
 	spinlock_t *ptl;

N
Naoya Horiguchi 已提交
114 115 116 117
	if (unlikely(PageHuge(new))) {
		ptep = huge_pte_offset(mm, addr);
		if (!ptep)
			goto out;
118
		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
N
Naoya Horiguchi 已提交
119
	} else {
B
Bob Liu 已提交
120 121
		pmd = mm_find_pmd(mm, addr);
		if (!pmd)
N
Naoya Horiguchi 已提交
122
			goto out;
123

N
Naoya Horiguchi 已提交
124
		ptep = pte_offset_map(pmd, addr);
125

126 127 128 129
		/*
		 * Peek to check is_swap_pte() before taking ptlock?  No, we
		 * can race mremap's move_ptes(), which skips anon_vma lock.
		 */
N
Naoya Horiguchi 已提交
130 131 132

		ptl = pte_lockptr(mm, pmd);
	}
133 134 135 136

 	spin_lock(ptl);
	pte = *ptep;
	if (!is_swap_pte(pte))
137
		goto unlock;
138 139 140

	entry = pte_to_swp_entry(pte);

141 142 143
	if (!is_migration_entry(entry) ||
	    migration_entry_to_page(entry) != old)
		goto unlock;
144 145 146

	get_page(new);
	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 148
	if (pte_swp_soft_dirty(*ptep))
		pte = pte_mksoft_dirty(pte);
149 150

	/* Recheck VMA as permissions can change since migration started  */
151
	if (is_write_migration_entry(entry))
152 153
		pte = maybe_mkwrite(pte, vma);

A
Andi Kleen 已提交
154
#ifdef CONFIG_HUGETLB_PAGE
155
	if (PageHuge(new)) {
N
Naoya Horiguchi 已提交
156
		pte = pte_mkhuge(pte);
157 158
		pte = arch_make_huge_pte(pte, vma, new, 0);
	}
A
Andi Kleen 已提交
159
#endif
160
	flush_dcache_page(new);
161
	set_pte_at(mm, addr, ptep, pte);
162

N
Naoya Horiguchi 已提交
163 164 165 166 167 168
	if (PageHuge(new)) {
		if (PageAnon(new))
			hugepage_add_anon_rmap(new, vma, addr);
		else
			page_dup_rmap(new);
	} else if (PageAnon(new))
169 170 171 172 173
		page_add_anon_rmap(new, vma, addr);
	else
		page_add_file_rmap(new);

	/* No need to invalidate - it was non-present before */
174
	update_mmu_cache(vma, addr, ptep);
175
unlock:
176
	pte_unmap_unlock(ptep, ptl);
177 178
out:
	return SWAP_AGAIN;
179 180
}

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
/*
 * Congratulations to trinity for discovering this bug.
 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 * replace the specified range by file ptes throughout (maybe populated after).
 * If page migration finds a page within that range, while it's still located
 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 * But if the migrating page is in a part of the vma outside the range to be
 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 * deal with it.  Fortunately, this part of the vma is of course still linear,
 * so we just need to use linear location on the nonlinear list.
 */
static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
		struct address_space *mapping, void *arg)
{
	struct vm_area_struct *vma;
	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
	unsigned long addr;

	list_for_each_entry(vma,
		&mapping->i_mmap_nonlinear, shared.nonlinear) {

		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
		if (addr >= vma->vm_start && addr < vma->vm_end)
			remove_migration_pte(page, vma, addr, arg);
	}
	return SWAP_AGAIN;
}

212 213 214 215 216 217
/*
 * Get rid of all migration entries and replace them by
 * references to the indicated page.
 */
static void remove_migration_ptes(struct page *old, struct page *new)
{
218 219 220
	struct rmap_walk_control rwc = {
		.rmap_one = remove_migration_pte,
		.arg = old,
221
		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
222 223 224
	};

	rmap_walk(new, &rwc);
225 226
}

227 228 229 230 231
/*
 * Something used the pte of a page under migration. We need to
 * get to the page and wait until migration is finished.
 * When we return from this function the fault will be retried.
 */
232 233
static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
				spinlock_t *ptl)
234
{
235
	pte_t pte;
236 237 238
	swp_entry_t entry;
	struct page *page;

239
	spin_lock(ptl);
240 241 242 243 244 245 246 247 248 249
	pte = *ptep;
	if (!is_swap_pte(pte))
		goto out;

	entry = pte_to_swp_entry(pte);
	if (!is_migration_entry(entry))
		goto out;

	page = migration_entry_to_page(entry);

N
Nick Piggin 已提交
250 251 252 253 254 255 256 257 258
	/*
	 * Once radix-tree replacement of page migration started, page_count
	 * *must* be zero. And, we don't want to call wait_on_page_locked()
	 * against a page without get_page().
	 * So, we use get_page_unless_zero(), here. Even failed, page fault
	 * will occur again.
	 */
	if (!get_page_unless_zero(page))
		goto out;
259 260 261 262 263 264 265 266
	pte_unmap_unlock(ptep, ptl);
	wait_on_page_locked(page);
	put_page(page);
	return;
out:
	pte_unmap_unlock(ptep, ptl);
}

267 268 269 270 271 272 273 274
void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
				unsigned long address)
{
	spinlock_t *ptl = pte_lockptr(mm, pmd);
	pte_t *ptep = pte_offset_map(pmd, address);
	__migration_entry_wait(mm, ptep, ptl);
}

275 276
void migration_entry_wait_huge(struct vm_area_struct *vma,
		struct mm_struct *mm, pte_t *pte)
277
{
278
	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
279 280 281
	__migration_entry_wait(mm, pte, ptl);
}

282 283
#ifdef CONFIG_BLOCK
/* Returns true if all buffers are successfully locked */
284 285
static bool buffer_migrate_lock_buffers(struct buffer_head *head,
							enum migrate_mode mode)
286 287 288 289
{
	struct buffer_head *bh = head;

	/* Simple case, sync compaction */
290
	if (mode != MIGRATE_ASYNC) {
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
		do {
			get_bh(bh);
			lock_buffer(bh);
			bh = bh->b_this_page;

		} while (bh != head);

		return true;
	}

	/* async case, we cannot block on lock_buffer so use trylock_buffer */
	do {
		get_bh(bh);
		if (!trylock_buffer(bh)) {
			/*
			 * We failed to lock the buffer and cannot stall in
			 * async migration. Release the taken locks
			 */
			struct buffer_head *failed_bh = bh;
			put_bh(failed_bh);
			bh = head;
			while (bh != failed_bh) {
				unlock_buffer(bh);
				put_bh(bh);
				bh = bh->b_this_page;
			}
			return false;
		}

		bh = bh->b_this_page;
	} while (bh != head);
	return true;
}
#else
static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
326
							enum migrate_mode mode)
327 328 329 330 331
{
	return true;
}
#endif /* CONFIG_BLOCK */

C
Christoph Lameter 已提交
332
/*
333
 * Replace the page in the mapping.
334 335 336 337
 *
 * The number of remaining references must be:
 * 1 for anonymous pages without a mapping
 * 2 for pages with a mapping
338
 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
C
Christoph Lameter 已提交
339
 */
340
int migrate_page_move_mapping(struct address_space *mapping,
341
		struct page *newpage, struct page *page,
342 343
		struct buffer_head *head, enum migrate_mode mode,
		int extra_count)
C
Christoph Lameter 已提交
344
{
345
	int expected_count = 1 + extra_count;
346
	void **pslot;
C
Christoph Lameter 已提交
347

348
	if (!mapping) {
349
		/* Anonymous page without mapping */
350
		if (page_count(page) != expected_count)
351
			return -EAGAIN;
352
		return MIGRATEPAGE_SUCCESS;
353 354
	}

N
Nick Piggin 已提交
355
	spin_lock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
356

357 358
	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 					page_index(page));
C
Christoph Lameter 已提交
359

360
	expected_count += 1 + page_has_private(page);
N
Nick Piggin 已提交
361
	if (page_count(page) != expected_count ||
362
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Nick Piggin 已提交
363
		spin_unlock_irq(&mapping->tree_lock);
364
		return -EAGAIN;
C
Christoph Lameter 已提交
365 366
	}

N
Nick Piggin 已提交
367
	if (!page_freeze_refs(page, expected_count)) {
N
Nick Piggin 已提交
368
		spin_unlock_irq(&mapping->tree_lock);
N
Nick Piggin 已提交
369 370 371
		return -EAGAIN;
	}

372 373 374 375 376 377 378
	/*
	 * In the async migration case of moving a page with buffers, lock the
	 * buffers using trylock before the mapping is moved. If the mapping
	 * was moved, we later failed to lock the buffers and could not move
	 * the mapping back due to an elevated page count, we would have to
	 * block waiting on other references to be dropped.
	 */
379 380
	if (mode == MIGRATE_ASYNC && head &&
			!buffer_migrate_lock_buffers(head, mode)) {
381 382 383 384 385
		page_unfreeze_refs(page, expected_count);
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

C
Christoph Lameter 已提交
386 387 388
	/*
	 * Now we know that no one else is looking at the page.
	 */
389
	get_page(newpage);	/* add cache reference */
C
Christoph Lameter 已提交
390 391 392 393 394
	if (PageSwapCache(page)) {
		SetPageSwapCache(newpage);
		set_page_private(newpage, page_private(page));
	}

395 396 397
	radix_tree_replace_slot(pslot, newpage);

	/*
398 399
	 * Drop cache reference from old page by unfreezing
	 * to one less reference.
400 401
	 * We know this isn't the last reference.
	 */
402
	page_unfreeze_refs(page, expected_count - 1);
403

404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * If moved to a different zone then also account
	 * the page for that zone. Other VM counters will be
	 * taken care of when we establish references to the
	 * new page and drop references to the old page.
	 *
	 * Note that anonymous pages are accounted for
	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
	 * are mapped to swap space.
	 */
	__dec_zone_page_state(page, NR_FILE_PAGES);
	__inc_zone_page_state(newpage, NR_FILE_PAGES);
416
	if (!PageSwapCache(page) && PageSwapBacked(page)) {
417 418 419
		__dec_zone_page_state(page, NR_SHMEM);
		__inc_zone_page_state(newpage, NR_SHMEM);
	}
N
Nick Piggin 已提交
420
	spin_unlock_irq(&mapping->tree_lock);
C
Christoph Lameter 已提交
421

422
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
423 424
}

N
Naoya Horiguchi 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437
/*
 * The expected number of remaining references is the same as that
 * of migrate_page_move_mapping().
 */
int migrate_huge_page_move_mapping(struct address_space *mapping,
				   struct page *newpage, struct page *page)
{
	int expected_count;
	void **pslot;

	if (!mapping) {
		if (page_count(page) != 1)
			return -EAGAIN;
438
		return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
439 440 441 442 443 444 445 446 447
	}

	spin_lock_irq(&mapping->tree_lock);

	pslot = radix_tree_lookup_slot(&mapping->page_tree,
					page_index(page));

	expected_count = 2 + page_has_private(page);
	if (page_count(page) != expected_count ||
448
		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
N
Naoya Horiguchi 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	if (!page_freeze_refs(page, expected_count)) {
		spin_unlock_irq(&mapping->tree_lock);
		return -EAGAIN;
	}

	get_page(newpage);

	radix_tree_replace_slot(pslot, newpage);

462
	page_unfreeze_refs(page, expected_count - 1);
N
Naoya Horiguchi 已提交
463 464

	spin_unlock_irq(&mapping->tree_lock);
465
	return MIGRATEPAGE_SUCCESS;
N
Naoya Horiguchi 已提交
466 467
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/*
 * Gigantic pages are so large that we do not guarantee that page++ pointer
 * arithmetic will work across the entire page.  We need something more
 * specialized.
 */
static void __copy_gigantic_page(struct page *dst, struct page *src,
				int nr_pages)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < nr_pages; ) {
		cond_resched();
		copy_highpage(dst, src);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

static void copy_huge_page(struct page *dst, struct page *src)
{
	int i;
	int nr_pages;

	if (PageHuge(src)) {
		/* hugetlbfs page */
		struct hstate *h = page_hstate(src);
		nr_pages = pages_per_huge_page(h);

		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
			__copy_gigantic_page(dst, src, nr_pages);
			return;
		}
	} else {
		/* thp page */
		BUG_ON(!PageTransHuge(src));
		nr_pages = hpage_nr_pages(src);
	}

	for (i = 0; i < nr_pages; i++) {
		cond_resched();
		copy_highpage(dst + i, src + i);
	}
}

C
Christoph Lameter 已提交
516 517 518
/*
 * Copy the page to its new location
 */
N
Naoya Horiguchi 已提交
519
void migrate_page_copy(struct page *newpage, struct page *page)
C
Christoph Lameter 已提交
520
{
521 522
	int cpupid;

523
	if (PageHuge(page) || PageTransHuge(page))
N
Naoya Horiguchi 已提交
524 525 526
		copy_huge_page(newpage, page);
	else
		copy_highpage(newpage, page);
C
Christoph Lameter 已提交
527 528 529 530 531 532 533

	if (PageError(page))
		SetPageError(newpage);
	if (PageReferenced(page))
		SetPageReferenced(newpage);
	if (PageUptodate(page))
		SetPageUptodate(newpage);
L
Lee Schermerhorn 已提交
534
	if (TestClearPageActive(page)) {
535
		VM_BUG_ON_PAGE(PageUnevictable(page), page);
C
Christoph Lameter 已提交
536
		SetPageActive(newpage);
537 538
	} else if (TestClearPageUnevictable(page))
		SetPageUnevictable(newpage);
C
Christoph Lameter 已提交
539 540 541 542 543 544 545
	if (PageChecked(page))
		SetPageChecked(newpage);
	if (PageMappedToDisk(page))
		SetPageMappedToDisk(newpage);

	if (PageDirty(page)) {
		clear_page_dirty_for_io(page);
N
Nick Piggin 已提交
546 547 548 549 550
		/*
		 * Want to mark the page and the radix tree as dirty, and
		 * redo the accounting that clear_page_dirty_for_io undid,
		 * but we can't use set_page_dirty because that function
		 * is actually a signal that all of the page has become dirty.
L
Lucas De Marchi 已提交
551
		 * Whereas only part of our page may be dirty.
N
Nick Piggin 已提交
552
		 */
553 554 555 556
		if (PageSwapBacked(page))
			SetPageDirty(newpage);
		else
			__set_page_dirty_nobuffers(newpage);
C
Christoph Lameter 已提交
557 558
 	}

559 560 561 562 563 564 565
	/*
	 * Copy NUMA information to the new page, to prevent over-eager
	 * future migrations of this same page.
	 */
	cpupid = page_cpupid_xchg_last(page, -1);
	page_cpupid_xchg_last(newpage, cpupid);

N
Nick Piggin 已提交
566
	mlock_migrate_page(newpage, page);
567
	ksm_migrate_page(newpage, page);
568 569 570 571
	/*
	 * Please do not reorder this without considering how mm/ksm.c's
	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
	 */
C
Christoph Lameter 已提交
572 573 574 575 576 577 578 579 580 581 582 583
	ClearPageSwapCache(page);
	ClearPagePrivate(page);
	set_page_private(page, 0);

	/*
	 * If any waiters have accumulated on the new page then
	 * wake them up.
	 */
	if (PageWriteback(newpage))
		end_page_writeback(newpage);
}

584 585 586 587
/************************************************************
 *                    Migration functions
 ***********************************************************/

C
Christoph Lameter 已提交
588 589
/*
 * Common logic to directly migrate a single page suitable for
590
 * pages that do not use PagePrivate/PagePrivate2.
C
Christoph Lameter 已提交
591 592 593
 *
 * Pages are locked upon entry and exit.
 */
594
int migrate_page(struct address_space *mapping,
595 596
		struct page *newpage, struct page *page,
		enum migrate_mode mode)
C
Christoph Lameter 已提交
597 598 599 600 601
{
	int rc;

	BUG_ON(PageWriteback(page));	/* Writeback must be complete */

602
	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
C
Christoph Lameter 已提交
603

604
	if (rc != MIGRATEPAGE_SUCCESS)
C
Christoph Lameter 已提交
605 606 607
		return rc;

	migrate_page_copy(newpage, page);
608
	return MIGRATEPAGE_SUCCESS;
C
Christoph Lameter 已提交
609 610 611
}
EXPORT_SYMBOL(migrate_page);

612
#ifdef CONFIG_BLOCK
613 614 615 616 617
/*
 * Migration function for pages with buffers. This function can only be used
 * if the underlying filesystem guarantees that no other references to "page"
 * exist.
 */
618
int buffer_migrate_page(struct address_space *mapping,
619
		struct page *newpage, struct page *page, enum migrate_mode mode)
620 621 622 623 624
{
	struct buffer_head *bh, *head;
	int rc;

	if (!page_has_buffers(page))
625
		return migrate_page(mapping, newpage, page, mode);
626 627 628

	head = page_buffers(page);

629
	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
630

631
	if (rc != MIGRATEPAGE_SUCCESS)
632 633
		return rc;

634 635 636 637 638
	/*
	 * In the async case, migrate_page_move_mapping locked the buffers
	 * with an IRQ-safe spinlock held. In the sync case, the buffers
	 * need to be locked now
	 */
639 640
	if (mode != MIGRATE_ASYNC)
		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666

	ClearPagePrivate(page);
	set_page_private(newpage, page_private(page));
	set_page_private(page, 0);
	put_page(page);
	get_page(newpage);

	bh = head;
	do {
		set_bh_page(bh, newpage, bh_offset(bh));
		bh = bh->b_this_page;

	} while (bh != head);

	SetPagePrivate(newpage);

	migrate_page_copy(newpage, page);

	bh = head;
	do {
		unlock_buffer(bh);
 		put_bh(bh);
		bh = bh->b_this_page;

	} while (bh != head);

667
	return MIGRATEPAGE_SUCCESS;
668 669
}
EXPORT_SYMBOL(buffer_migrate_page);
670
#endif
671

672 673 674 675
/*
 * Writeback a page to clean the dirty state
 */
static int writeout(struct address_space *mapping, struct page *page)
676
{
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	struct writeback_control wbc = {
		.sync_mode = WB_SYNC_NONE,
		.nr_to_write = 1,
		.range_start = 0,
		.range_end = LLONG_MAX,
		.for_reclaim = 1
	};
	int rc;

	if (!mapping->a_ops->writepage)
		/* No write method for the address space */
		return -EINVAL;

	if (!clear_page_dirty_for_io(page))
		/* Someone else already triggered a write */
		return -EAGAIN;

694
	/*
695 696 697 698 699 700
	 * A dirty page may imply that the underlying filesystem has
	 * the page on some queue. So the page must be clean for
	 * migration. Writeout may mean we loose the lock and the
	 * page state is no longer what we checked for earlier.
	 * At this point we know that the migration attempt cannot
	 * be successful.
701
	 */
702
	remove_migration_ptes(page, page);
703

704
	rc = mapping->a_ops->writepage(page, &wbc);
705

706 707 708 709
	if (rc != AOP_WRITEPAGE_ACTIVATE)
		/* unlocked. Relock */
		lock_page(page);

H
Hugh Dickins 已提交
710
	return (rc < 0) ? -EIO : -EAGAIN;
711 712 713 714 715 716
}

/*
 * Default handling if a filesystem does not provide a migration function.
 */
static int fallback_migrate_page(struct address_space *mapping,
717
	struct page *newpage, struct page *page, enum migrate_mode mode)
718
{
719
	if (PageDirty(page)) {
720 721
		/* Only writeback pages in full synchronous migration */
		if (mode != MIGRATE_SYNC)
722
			return -EBUSY;
723
		return writeout(mapping, page);
724
	}
725 726 727 728 729

	/*
	 * Buffers may be managed in a filesystem specific way.
	 * We must have no buffers or drop them.
	 */
730
	if (page_has_private(page) &&
731 732 733
	    !try_to_release_page(page, GFP_KERNEL))
		return -EAGAIN;

734
	return migrate_page(mapping, newpage, page, mode);
735 736
}

737 738 739 740 741 742
/*
 * Move a page to a newly allocated page
 * The page is locked and all ptes have been successfully removed.
 *
 * The new page will have replaced the old page if this function
 * is successful.
L
Lee Schermerhorn 已提交
743 744 745
 *
 * Return value:
 *   < 0 - error code
746
 *  MIGRATEPAGE_SUCCESS - success
747
 */
748
static int move_to_new_page(struct page *newpage, struct page *page,
749
				int remap_swapcache, enum migrate_mode mode)
750 751 752 753 754 755 756 757 758
{
	struct address_space *mapping;
	int rc;

	/*
	 * Block others from accessing the page when we get around to
	 * establishing additional references. We are the only one
	 * holding a reference to the new page at this point.
	 */
N
Nick Piggin 已提交
759
	if (!trylock_page(newpage))
760 761 762 763 764
		BUG();

	/* Prepare mapping for the new page.*/
	newpage->index = page->index;
	newpage->mapping = page->mapping;
R
Rik van Riel 已提交
765 766
	if (PageSwapBacked(page))
		SetPageSwapBacked(newpage);
767 768 769

	mapping = page_mapping(page);
	if (!mapping)
770
		rc = migrate_page(mapping, newpage, page, mode);
771
	else if (mapping->a_ops->migratepage)
772
		/*
773 774 775 776
		 * Most pages have a mapping and most filesystems provide a
		 * migratepage callback. Anonymous pages are part of swap
		 * space which also has its own migratepage callback. This
		 * is the most common path for page migration.
777
		 */
778
		rc = mapping->a_ops->migratepage(mapping,
779
						newpage, page, mode);
780
	else
781
		rc = fallback_migrate_page(mapping, newpage, page, mode);
782

783
	if (rc != MIGRATEPAGE_SUCCESS) {
784
		newpage->mapping = NULL;
785
	} else {
786
		mem_cgroup_migrate(page, newpage, false);
787 788
		if (remap_swapcache)
			remove_migration_ptes(page, newpage);
789
		page->mapping = NULL;
790
	}
791 792 793 794 795 796

	unlock_page(newpage);

	return rc;
}

797
static int __unmap_and_move(struct page *page, struct page *newpage,
798
				int force, enum migrate_mode mode)
799
{
800
	int rc = -EAGAIN;
801
	int remap_swapcache = 1;
802
	struct anon_vma *anon_vma = NULL;
803

N
Nick Piggin 已提交
804
	if (!trylock_page(page)) {
805
		if (!force || mode == MIGRATE_ASYNC)
806
			goto out;
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

		/*
		 * It's not safe for direct compaction to call lock_page.
		 * For example, during page readahead pages are added locked
		 * to the LRU. Later, when the IO completes the pages are
		 * marked uptodate and unlocked. However, the queueing
		 * could be merging multiple pages for one bio (e.g.
		 * mpage_readpages). If an allocation happens for the
		 * second or third page, the process can end up locking
		 * the same page twice and deadlocking. Rather than
		 * trying to be clever about what pages can be locked,
		 * avoid the use of lock_page for direct compaction
		 * altogether.
		 */
		if (current->flags & PF_MEMALLOC)
822
			goto out;
823

824 825 826 827
		lock_page(page);
	}

	if (PageWriteback(page)) {
828
		/*
829
		 * Only in the case of a full synchronous migration is it
830 831 832
		 * necessary to wait for PageWriteback. In the async case,
		 * the retry loop is too short and in the sync-light case,
		 * the overhead of stalling is too much
833
		 */
834
		if (mode != MIGRATE_SYNC) {
835
			rc = -EBUSY;
836
			goto out_unlock;
837 838
		}
		if (!force)
839
			goto out_unlock;
840 841 842
		wait_on_page_writeback(page);
	}
	/*
843 844
	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
	 * we cannot notice that anon_vma is freed while we migrates a page.
845
	 * This get_anon_vma() delays freeing anon_vma pointer until the end
846
	 * of migration. File cache pages are no problem because of page_lock()
847 848
	 * File Caches may use write_page() or lock_page() in migration, then,
	 * just care Anon page here.
849
	 */
H
Hugh Dickins 已提交
850
	if (PageAnon(page) && !PageKsm(page)) {
851
		/*
852
		 * Only page_lock_anon_vma_read() understands the subtleties of
853 854
		 * getting a hold on an anon_vma from outside one of its mms.
		 */
855
		anon_vma = page_get_anon_vma(page);
856 857
		if (anon_vma) {
			/*
858
			 * Anon page
859 860
			 */
		} else if (PageSwapCache(page)) {
861 862 863 864 865 866 867 868 869 870 871 872 873 874
			/*
			 * We cannot be sure that the anon_vma of an unmapped
			 * swapcache page is safe to use because we don't
			 * know in advance if the VMA that this page belonged
			 * to still exists. If the VMA and others sharing the
			 * data have been freed, then the anon_vma could
			 * already be invalid.
			 *
			 * To avoid this possibility, swapcache pages get
			 * migrated but are not remapped when migration
			 * completes
			 */
			remap_swapcache = 0;
		} else {
875
			goto out_unlock;
876
		}
877
	}
878

879
	if (unlikely(isolated_balloon_page(page))) {
880 881 882 883 884 885 886 887
		/*
		 * A ballooned page does not need any special attention from
		 * physical to virtual reverse mapping procedures.
		 * Skip any attempt to unmap PTEs or to remap swap cache,
		 * in order to avoid burning cycles at rmap level, and perform
		 * the page migration right away (proteced by page lock).
		 */
		rc = balloon_page_migrate(newpage, page, mode);
888
		goto out_unlock;
889 890
	}

891
	/*
892 893 894 895 896 897 898 899 900 901
	 * Corner case handling:
	 * 1. When a new swap-cache page is read into, it is added to the LRU
	 * and treated as swapcache but it has no rmap yet.
	 * Calling try_to_unmap() against a page->mapping==NULL page will
	 * trigger a BUG.  So handle it here.
	 * 2. An orphaned page (see truncate_complete_page) might have
	 * fs-private metadata. The page can be picked up due to memory
	 * offlining.  Everywhere else except page reclaim, the page is
	 * invisible to the vm, so the page can not be migrated.  So try to
	 * free the metadata, so the page can be freed.
902
	 */
903
	if (!page->mapping) {
904
		VM_BUG_ON_PAGE(PageAnon(page), page);
905
		if (page_has_private(page)) {
906
			try_to_free_buffers(page);
907
			goto out_unlock;
908
		}
909
		goto skip_unmap;
910 911
	}

912
	/* Establish migration ptes or remove ptes */
913
	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914

915
skip_unmap:
916
	if (!page_mapped(page))
917
		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918

919
	if (rc && remap_swapcache)
920
		remove_migration_ptes(page, page);
921 922

	/* Drop an anon_vma reference if we took one */
923
	if (anon_vma)
924
		put_anon_vma(anon_vma);
925

926
out_unlock:
927
	unlock_page(page);
928 929 930
out:
	return rc;
}
931

932 933 934 935
/*
 * Obtain the lock on page, remove all ptes and migrate the page
 * to the newly allocated page in newpage.
 */
936 937 938
static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
			unsigned long private, struct page *page, int force,
			enum migrate_mode mode)
939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
{
	int rc = 0;
	int *result = NULL;
	struct page *newpage = get_new_page(page, private, &result);

	if (!newpage)
		return -ENOMEM;

	if (page_count(page) == 1) {
		/* page was freed from under us. So we are done. */
		goto out;
	}

	if (unlikely(PageTransHuge(page)))
		if (unlikely(split_huge_page(page)))
			goto out;

956
	rc = __unmap_and_move(page, newpage, force, mode);
957

958
out:
959
	if (rc != -EAGAIN) {
960 961 962 963 964 965 966
		/*
		 * A page that has been migrated has all references
		 * removed and will be freed. A page that has not been
		 * migrated will have kepts its references and be
		 * restored.
		 */
		list_del(&page->lru);
K
KOSAKI Motohiro 已提交
967
		dec_zone_page_state(page, NR_ISOLATED_ANON +
968
				page_is_file_cache(page));
L
Lee Schermerhorn 已提交
969
		putback_lru_page(page);
970
	}
971

972
	/*
973 974 975
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, putback_lru_page() will drop the reference grabbed
	 * during isolation.
976
	 */
977 978
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
		ClearPageSwapBacked(newpage);
979
		put_new_page(newpage, private);
980 981 982
	} else if (unlikely(__is_movable_balloon_page(newpage))) {
		/* drop our reference, page already in the balloon */
		put_page(newpage);
983
	} else
984 985
		putback_lru_page(newpage);

986 987 988 989 990 991
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(newpage);
	}
992 993 994
	return rc;
}

N
Naoya Horiguchi 已提交
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
/*
 * Counterpart of unmap_and_move_page() for hugepage migration.
 *
 * This function doesn't wait the completion of hugepage I/O
 * because there is no race between I/O and migration for hugepage.
 * Note that currently hugepage I/O occurs only in direct I/O
 * where no lock is held and PG_writeback is irrelevant,
 * and writeback status of all subpages are counted in the reference
 * count of the head page (i.e. if all subpages of a 2MB hugepage are
 * under direct I/O, the reference of the head page is 512 and a bit more.)
 * This means that when we try to migrate hugepage whose subpages are
 * doing direct I/O, some references remain after try_to_unmap() and
 * hugepage migration fails without data corruption.
 *
 * There is also no race when direct I/O is issued on the page under migration,
 * because then pte is replaced with migration swap entry and direct I/O code
 * will wait in the page fault for migration to complete.
 */
static int unmap_and_move_huge_page(new_page_t get_new_page,
1014 1015 1016
				free_page_t put_new_page, unsigned long private,
				struct page *hpage, int force,
				enum migrate_mode mode)
N
Naoya Horiguchi 已提交
1017 1018 1019
{
	int rc = 0;
	int *result = NULL;
1020
	struct page *new_hpage;
N
Naoya Horiguchi 已提交
1021 1022
	struct anon_vma *anon_vma = NULL;

1023 1024 1025 1026 1027 1028 1029
	/*
	 * Movability of hugepages depends on architectures and hugepage size.
	 * This check is necessary because some callers of hugepage migration
	 * like soft offline and memory hotremove don't walk through page
	 * tables or check whether the hugepage is pmd-based or not before
	 * kicking migration.
	 */
1030
	if (!hugepage_migration_supported(page_hstate(hpage))) {
1031
		putback_active_hugepage(hpage);
1032
		return -ENOSYS;
1033
	}
1034

1035
	new_hpage = get_new_page(hpage, private, &result);
N
Naoya Horiguchi 已提交
1036 1037 1038 1039 1040 1041
	if (!new_hpage)
		return -ENOMEM;

	rc = -EAGAIN;

	if (!trylock_page(hpage)) {
1042
		if (!force || mode != MIGRATE_SYNC)
N
Naoya Horiguchi 已提交
1043 1044 1045 1046
			goto out;
		lock_page(hpage);
	}

1047 1048
	if (PageAnon(hpage))
		anon_vma = page_get_anon_vma(hpage);
N
Naoya Horiguchi 已提交
1049 1050 1051 1052

	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);

	if (!page_mapped(hpage))
1053
		rc = move_to_new_page(new_hpage, hpage, 1, mode);
N
Naoya Horiguchi 已提交
1054

1055
	if (rc != MIGRATEPAGE_SUCCESS)
N
Naoya Horiguchi 已提交
1056 1057
		remove_migration_ptes(hpage, hpage);

H
Hugh Dickins 已提交
1058
	if (anon_vma)
1059
		put_anon_vma(anon_vma);
1060

1061
	if (rc == MIGRATEPAGE_SUCCESS)
1062 1063
		hugetlb_cgroup_migrate(hpage, new_hpage);

N
Naoya Horiguchi 已提交
1064
	unlock_page(hpage);
1065
out:
1066 1067
	if (rc != -EAGAIN)
		putback_active_hugepage(hpage);
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078

	/*
	 * If migration was not successful and there's a freeing callback, use
	 * it.  Otherwise, put_page() will drop the reference grabbed during
	 * isolation.
	 */
	if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
		put_new_page(new_hpage, private);
	else
		put_page(new_hpage);

N
Naoya Horiguchi 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087
	if (result) {
		if (rc)
			*result = rc;
		else
			*result = page_to_nid(new_hpage);
	}
	return rc;
}

C
Christoph Lameter 已提交
1088
/*
1089 1090
 * migrate_pages - migrate the pages specified in a list, to the free pages
 *		   supplied as the target for the page migration
C
Christoph Lameter 已提交
1091
 *
1092 1093 1094
 * @from:		The list of pages to be migrated.
 * @get_new_page:	The function used to allocate free pages to be used
 *			as the target of the page migration.
1095 1096
 * @put_new_page:	The function used to free target pages if migration
 *			fails, or NULL if no special handling is necessary.
1097 1098 1099 1100
 * @private:		Private data to be passed on to get_new_page()
 * @mode:		The migration mode that specifies the constraints for
 *			page migration, if any.
 * @reason:		The reason for page migration.
C
Christoph Lameter 已提交
1101
 *
1102 1103 1104
 * The function returns after 10 attempts or if no pages are movable any more
 * because the list has become empty or no retryable pages exist any more.
 * The caller should call putback_lru_pages() to return pages to the LRU
1105
 * or free list only if ret != 0.
C
Christoph Lameter 已提交
1106
 *
1107
 * Returns the number of pages that were not migrated, or an error code.
C
Christoph Lameter 已提交
1108
 */
1109
int migrate_pages(struct list_head *from, new_page_t get_new_page,
1110 1111
		free_page_t put_new_page, unsigned long private,
		enum migrate_mode mode, int reason)
C
Christoph Lameter 已提交
1112
{
1113
	int retry = 1;
C
Christoph Lameter 已提交
1114
	int nr_failed = 0;
1115
	int nr_succeeded = 0;
C
Christoph Lameter 已提交
1116 1117 1118 1119 1120 1121 1122 1123 1124
	int pass = 0;
	struct page *page;
	struct page *page2;
	int swapwrite = current->flags & PF_SWAPWRITE;
	int rc;

	if (!swapwrite)
		current->flags |= PF_SWAPWRITE;

1125 1126
	for(pass = 0; pass < 10 && retry; pass++) {
		retry = 0;
C
Christoph Lameter 已提交
1127

1128 1129
		list_for_each_entry_safe(page, page2, from, lru) {
			cond_resched();
1130

1131 1132
			if (PageHuge(page))
				rc = unmap_and_move_huge_page(get_new_page,
1133 1134
						put_new_page, private, page,
						pass > 2, mode);
1135
			else
1136 1137
				rc = unmap_and_move(get_new_page, put_new_page,
						private, page, pass > 2, mode);
1138

1139
			switch(rc) {
1140 1141
			case -ENOMEM:
				goto out;
1142
			case -EAGAIN:
1143
				retry++;
1144
				break;
1145
			case MIGRATEPAGE_SUCCESS:
1146
				nr_succeeded++;
1147 1148
				break;
			default:
1149 1150 1151 1152 1153 1154
				/*
				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
				 * unlike -EAGAIN case, the failed page is
				 * removed from migration page list and not
				 * retried in the next outer loop.
				 */
1155
				nr_failed++;
1156
				break;
1157
			}
C
Christoph Lameter 已提交
1158 1159
		}
	}
1160
	rc = nr_failed + retry;
1161
out:
1162 1163 1164 1165
	if (nr_succeeded)
		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
	if (nr_failed)
		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1166 1167
	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);

C
Christoph Lameter 已提交
1168 1169 1170
	if (!swapwrite)
		current->flags &= ~PF_SWAPWRITE;

1171
	return rc;
C
Christoph Lameter 已提交
1172
}
1173

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
#ifdef CONFIG_NUMA
/*
 * Move a list of individual pages
 */
struct page_to_node {
	unsigned long addr;
	struct page *page;
	int node;
	int status;
};

static struct page *new_page_node(struct page *p, unsigned long private,
		int **result)
{
	struct page_to_node *pm = (struct page_to_node *)private;

	while (pm->node != MAX_NUMNODES && pm->page != p)
		pm++;

	if (pm->node == MAX_NUMNODES)
		return NULL;

	*result = &pm->status;

1198 1199 1200 1201 1202
	if (PageHuge(p))
		return alloc_huge_page_node(page_hstate(compound_head(p)),
					pm->node);
	else
		return alloc_pages_exact_node(pm->node,
1203
				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1204 1205 1206 1207 1208 1209
}

/*
 * Move a set of pages as indicated in the pm array. The addr
 * field must be set to the virtual address of the page to be moved
 * and the node number must contain a valid target node.
1210
 * The pm array ends with node = MAX_NUMNODES.
1211
 */
1212 1213 1214
static int do_move_page_to_node_array(struct mm_struct *mm,
				      struct page_to_node *pm,
				      int migrate_all)
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
{
	int err;
	struct page_to_node *pp;
	LIST_HEAD(pagelist);

	down_read(&mm->mmap_sem);

	/*
	 * Build a list of pages to migrate
	 */
	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
		struct vm_area_struct *vma;
		struct page *page;

		err = -EFAULT;
		vma = find_vma(mm, pp->addr);
1231
		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1232 1233
			goto set_status;

1234
		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1235 1236 1237 1238 1239

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1240 1241 1242 1243
		err = -ENOENT;
		if (!page)
			goto set_status;

1244
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1245
		if (PageReserved(page))
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			goto put_and_set;

		pp->page = page;
		err = page_to_nid(page);

		if (err == pp->node)
			/*
			 * Node already in the right place
			 */
			goto put_and_set;

		err = -EACCES;
		if (page_mapcount(page) > 1 &&
				!migrate_all)
			goto put_and_set;

1262 1263 1264 1265 1266
		if (PageHuge(page)) {
			isolate_huge_page(page, &pagelist);
			goto put_and_set;
		}

1267
		err = isolate_lru_page(page);
1268
		if (!err) {
1269
			list_add_tail(&page->lru, &pagelist);
1270 1271 1272
			inc_zone_page_state(page, NR_ISOLATED_ANON +
					    page_is_file_cache(page));
		}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
put_and_set:
		/*
		 * Either remove the duplicate refcount from
		 * isolate_lru_page() or drop the page ref if it was
		 * not isolated.
		 */
		put_page(page);
set_status:
		pp->status = err;
	}

1284
	err = 0;
1285
	if (!list_empty(&pagelist)) {
1286
		err = migrate_pages(&pagelist, new_page_node, NULL,
1287
				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1288
		if (err)
1289
			putback_movable_pages(&pagelist);
1290
	}
1291 1292 1293 1294 1295

	up_read(&mm->mmap_sem);
	return err;
}

1296 1297 1298 1299
/*
 * Migrate an array of page address onto an array of nodes and fill
 * the corresponding array of status.
 */
1300
static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1301 1302 1303 1304 1305
			 unsigned long nr_pages,
			 const void __user * __user *pages,
			 const int __user *nodes,
			 int __user *status, int flags)
{
1306 1307 1308 1309
	struct page_to_node *pm;
	unsigned long chunk_nr_pages;
	unsigned long chunk_start;
	int err;
1310

1311 1312 1313
	err = -ENOMEM;
	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
	if (!pm)
1314
		goto out;
1315 1316 1317

	migrate_prep();

1318
	/*
1319 1320
	 * Store a chunk of page_to_node array in a page,
	 * but keep the last one as a marker
1321
	 */
1322
	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1323

1324 1325 1326 1327
	for (chunk_start = 0;
	     chunk_start < nr_pages;
	     chunk_start += chunk_nr_pages) {
		int j;
1328

1329 1330 1331 1332 1333 1334
		if (chunk_start + chunk_nr_pages > nr_pages)
			chunk_nr_pages = nr_pages - chunk_start;

		/* fill the chunk pm with addrs and nodes from user-space */
		for (j = 0; j < chunk_nr_pages; j++) {
			const void __user *p;
1335 1336
			int node;

1337 1338 1339 1340 1341 1342
			err = -EFAULT;
			if (get_user(p, pages + j + chunk_start))
				goto out_pm;
			pm[j].addr = (unsigned long) p;

			if (get_user(node, nodes + j + chunk_start))
1343 1344 1345
				goto out_pm;

			err = -ENODEV;
1346 1347 1348
			if (node < 0 || node >= MAX_NUMNODES)
				goto out_pm;

1349
			if (!node_state(node, N_MEMORY))
1350 1351 1352 1353 1354 1355
				goto out_pm;

			err = -EACCES;
			if (!node_isset(node, task_nodes))
				goto out_pm;

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
			pm[j].node = node;
		}

		/* End marker for this chunk */
		pm[chunk_nr_pages].node = MAX_NUMNODES;

		/* Migrate this chunk */
		err = do_move_page_to_node_array(mm, pm,
						 flags & MPOL_MF_MOVE_ALL);
		if (err < 0)
			goto out_pm;
1367 1368

		/* Return status information */
1369 1370
		for (j = 0; j < chunk_nr_pages; j++)
			if (put_user(pm[j].status, status + j + chunk_start)) {
1371
				err = -EFAULT;
1372 1373 1374 1375
				goto out_pm;
			}
	}
	err = 0;
1376 1377

out_pm:
1378
	free_page((unsigned long)pm);
1379 1380 1381 1382
out:
	return err;
}

1383
/*
1384
 * Determine the nodes of an array of pages and store it in an array of status.
1385
 */
1386 1387
static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
				const void __user **pages, int *status)
1388
{
1389 1390
	unsigned long i;

1391 1392
	down_read(&mm->mmap_sem);

1393
	for (i = 0; i < nr_pages; i++) {
1394
		unsigned long addr = (unsigned long)(*pages);
1395 1396
		struct vm_area_struct *vma;
		struct page *page;
1397
		int err = -EFAULT;
1398 1399

		vma = find_vma(mm, addr);
1400
		if (!vma || addr < vma->vm_start)
1401 1402
			goto set_status;

1403
		page = follow_page(vma, addr, 0);
1404 1405 1406 1407 1408

		err = PTR_ERR(page);
		if (IS_ERR(page))
			goto set_status;

1409 1410
		err = -ENOENT;
		/* Use PageReserved to check for zero page */
H
Hugh Dickins 已提交
1411
		if (!page || PageReserved(page))
1412 1413 1414 1415
			goto set_status;

		err = page_to_nid(page);
set_status:
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		*status = err;

		pages++;
		status++;
	}

	up_read(&mm->mmap_sem);
}

/*
 * Determine the nodes of a user array of pages and store it in
 * a user array of status.
 */
static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
			 const void __user * __user *pages,
			 int __user *status)
{
#define DO_PAGES_STAT_CHUNK_NR 16
	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
	int chunk_status[DO_PAGES_STAT_CHUNK_NR];

1437 1438
	while (nr_pages) {
		unsigned long chunk_nr;
1439

1440 1441 1442 1443 1444 1445
		chunk_nr = nr_pages;
		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
			chunk_nr = DO_PAGES_STAT_CHUNK_NR;

		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
			break;
1446 1447 1448

		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);

1449 1450
		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
			break;
1451

1452 1453 1454 1455 1456
		pages += chunk_nr;
		status += chunk_nr;
		nr_pages -= chunk_nr;
	}
	return nr_pages ? -EFAULT : 0;
1457 1458 1459 1460 1461 1462
}

/*
 * Move a list of pages in the address space of the currently executing
 * process.
 */
1463 1464 1465 1466
SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
		const void __user * __user *, pages,
		const int __user *, nodes,
		int __user *, status, int, flags)
1467
{
1468
	const struct cred *cred = current_cred(), *tcred;
1469 1470
	struct task_struct *task;
	struct mm_struct *mm;
1471
	int err;
1472
	nodemask_t task_nodes;
1473 1474 1475 1476 1477 1478 1479 1480 1481

	/* Check flags */
	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
		return -EINVAL;

	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
		return -EPERM;

	/* Find the mm_struct */
1482
	rcu_read_lock();
1483
	task = pid ? find_task_by_vpid(pid) : current;
1484
	if (!task) {
1485
		rcu_read_unlock();
1486 1487
		return -ESRCH;
	}
1488
	get_task_struct(task);
1489 1490 1491 1492 1493 1494 1495

	/*
	 * Check if this process has the right to modify the specified
	 * process. The right exists if the process has administrative
	 * capabilities, superuser privileges or the same
	 * userid as the target process.
	 */
1496
	tcred = __task_cred(task);
1497 1498
	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1499
	    !capable(CAP_SYS_NICE)) {
1500
		rcu_read_unlock();
1501
		err = -EPERM;
1502
		goto out;
1503
	}
1504
	rcu_read_unlock();
1505

1506 1507
 	err = security_task_movememory(task);
 	if (err)
1508
		goto out;
1509

1510 1511 1512 1513
	task_nodes = cpuset_mems_allowed(task);
	mm = get_task_mm(task);
	put_task_struct(task);

1514 1515 1516 1517 1518 1519 1520 1521
	if (!mm)
		return -EINVAL;

	if (nodes)
		err = do_pages_move(mm, task_nodes, nr_pages, pages,
				    nodes, status, flags);
	else
		err = do_pages_stat(mm, nr_pages, pages, status);
1522 1523 1524

	mmput(mm);
	return err;
1525 1526 1527 1528

out:
	put_task_struct(task);
	return err;
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
/*
 * Call migration functions in the vma_ops that may prepare
 * memory in a vm for migration. migration functions may perform
 * the migration for vmas that do not have an underlying page struct.
 */
int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
	const nodemask_t *from, unsigned long flags)
{
 	struct vm_area_struct *vma;
 	int err = 0;

1542
	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1543 1544 1545 1546 1547 1548 1549 1550
 		if (vma->vm_ops && vma->vm_ops->migrate) {
 			err = vma->vm_ops->migrate(vma, to, from, flags);
 			if (err)
 				break;
 		}
 	}
 	return err;
}
1551 1552 1553 1554 1555 1556 1557

#ifdef CONFIG_NUMA_BALANCING
/*
 * Returns true if this is a safe migration target node for misplaced NUMA
 * pages. Currently it only checks the watermarks which crude
 */
static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1558
				   unsigned long nr_migrate_pages)
1559 1560 1561 1562 1563 1564 1565 1566
{
	int z;
	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
		struct zone *zone = pgdat->node_zones + z;

		if (!populated_zone(zone))
			continue;

1567
		if (!zone_reclaimable(zone))
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
			continue;

		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
		if (!zone_watermark_ok(zone, 0,
				       high_wmark_pages(zone) +
				       nr_migrate_pages,
				       0, 0))
			continue;
		return true;
	}
	return false;
}

static struct page *alloc_misplaced_dst_page(struct page *page,
					   unsigned long data,
					   int **result)
{
	int nid = (int) data;
	struct page *newpage;

	newpage = alloc_pages_exact_node(nid,
1589 1590 1591
					 (GFP_HIGHUSER_MOVABLE |
					  __GFP_THISNODE | __GFP_NOMEMALLOC |
					  __GFP_NORETRY | __GFP_NOWARN) &
1592
					 ~GFP_IOFS, 0);
1593

1594 1595 1596
	return newpage;
}

1597 1598 1599 1600
/*
 * page migration rate limiting control.
 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
 * window of time. Default here says do not migrate more than 1280M per second.
1601 1602 1603 1604
 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
 * as it is faults that reset the window, pte updates will happen unconditionally
 * if there has not been a fault since @pteupdate_interval_millisecs after the
 * throttle window closed.
1605 1606
 */
static unsigned int migrate_interval_millisecs __read_mostly = 100;
1607
static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1608 1609
static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
/* Returns true if NUMA migration is currently rate limited */
bool migrate_ratelimited(int node)
{
	pg_data_t *pgdat = NODE_DATA(node);

	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
				msecs_to_jiffies(pteupdate_interval_millisecs)))
		return false;

	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
		return false;

	return true;
}

1625
/* Returns true if the node is migrate rate-limited after the update */
1626 1627
static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
					unsigned long nr_pages)
1628
{
1629 1630 1631 1632 1633 1634
	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1635
		spin_lock(&pgdat->numabalancing_migrate_lock);
1636 1637 1638
		pgdat->numabalancing_migrate_nr_pages = 0;
		pgdat->numabalancing_migrate_next_window = jiffies +
			msecs_to_jiffies(migrate_interval_millisecs);
1639
		spin_unlock(&pgdat->numabalancing_migrate_lock);
1640
	}
1641 1642 1643
	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
								nr_pages);
1644
		return true;
1645
	}
1646 1647 1648 1649 1650 1651 1652 1653 1654

	/*
	 * This is an unlocked non-atomic update so errors are possible.
	 * The consequences are failing to migrate when we potentiall should
	 * have which is not severe enough to warrant locking. If it is ever
	 * a problem, it can be converted to a per-cpu counter.
	 */
	pgdat->numabalancing_migrate_nr_pages += nr_pages;
	return false;
1655 1656
}

1657
static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1658
{
1659
	int page_lru;
1660

1661
	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1662

1663
	/* Avoid migrating to a node that is nearly full */
1664 1665
	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
		return 0;
1666

1667 1668
	if (isolate_lru_page(page))
		return 0;
1669

1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	/*
	 * migrate_misplaced_transhuge_page() skips page migration's usual
	 * check on page_count(), so we must do it here, now that the page
	 * has been isolated: a GUP pin, or any other pin, prevents migration.
	 * The expected page count is 3: 1 for page's mapcount and 1 for the
	 * caller's pin and 1 for the reference taken by isolate_lru_page().
	 */
	if (PageTransHuge(page) && page_count(page) != 3) {
		putback_lru_page(page);
		return 0;
1680 1681
	}

1682 1683 1684 1685
	page_lru = page_is_file_cache(page);
	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
				hpage_nr_pages(page));

1686
	/*
1687 1688 1689
	 * Isolating the page has taken another reference, so the
	 * caller's reference can be safely dropped without the page
	 * disappearing underneath us during migration.
1690 1691
	 */
	put_page(page);
1692
	return 1;
1693 1694
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
bool pmd_trans_migrating(pmd_t pmd)
{
	struct page *page = pmd_page(pmd);
	return PageLocked(page);
}

void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
{
	struct page *page = pmd_page(*pmd);
	wait_on_page_locked(page);
}

1707 1708 1709 1710 1711
/*
 * Attempt to migrate a misplaced page to the specified destination
 * node. Caller is expected to have an elevated reference count on
 * the page that will be dropped by this function before returning.
 */
1712 1713
int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
			   int node)
1714 1715
{
	pg_data_t *pgdat = NODE_DATA(node);
1716
	int isolated;
1717 1718 1719 1720
	int nr_remaining;
	LIST_HEAD(migratepages);

	/*
1721 1722
	 * Don't migrate file pages that are mapped in multiple processes
	 * with execute permissions as they are probably shared libraries.
1723
	 */
1724 1725
	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
	    (vma->vm_flags & VM_EXEC))
1726 1727 1728 1729 1730 1731 1732
		goto out;

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1733
	if (numamigrate_update_ratelimit(pgdat, 1))
1734 1735 1736 1737 1738 1739 1740
		goto out;

	isolated = numamigrate_isolate_page(pgdat, page);
	if (!isolated)
		goto out;

	list_add(&page->lru, &migratepages);
1741
	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1742 1743
				     NULL, node, MIGRATE_ASYNC,
				     MR_NUMA_MISPLACED);
1744
	if (nr_remaining) {
1745 1746 1747 1748 1749 1750
		if (!list_empty(&migratepages)) {
			list_del(&page->lru);
			dec_zone_page_state(page, NR_ISOLATED_ANON +
					page_is_file_cache(page));
			putback_lru_page(page);
		}
1751 1752 1753
		isolated = 0;
	} else
		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1754 1755
	BUG_ON(!list_empty(&migratepages));
	return isolated;
1756 1757 1758 1759

out:
	put_page(page);
	return 0;
1760
}
1761
#endif /* CONFIG_NUMA_BALANCING */
1762

1763
#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1764 1765 1766 1767
/*
 * Migrates a THP to a given target node. page must be locked and is unlocked
 * before returning.
 */
1768 1769 1770 1771 1772 1773
int migrate_misplaced_transhuge_page(struct mm_struct *mm,
				struct vm_area_struct *vma,
				pmd_t *pmd, pmd_t entry,
				unsigned long address,
				struct page *page, int node)
{
1774
	spinlock_t *ptl;
1775 1776 1777 1778
	pg_data_t *pgdat = NODE_DATA(node);
	int isolated = 0;
	struct page *new_page = NULL;
	int page_lru = page_is_file_cache(page);
1779 1780
	unsigned long mmun_start = address & HPAGE_PMD_MASK;
	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1781
	pmd_t orig_entry;
1782 1783 1784 1785 1786 1787

	/*
	 * Rate-limit the amount of data that is being migrated to a node.
	 * Optimal placement is no good if the memory bus is saturated and
	 * all the time is being spent migrating!
	 */
1788
	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1789 1790 1791
		goto out_dropref;

	new_page = alloc_pages_node(node,
1792 1793
		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
		HPAGE_PMD_ORDER);
1794 1795 1796
	if (!new_page)
		goto out_fail;

1797
	isolated = numamigrate_isolate_page(pgdat, page);
1798
	if (!isolated) {
1799
		put_page(new_page);
1800
		goto out_fail;
1801 1802
	}

1803 1804 1805
	if (mm_tlb_flush_pending(mm))
		flush_tlb_range(vma, mmun_start, mmun_end);

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816
	/* Prepare a page as a migration target */
	__set_page_locked(new_page);
	SetPageSwapBacked(new_page);

	/* anon mapping, we can simply copy page->mapping to the new page: */
	new_page->mapping = page->mapping;
	new_page->index = page->index;
	migrate_page_copy(new_page, page);
	WARN_ON(PageLRU(new_page));

	/* Recheck the target PMD */
1817
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1818
	ptl = pmd_lock(mm, pmd);
1819 1820
	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
fail_putback:
1821
		spin_unlock(ptl);
1822
		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833

		/* Reverse changes made by migrate_page_copy() */
		if (TestClearPageActive(new_page))
			SetPageActive(page);
		if (TestClearPageUnevictable(new_page))
			SetPageUnevictable(page);
		mlock_migrate_page(page, new_page);

		unlock_page(new_page);
		put_page(new_page);		/* Free it */

1834 1835
		/* Retake the callers reference and putback on LRU */
		get_page(page);
1836
		putback_lru_page(page);
1837 1838
		mod_zone_page_state(page_zone(page),
			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1839 1840

		goto out_unlock;
1841 1842
	}

1843
	orig_entry = *pmd;
1844 1845
	entry = mk_pmd(new_page, vma->vm_page_prot);
	entry = pmd_mkhuge(entry);
1846
	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1847

1848 1849 1850 1851 1852 1853 1854
	/*
	 * Clear the old entry under pagetable lock and establish the new PTE.
	 * Any parallel GUP will either observe the old page blocking on the
	 * page lock, block on the page table lock or observe the new page.
	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
	 * guarantee the copy is visible before the pagetable update.
	 */
1855
	flush_cache_range(vma, mmun_start, mmun_end);
1856
	page_add_anon_rmap(new_page, vma, mmun_start);
1857 1858 1859
	pmdp_clear_flush(vma, mmun_start, pmd);
	set_pmd_at(mm, mmun_start, pmd, entry);
	flush_tlb_range(vma, mmun_start, mmun_end);
1860
	update_mmu_cache_pmd(vma, address, &entry);
1861 1862

	if (page_count(page) != 2) {
1863 1864
		set_pmd_at(mm, mmun_start, pmd, orig_entry);
		flush_tlb_range(vma, mmun_start, mmun_end);
1865 1866 1867 1868 1869
		update_mmu_cache_pmd(vma, address, &entry);
		page_remove_rmap(new_page);
		goto fail_putback;
	}

1870 1871
	mem_cgroup_migrate(page, new_page, false);

1872
	page_remove_rmap(page);
1873

1874
	spin_unlock(ptl);
1875
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1876

1877 1878 1879 1880
	/* Take an "isolate" reference and put new page on the LRU. */
	get_page(new_page);
	putback_lru_page(new_page);

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	unlock_page(new_page);
	unlock_page(page);
	put_page(page);			/* Drop the rmap reference */
	put_page(page);			/* Drop the LRU isolation reference */

	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);

	mod_zone_page_state(page_zone(page),
			NR_ISOLATED_ANON + page_lru,
			-HPAGE_PMD_NR);
	return isolated;

1894 1895
out_fail:
	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1896
out_dropref:
1897 1898 1899
	ptl = pmd_lock(mm, pmd);
	if (pmd_same(*pmd, entry)) {
		entry = pmd_mknonnuma(entry);
1900
		set_pmd_at(mm, mmun_start, pmd, entry);
1901 1902 1903
		update_mmu_cache_pmd(vma, address, &entry);
	}
	spin_unlock(ptl);
1904

1905
out_unlock:
1906
	unlock_page(page);
1907 1908 1909
	put_page(page);
	return 0;
}
1910 1911 1912
#endif /* CONFIG_NUMA_BALANCING */

#endif /* CONFIG_NUMA */