compaction.c 41.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/*
 * linux/mm/compaction.c
 *
 * Memory compaction for the reduction of external fragmentation. Note that
 * this heavily depends upon page migration to do all the real heavy
 * lifting
 *
 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
 */
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
15
#include <linux/sysctl.h>
16
#include <linux/sysfs.h>
17
#include <linux/balloon_compaction.h>
18
#include <linux/page-isolation.h>
19 20
#include "internal.h"

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
#ifdef CONFIG_COMPACTION
static inline void count_compact_event(enum vm_event_item item)
{
	count_vm_event(item);
}

static inline void count_compact_events(enum vm_event_item item, long delta)
{
	count_vm_events(item, delta);
}
#else
#define count_compact_event(item) do { } while (0)
#define count_compact_events(item, delta) do { } while (0)
#endif

36 37
#if defined CONFIG_COMPACTION || defined CONFIG_CMA

38 39 40
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>

41 42 43 44 45 46 47 48 49 50 51 52 53 54
static unsigned long release_freepages(struct list_head *freelist)
{
	struct page *page, *next;
	unsigned long count = 0;

	list_for_each_entry_safe(page, next, freelist, lru) {
		list_del(&page->lru);
		__free_page(page);
		count++;
	}

	return count;
}

55 56 57 58 59 60 61 62 63 64
static void map_pages(struct list_head *list)
{
	struct page *page;

	list_for_each_entry(page, list, lru) {
		arch_alloc_page(page, 0);
		kernel_map_pages(page, 1, 1);
	}
}

65 66 67 68 69
static inline bool migrate_async_suitable(int migratetype)
{
	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
}

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
				unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

	start_page = pfn_to_page(start_pfn);

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
#ifdef CONFIG_COMPACTION
/* Returns true if the pageblock should be scanned for pages to isolate. */
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	if (cc->ignore_skip_hint)
		return true;

	return !get_pageblock_skip(page);
}

/*
 * This function is called to clear all cached information on pageblocks that
 * should be skipped for page isolation when the migrate and free page scanner
 * meet.
 */
129
static void __reset_isolation_suitable(struct zone *zone)
130 131
{
	unsigned long start_pfn = zone->zone_start_pfn;
132
	unsigned long end_pfn = zone_end_pfn(zone);
133 134
	unsigned long pfn;

135 136
	zone->compact_cached_migrate_pfn[0] = start_pfn;
	zone->compact_cached_migrate_pfn[1] = start_pfn;
137
	zone->compact_cached_free_pfn = end_pfn;
138
	zone->compact_blockskip_flush = false;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

	/* Walk the zone and mark every pageblock as suitable for isolation */
	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
		struct page *page;

		cond_resched();

		if (!pfn_valid(pfn))
			continue;

		page = pfn_to_page(pfn);
		if (zone != page_zone(page))
			continue;

		clear_pageblock_skip(page);
	}
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
void reset_isolation_suitable(pg_data_t *pgdat)
{
	int zoneid;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
		struct zone *zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

		/* Only flush if a full compaction finished recently */
		if (zone->compact_blockskip_flush)
			__reset_isolation_suitable(zone);
	}
}

172 173
/*
 * If no pages were isolated then mark this pageblock to be skipped in the
174
 * future. The information is later cleared by __reset_isolation_suitable().
175
 */
176 177
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
178
			bool migrate_scanner)
179
{
180
	struct zone *zone = cc->zone;
181
	unsigned long pfn;
182 183 184 185

	if (cc->ignore_skip_hint)
		return;

186 187 188
	if (!page)
		return;

189 190 191
	if (nr_isolated)
		return;

192
	set_pageblock_skip(page);
193

194 195 196 197 198 199 200 201
	pfn = page_to_pfn(page);

	/* Update where async and sync compaction should restart */
	if (migrate_scanner) {
		if (cc->finished_update_migrate)
			return;
		if (pfn > zone->compact_cached_migrate_pfn[0])
			zone->compact_cached_migrate_pfn[0] = pfn;
202 203
		if (cc->mode != MIGRATE_ASYNC &&
		    pfn > zone->compact_cached_migrate_pfn[1])
204 205 206 207 208 209
			zone->compact_cached_migrate_pfn[1] = pfn;
	} else {
		if (cc->finished_update_free)
			return;
		if (pfn < zone->compact_cached_free_pfn)
			zone->compact_cached_free_pfn = pfn;
210
	}
211 212 213 214 215 216 217 218
}
#else
static inline bool isolation_suitable(struct compact_control *cc,
					struct page *page)
{
	return true;
}

219 220
static void update_pageblock_skip(struct compact_control *cc,
			struct page *page, unsigned long nr_isolated,
221
			bool migrate_scanner)
222 223 224 225
{
}
#endif /* CONFIG_COMPACTION */

226 227 228 229 230 231 232 233 234 235
/*
 * Compaction requires the taking of some coarse locks that are potentially
 * very heavily contended. For async compaction, back out if the lock cannot
 * be taken immediately. For sync compaction, spin on the lock if needed.
 *
 * Returns true if the lock is held
 * Returns false if the lock is not held and compaction should abort
 */
static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
						struct compact_control *cc)
236
{
237 238 239 240 241 242 243 244
	if (cc->mode == MIGRATE_ASYNC) {
		if (!spin_trylock_irqsave(lock, *flags)) {
			cc->contended = COMPACT_CONTENDED_LOCK;
			return false;
		}
	} else {
		spin_lock_irqsave(lock, *flags);
	}
245

246
	return true;
247 248
}

249 250
/*
 * Compaction requires the taking of some coarse locks that are potentially
251 252 253 254 255 256 257
 * very heavily contended. The lock should be periodically unlocked to avoid
 * having disabled IRQs for a long time, even when there is nobody waiting on
 * the lock. It might also be that allowing the IRQs will result in
 * need_resched() becoming true. If scheduling is needed, async compaction
 * aborts. Sync compaction schedules.
 * Either compaction type will also abort if a fatal signal is pending.
 * In either case if the lock was locked, it is dropped and not regained.
258
 *
259 260 261 262
 * Returns true if compaction should abort due to fatal signal pending, or
 *		async compaction due to need_resched()
 * Returns false when compaction can continue (sync compaction might have
 *		scheduled)
263
 */
264 265
static bool compact_unlock_should_abort(spinlock_t *lock,
		unsigned long flags, bool *locked, struct compact_control *cc)
266
{
267 268 269 270
	if (*locked) {
		spin_unlock_irqrestore(lock, flags);
		*locked = false;
	}
271

272 273 274 275
	if (fatal_signal_pending(current)) {
		cc->contended = COMPACT_CONTENDED_SCHED;
		return true;
	}
276

277
	if (need_resched()) {
278
		if (cc->mode == MIGRATE_ASYNC) {
279 280
			cc->contended = COMPACT_CONTENDED_SCHED;
			return true;
281 282 283 284
		}
		cond_resched();
	}

285
	return false;
286 287
}

288 289 290
/*
 * Aside from avoiding lock contention, compaction also periodically checks
 * need_resched() and either schedules in sync compaction or aborts async
291
 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 293 294 295 296 297 298 299 300 301
 * is used where no lock is concerned.
 *
 * Returns false when no scheduling was needed, or sync compaction scheduled.
 * Returns true when async compaction should abort.
 */
static inline bool compact_should_abort(struct compact_control *cc)
{
	/* async compaction aborts if contended */
	if (need_resched()) {
		if (cc->mode == MIGRATE_ASYNC) {
302
			cc->contended = COMPACT_CONTENDED_SCHED;
303 304 305 306 307 308 309 310 311
			return true;
		}

		cond_resched();
	}

	return false;
}

312 313 314
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
315
	/* If the page is a large free page, then disallow migration */
316 317 318 319 320 321 322 323 324
	if (PageBuddy(page)) {
		/*
		 * We are checking page_order without zone->lock taken. But
		 * the only small danger is that we skip a potentially suitable
		 * pageblock, so it's not worth to check order for valid range.
		 */
		if (page_order_unsafe(page) >= pageblock_order)
			return false;
	}
325 326

	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327
	if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 329 330 331 332 333
		return true;

	/* Otherwise skip the block */
	return false;
}

334
/*
335 336 337
 * Isolate free pages onto a private freelist. If @strict is true, will abort
 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 * (even though it may still end up isolating some pages).
338
 */
339
static unsigned long isolate_freepages_block(struct compact_control *cc,
340
				unsigned long *start_pfn,
341 342 343
				unsigned long end_pfn,
				struct list_head *freelist,
				bool strict)
344
{
345
	int nr_scanned = 0, total_isolated = 0;
346
	struct page *cursor, *valid_page = NULL;
347
	unsigned long flags = 0;
348
	bool locked = false;
349
	unsigned long blockpfn = *start_pfn;
350 351 352

	cursor = pfn_to_page(blockpfn);

353
	/* Isolate free pages. */
354 355 356 357
	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
		int isolated, i;
		struct page *page = cursor;

358 359 360 361 362 363 364 365 366 367
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort if fatal signal
		 * pending or async compaction detects need_resched()
		 */
		if (!(blockpfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&cc->zone->lock, flags,
								&locked, cc))
			break;

368
		nr_scanned++;
369
		if (!pfn_valid_within(blockpfn))
370 371
			goto isolate_fail;

372 373
		if (!valid_page)
			valid_page = page;
374
		if (!PageBuddy(page))
375
			goto isolate_fail;
376 377

		/*
378 379 380 381 382
		 * If we already hold the lock, we can skip some rechecking.
		 * Note that if we hold the lock now, checked_pageblock was
		 * already set in some previous iteration (or strict is true),
		 * so it is correct to skip the suitable migration target
		 * recheck as well.
383
		 */
384 385 386 387 388 389 390 391 392
		if (!locked) {
			/*
			 * The zone lock must be held to isolate freepages.
			 * Unfortunately this is a very coarse lock and can be
			 * heavily contended if there are parallel allocations
			 * or parallel compactions. For async compaction do not
			 * spin on the lock and we acquire the lock as late as
			 * possible.
			 */
393 394
			locked = compact_trylock_irqsave(&cc->zone->lock,
								&flags, cc);
395 396
			if (!locked)
				break;
397

398 399 400 401
			/* Recheck this is a buddy page under lock */
			if (!PageBuddy(page))
				goto isolate_fail;
		}
402 403 404 405 406 407 408 409 410 411 412 413 414

		/* Found a free page, break it into order-0 pages */
		isolated = split_free_page(page);
		total_isolated += isolated;
		for (i = 0; i < isolated; i++) {
			list_add(&page->lru, freelist);
			page++;
		}

		/* If a page was split, advance to the end of it */
		if (isolated) {
			blockpfn += isolated - 1;
			cursor += isolated - 1;
415
			continue;
416
		}
417 418 419 420 421 422 423

isolate_fail:
		if (strict)
			break;
		else
			continue;

424 425
	}

426 427 428
	/* Record how far we have got within the block */
	*start_pfn = blockpfn;

429
	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430 431 432 433 434 435

	/*
	 * If strict isolation is requested by CMA then check that all the
	 * pages requested were isolated. If there were any failures, 0 is
	 * returned and CMA will fail.
	 */
436
	if (strict && blockpfn < end_pfn)
437 438 439 440 441
		total_isolated = 0;

	if (locked)
		spin_unlock_irqrestore(&cc->zone->lock, flags);

442 443
	/* Update the pageblock-skip if the whole pageblock was scanned */
	if (blockpfn == end_pfn)
444
		update_pageblock_skip(cc, valid_page, total_isolated, false);
445

446
	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447
	if (total_isolated)
448
		count_compact_events(COMPACTISOLATED, total_isolated);
449 450 451
	return total_isolated;
}

452 453 454 455 456 457 458 459 460 461 462 463 464
/**
 * isolate_freepages_range() - isolate free pages.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Non-free pages, invalid PFNs, or zone boundaries within the
 * [start_pfn, end_pfn) range are considered errors, cause function to
 * undo its actions and return zero.
 *
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater then end_pfn if end fell in a middle of
 * a free page).
 */
465
unsigned long
466 467
isolate_freepages_range(struct compact_control *cc,
			unsigned long start_pfn, unsigned long end_pfn)
468
{
469
	unsigned long isolated, pfn, block_end_pfn;
470 471
	LIST_HEAD(freelist);

472 473 474 475 476
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn += isolated,
				block_end_pfn += pageblock_nr_pages) {
477 478
		/* Protect pfn from changing by isolate_freepages_block */
		unsigned long isolate_start_pfn = pfn;
479 480 481

		block_end_pfn = min(block_end_pfn, end_pfn);

482 483 484
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
			break;

485 486
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
						block_end_pfn, &freelist, true);
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

		/*
		 * In strict mode, isolate_freepages_block() returns 0 if
		 * there are any holes in the block (ie. invalid PFNs or
		 * non-free pages).
		 */
		if (!isolated)
			break;

		/*
		 * If we managed to isolate pages, it is always (1 << n) *
		 * pageblock_nr_pages for some non-negative n.  (Max order
		 * page may span two pageblocks).
		 */
	}

	/* split_free_page does not map the pages */
	map_pages(&freelist);

	if (pfn < end_pfn) {
		/* Loop terminated early, cleanup. */
		release_freepages(&freelist);
		return 0;
	}

	/* We don't use freelists for anything. */
	return pfn;
}

516
/* Update the number of anon and file isolated pages in the zone */
517
static void acct_isolated(struct zone *zone, struct compact_control *cc)
518 519
{
	struct page *page;
520
	unsigned int count[2] = { 0, };
521

522 523 524
	if (list_empty(&cc->migratepages))
		return;

525 526
	list_for_each_entry(page, &cc->migratepages, lru)
		count[!!page_is_file_cache(page)]++;
527

528 529
	mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
	mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
530 531 532 533 534
}

/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
535
	unsigned long active, inactive, isolated;
536 537 538

	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
					zone_page_state(zone, NR_INACTIVE_ANON);
539 540
	active = zone_page_state(zone, NR_ACTIVE_FILE) +
					zone_page_state(zone, NR_ACTIVE_ANON);
541 542 543
	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
					zone_page_state(zone, NR_ISOLATED_ANON);

544
	return isolated > (inactive + active) / 2;
545 546
}

547
/**
548 549
 * isolate_migratepages_block() - isolate all migrate-able pages within
 *				  a single pageblock
550
 * @cc:		Compaction control structure.
551 552 553
 * @low_pfn:	The first PFN to isolate
 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 * @isolate_mode: Isolation mode to be used.
554 555
 *
 * Isolate all pages that can be migrated from the range specified by
556 557 558 559
 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 * first page that was not scanned (which may be both less, equal to or more
 * than end_pfn).
560
 *
561 562 563
 * The pages are isolated on cc->migratepages list (not required to be empty),
 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 * is neither read nor updated.
564
 */
565 566 567
static unsigned long
isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
			unsigned long end_pfn, isolate_mode_t isolate_mode)
568
{
569
	struct zone *zone = cc->zone;
570
	unsigned long nr_scanned = 0, nr_isolated = 0;
571
	struct list_head *migratelist = &cc->migratepages;
572
	struct lruvec *lruvec;
573
	unsigned long flags = 0;
574
	bool locked = false;
575
	struct page *page = NULL, *valid_page = NULL;
576 577 578 579 580 581 582

	/*
	 * Ensure that there are not too many pages isolated from the LRU
	 * list by either parallel reclaimers or compaction. If there are,
	 * delay for some time until fewer pages are isolated
	 */
	while (unlikely(too_many_isolated(zone))) {
583
		/* async migration should just abort */
584
		if (cc->mode == MIGRATE_ASYNC)
585
			return 0;
586

587 588 589
		congestion_wait(BLK_RW_ASYNC, HZ/10);

		if (fatal_signal_pending(current))
590
			return 0;
591 592
	}

593 594
	if (compact_should_abort(cc))
		return 0;
595

596 597
	/* Time to isolate some pages for migration */
	for (; low_pfn < end_pfn; low_pfn++) {
598 599 600 601 602 603 604 605 606
		/*
		 * Periodically drop the lock (if held) regardless of its
		 * contention, to give chance to IRQs. Abort async compaction
		 * if contended.
		 */
		if (!(low_pfn % SWAP_CLUSTER_MAX)
		    && compact_unlock_should_abort(&zone->lru_lock, flags,
								&locked, cc))
			break;
607

608 609
		if (!pfn_valid_within(low_pfn))
			continue;
610
		nr_scanned++;
611 612

		page = pfn_to_page(low_pfn);
613

614 615 616
		if (!valid_page)
			valid_page = page;

617
		/*
618 619 620 621
		 * Skip if free. We read page order here without zone lock
		 * which is generally unsafe, but the race window is small and
		 * the worst thing that can happen is that we skip some
		 * potential isolation targets.
622
		 */
623 624 625 626 627 628 629 630 631 632
		if (PageBuddy(page)) {
			unsigned long freepage_order = page_order_unsafe(page);

			/*
			 * Without lock, we cannot be sure that what we got is
			 * a valid page order. Consider only values in the
			 * valid order range to prevent low_pfn overflow.
			 */
			if (freepage_order > 0 && freepage_order < MAX_ORDER)
				low_pfn += (1UL << freepage_order) - 1;
633
			continue;
634
		}
635

636 637 638 639 640 641 642 643 644
		/*
		 * Check may be lockless but that's ok as we recheck later.
		 * It's possible to migrate LRU pages and balloon pages
		 * Skip any other type of page
		 */
		if (!PageLRU(page)) {
			if (unlikely(balloon_page_movable(page))) {
				if (locked && balloon_page_isolate(page)) {
					/* Successfully isolated */
645
					goto isolate_success;
646 647
				}
			}
648
			continue;
649
		}
650 651

		/*
652 653 654 655 656 657 658 659
		 * PageLRU is set. lru_lock normally excludes isolation
		 * splitting and collapsing (collapsing has already happened
		 * if PageLRU is set) but the lock is not necessarily taken
		 * here and it is wasteful to take it just to check transhuge.
		 * Check TransHuge without lock and skip the whole pageblock if
		 * it's either a transhuge or hugetlbfs page, as calling
		 * compound_order() without preventing THP from splitting the
		 * page underneath us may return surprising results.
660
		 */
661 662
		if (PageTransHuge(page)) {
			if (!locked)
663 664 665 666 667
				low_pfn = ALIGN(low_pfn + 1,
						pageblock_nr_pages) - 1;
			else
				low_pfn += (1 << compound_order(page)) - 1;

668 669 670
			continue;
		}

671 672 673 674 675 676 677 678 679
		/*
		 * Migration will fail if an anonymous page is pinned in memory,
		 * so avoid taking lru_lock and isolating it unnecessarily in an
		 * admittedly racy check.
		 */
		if (!page_mapping(page) &&
		    page_count(page) > page_mapcount(page))
			continue;

680 681
		/* If we already hold the lock, we can skip some rechecking */
		if (!locked) {
682 683
			locked = compact_trylock_irqsave(&zone->lru_lock,
								&flags, cc);
684 685
			if (!locked)
				break;
686

687 688 689 690 691 692 693
			/* Recheck PageLRU and PageTransHuge under lock */
			if (!PageLRU(page))
				continue;
			if (PageTransHuge(page)) {
				low_pfn += (1 << compound_order(page)) - 1;
				continue;
			}
694 695
		}

696 697
		lruvec = mem_cgroup_page_lruvec(page, zone);

698
		/* Try isolate the page */
699
		if (__isolate_lru_page(page, isolate_mode) != 0)
700 701
			continue;

702
		VM_BUG_ON_PAGE(PageTransCompound(page), page);
703

704
		/* Successfully isolated */
705
		del_page_from_lru_list(page, lruvec, page_lru(page));
706 707 708

isolate_success:
		cc->finished_update_migrate = true;
709 710
		list_add(&page->lru, migratelist);
		cc->nr_migratepages++;
711
		nr_isolated++;
712 713

		/* Avoid isolating too much */
714 715
		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
			++low_pfn;
716
			break;
717
		}
718 719
	}

720 721 722 723 724 725 726
	/*
	 * The PageBuddy() check could have potentially brought us outside
	 * the range to be scanned.
	 */
	if (unlikely(low_pfn > end_pfn))
		low_pfn = end_pfn;

727 728
	if (locked)
		spin_unlock_irqrestore(&zone->lru_lock, flags);
729

730 731 732 733
	/*
	 * Update the pageblock-skip information and cached scanner pfn,
	 * if the whole pageblock was scanned without isolating any page.
	 */
734
	if (low_pfn == end_pfn)
735
		update_pageblock_skip(cc, valid_page, nr_isolated, true);
736

737 738
	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);

739
	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
740
	if (nr_isolated)
741
		count_compact_events(COMPACTISOLATED, nr_isolated);
742

743 744 745
	return low_pfn;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
/**
 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 * @cc:        Compaction control structure.
 * @start_pfn: The first PFN to start isolating.
 * @end_pfn:   The one-past-last PFN.
 *
 * Returns zero if isolation fails fatally due to e.g. pending signal.
 * Otherwise, function returns one-past-the-last PFN of isolated page
 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 */
unsigned long
isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
							unsigned long end_pfn)
{
	unsigned long pfn, block_end_pfn;

	/* Scan block by block. First and last block may be incomplete */
	pfn = start_pfn;
	block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);

	for (; pfn < end_pfn; pfn = block_end_pfn,
				block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, end_pfn);

771
		if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
			continue;

		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
							ISOLATE_UNEVICTABLE);

		/*
		 * In case of fatal failure, release everything that might
		 * have been isolated in the previous iteration, and signal
		 * the failure back to caller.
		 */
		if (!pfn) {
			putback_movable_pages(&cc->migratepages);
			cc->nr_migratepages = 0;
			break;
		}
	}
	acct_isolated(cc->zone, cc);

	return pfn;
}

793 794
#endif /* CONFIG_COMPACTION || CONFIG_CMA */
#ifdef CONFIG_COMPACTION
795
/*
796 797
 * Based on information in the current compact_control, find blocks
 * suitable for isolating free pages from and then isolate them.
798
 */
799
static void isolate_freepages(struct compact_control *cc)
800
{
801
	struct zone *zone = cc->zone;
802
	struct page *page;
803
	unsigned long block_start_pfn;	/* start of current pageblock */
804
	unsigned long isolate_start_pfn; /* exact pfn we start at */
805 806
	unsigned long block_end_pfn;	/* end of current pageblock */
	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
807 808
	int nr_freepages = cc->nr_freepages;
	struct list_head *freelist = &cc->freepages;
809

810 811
	/*
	 * Initialise the free scanner. The starting point is where we last
812
	 * successfully isolated from, zone-cached value, or the end of the
813 814
	 * zone when isolating for the first time. For looping we also need
	 * this pfn aligned down to the pageblock boundary, because we do
815 816 817
	 * block_start_pfn -= pageblock_nr_pages in the for loop.
	 * For ending point, take care when isolating in last pageblock of a
	 * a zone which ends in the middle of a pageblock.
818 819
	 * The low boundary is the end of the pageblock the migration scanner
	 * is using.
820
	 */
821
	isolate_start_pfn = cc->free_pfn;
822 823 824
	block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
						zone_end_pfn(zone));
825
	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
826

827 828 829 830 831
	/*
	 * Isolate free pages until enough are available to migrate the
	 * pages on cc->migratepages. We stop searching if the migrate
	 * and free page scanners meet or enough free pages are isolated.
	 */
832 833
	for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
				block_end_pfn = block_start_pfn,
834 835
				block_start_pfn -= pageblock_nr_pages,
				isolate_start_pfn = block_start_pfn) {
836
		unsigned long isolated;
837

838 839 840
		/*
		 * This can iterate a massively long zone without finding any
		 * suitable migration targets, so periodically check if we need
841
		 * to schedule, or even abort async compaction.
842
		 */
843 844 845
		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
846

847 848 849
		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
									zone);
		if (!page)
850 851 852
			continue;

		/* Check the block is suitable for migration */
853
		if (!suitable_migration_target(page))
854
			continue;
855

856 857 858 859
		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

860 861
		/* Found a block suitable for isolating free pages from. */
		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
862
					block_end_pfn, freelist, false);
863
		nr_freepages += isolated;
864

865 866 867 868 869 870 871 872 873 874 875 876 877
		/*
		 * Remember where the free scanner should restart next time,
		 * which is where isolate_freepages_block() left off.
		 * But if it scanned the whole pageblock, isolate_start_pfn
		 * now points at block_end_pfn, which is the start of the next
		 * pageblock.
		 * In that case we will however want to restart at the start
		 * of the previous pageblock.
		 */
		cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
				isolate_start_pfn :
				block_start_pfn - pageblock_nr_pages;

878
		/*
879 880 881 882
		 * Set a flag that we successfully isolated in this pageblock.
		 * In the next loop iteration, zone->compact_cached_free_pfn
		 * will not be updated and thus it will effectively contain the
		 * highest pageblock we isolated pages from.
883
		 */
884
		if (isolated)
885
			cc->finished_update_free = true;
886 887 888 889 890 891 892

		/*
		 * isolate_freepages_block() might have aborted due to async
		 * compaction being contended
		 */
		if (cc->contended)
			break;
893 894 895 896 897
	}

	/* split_free_page does not map the pages */
	map_pages(freelist);

898 899 900 901
	/*
	 * If we crossed the migrate scanner, we want to keep it that way
	 * so that compact_finished() may detect this
	 */
902
	if (block_start_pfn < low_pfn)
903
		cc->free_pfn = cc->migrate_pfn;
904

905
	cc->nr_freepages = nr_freepages;
906 907 908 909 910 911 912 913 914 915 916 917 918
}

/*
 * This is a migrate-callback that "allocates" freepages by taking pages
 * from the isolated freelists in the block we are migrating to.
 */
static struct page *compaction_alloc(struct page *migratepage,
					unsigned long data,
					int **result)
{
	struct compact_control *cc = (struct compact_control *)data;
	struct page *freepage;

919 920 921 922
	/*
	 * Isolate free pages if necessary, and if we are not aborting due to
	 * contention.
	 */
923
	if (list_empty(&cc->freepages)) {
924
		if (!cc->contended)
925
			isolate_freepages(cc);
926 927 928 929 930 931 932 933 934 935 936 937 938

		if (list_empty(&cc->freepages))
			return NULL;
	}

	freepage = list_entry(cc->freepages.next, struct page, lru);
	list_del(&freepage->lru);
	cc->nr_freepages--;

	return freepage;
}

/*
939 940 941 942 943 944 945 946 947 948 949 950
 * This is a migrate-callback that "frees" freepages back to the isolated
 * freelist.  All pages on the freelist are from the same zone, so there is no
 * special handling needed for NUMA.
 */
static void compaction_free(struct page *page, unsigned long data)
{
	struct compact_control *cc = (struct compact_control *)data;

	list_add(&page->lru, &cc->freepages);
	cc->nr_freepages++;
}

951 952 953 954 955 956 957 958
/* possible outcome of isolate_migratepages */
typedef enum {
	ISOLATE_ABORT,		/* Abort compaction now */
	ISOLATE_NONE,		/* No pages isolated, continue scanning */
	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
} isolate_migrate_t;

/*
959 960 961
 * Isolate all pages that can be migrated from the first suitable block,
 * starting at the block pointed to by the migrate scanner pfn within
 * compact_control.
962 963 964 965 966
 */
static isolate_migrate_t isolate_migratepages(struct zone *zone,
					struct compact_control *cc)
{
	unsigned long low_pfn, end_pfn;
967 968 969
	struct page *page;
	const isolate_mode_t isolate_mode =
		(cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
970

971 972 973 974 975
	/*
	 * Start at where we last stopped, or beginning of the zone as
	 * initialized by compact_zone()
	 */
	low_pfn = cc->migrate_pfn;
976 977

	/* Only scan within a pageblock boundary */
978
	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
979

980 981 982 983 984 985
	/*
	 * Iterate over whole pageblocks until we find the first suitable.
	 * Do not cross the free scanner.
	 */
	for (; end_pfn <= cc->free_pfn;
			low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
986

987 988 989 990 991 992 993 994
		/*
		 * This can potentially iterate a massively long zone with
		 * many pageblocks unsuitable, so periodically check if we
		 * need to schedule, or even abort async compaction.
		 */
		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
						&& compact_should_abort(cc))
			break;
995

996 997
		page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
		if (!page)
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			continue;

		/* If isolation recently failed, do not retry */
		if (!isolation_suitable(cc, page))
			continue;

		/*
		 * For async compaction, also only scan in MOVABLE blocks.
		 * Async compaction is optimistic to see if the minimum amount
		 * of work satisfies the allocation.
		 */
		if (cc->mode == MIGRATE_ASYNC &&
		    !migrate_async_suitable(get_pageblock_migratetype(page)))
			continue;

		/* Perform the isolation */
		low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
								isolate_mode);

		if (!low_pfn || cc->contended)
			return ISOLATE_ABORT;

		/*
		 * Either we isolated something and proceed with migration. Or
		 * we failed and compact_zone should decide if we should
		 * continue or not.
		 */
		break;
	}

	acct_isolated(zone, cc);
	/* Record where migration scanner will be restarted */
1030 1031
	cc->migrate_pfn = low_pfn;

1032
	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1033 1034
}

1035 1036
static int compact_finished(struct zone *zone, struct compact_control *cc,
			    const int migratetype)
1037
{
1038
	unsigned int order;
1039
	unsigned long watermark;
1040

1041
	if (cc->contended || fatal_signal_pending(current))
1042 1043
		return COMPACT_PARTIAL;

1044
	/* Compaction run completes if the migrate and free scanner meet */
1045
	if (cc->free_pfn <= cc->migrate_pfn) {
1046
		/* Let the next compaction start anew. */
1047 1048
		zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
		zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1049 1050
		zone->compact_cached_free_pfn = zone_end_pfn(zone);

1051 1052 1053 1054 1055 1056 1057 1058 1059
		/*
		 * Mark that the PG_migrate_skip information should be cleared
		 * by kswapd when it goes to sleep. kswapd does not set the
		 * flag itself as the decision to be clear should be directly
		 * based on an allocation request.
		 */
		if (!current_is_kswapd())
			zone->compact_blockskip_flush = true;

1060
		return COMPACT_COMPLETE;
1061
	}
1062

1063 1064 1065 1066
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
1067 1068 1069
	if (cc->order == -1)
		return COMPACT_CONTINUE;

1070 1071 1072 1073 1074 1075 1076
	/* Compaction run is not finished if the watermark is not met */
	watermark = low_wmark_pages(zone);
	watermark += (1 << cc->order);

	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
		return COMPACT_CONTINUE;

1077
	/* Direct compactor: Is a suitable page free? */
1078 1079 1080 1081
	for (order = cc->order; order < MAX_ORDER; order++) {
		struct free_area *area = &zone->free_area[order];

		/* Job done if page is free of the right migratetype */
1082
		if (!list_empty(&area->free_list[migratetype]))
1083 1084 1085 1086
			return COMPACT_PARTIAL;

		/* Job done if allocation would set block type */
		if (cc->order >= pageblock_order && area->nr_free)
1087 1088 1089
			return COMPACT_PARTIAL;
	}

1090 1091 1092
	return COMPACT_CONTINUE;
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
/*
 * compaction_suitable: Is this suitable to run compaction on this zone now?
 * Returns
 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 *   COMPACT_CONTINUE - If compaction should run now
 */
unsigned long compaction_suitable(struct zone *zone, int order)
{
	int fragindex;
	unsigned long watermark;

1105 1106 1107 1108 1109 1110 1111
	/*
	 * order == -1 is expected when compacting via
	 * /proc/sys/vm/compact_memory
	 */
	if (order == -1)
		return COMPACT_CONTINUE;

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	/*
	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
	 * This is because during migration, copies of pages need to be
	 * allocated and for a short time, the footprint is higher
	 */
	watermark = low_wmark_pages(zone) + (2UL << order);
	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
		return COMPACT_SKIPPED;

	/*
	 * fragmentation index determines if allocation failures are due to
	 * low memory or external fragmentation
	 *
1125 1126
	 * index of -1000 implies allocations might succeed depending on
	 * watermarks
1127 1128 1129 1130 1131 1132 1133 1134 1135
	 * index towards 0 implies failure is due to lack of memory
	 * index towards 1000 implies failure is due to fragmentation
	 *
	 * Only compact if a failure would be due to fragmentation.
	 */
	fragindex = fragmentation_index(zone, order);
	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
		return COMPACT_SKIPPED;

1136 1137
	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
	    0, 0))
1138 1139 1140 1141 1142
		return COMPACT_PARTIAL;

	return COMPACT_CONTINUE;
}

1143 1144 1145
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
	int ret;
1146
	unsigned long start_pfn = zone->zone_start_pfn;
1147
	unsigned long end_pfn = zone_end_pfn(zone);
1148
	const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1149
	const bool sync = cc->mode != MIGRATE_ASYNC;
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	ret = compaction_suitable(zone, cc->order);
	switch (ret) {
	case COMPACT_PARTIAL:
	case COMPACT_SKIPPED:
		/* Compaction is likely to fail */
		return ret;
	case COMPACT_CONTINUE:
		/* Fall through to compaction */
		;
	}

1162 1163 1164 1165 1166 1167 1168 1169
	/*
	 * Clear pageblock skip if there were failures recently and compaction
	 * is about to be retried after being deferred. kswapd does not do
	 * this reset as it'll reset the cached information when going to sleep.
	 */
	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
		__reset_isolation_suitable(zone);

1170 1171 1172 1173 1174
	/*
	 * Setup to move all movable pages to the end of the zone. Used cached
	 * information on where the scanners should start but check that it
	 * is initialised by ensuring the values are within zone boundaries.
	 */
1175
	cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1176 1177 1178 1179 1180 1181 1182
	cc->free_pfn = zone->compact_cached_free_pfn;
	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
		zone->compact_cached_free_pfn = cc->free_pfn;
	}
	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
		cc->migrate_pfn = start_pfn;
1183 1184
		zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
		zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1185
	}
1186

1187 1188
	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);

1189 1190
	migrate_prep_local();

1191 1192
	while ((ret = compact_finished(zone, cc, migratetype)) ==
						COMPACT_CONTINUE) {
1193
		int err;
1194

1195 1196 1197
		switch (isolate_migratepages(zone, cc)) {
		case ISOLATE_ABORT:
			ret = COMPACT_PARTIAL;
1198
			putback_movable_pages(&cc->migratepages);
1199
			cc->nr_migratepages = 0;
1200 1201
			goto out;
		case ISOLATE_NONE:
1202
			continue;
1203 1204 1205
		case ISOLATE_SUCCESS:
			;
		}
1206

1207
		err = migrate_pages(&cc->migratepages, compaction_alloc,
1208
				compaction_free, (unsigned long)cc, cc->mode,
1209
				MR_COMPACTION);
1210

1211 1212
		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
							&cc->migratepages);
1213

1214 1215
		/* All pages were either migrated or will be released */
		cc->nr_migratepages = 0;
1216
		if (err) {
1217
			putback_movable_pages(&cc->migratepages);
1218 1219 1220 1221 1222
			/*
			 * migrate_pages() may return -ENOMEM when scanners meet
			 * and we want compact_finished() to detect it
			 */
			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1223 1224 1225
				ret = COMPACT_PARTIAL;
				goto out;
			}
1226 1227 1228
		}
	}

1229
out:
1230 1231 1232 1233
	/* Release free pages and check accounting */
	cc->nr_freepages -= release_freepages(&cc->freepages);
	VM_BUG_ON(cc->nr_freepages != 0);

1234 1235
	trace_mm_compaction_end(ret);

1236 1237
	return ret;
}
1238

1239
static unsigned long compact_zone_order(struct zone *zone, int order,
1240
		gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1241
{
1242
	unsigned long ret;
1243 1244 1245 1246
	struct compact_control cc = {
		.nr_freepages = 0,
		.nr_migratepages = 0,
		.order = order,
1247
		.gfp_mask = gfp_mask,
1248
		.zone = zone,
1249
		.mode = mode,
1250 1251 1252 1253
	};
	INIT_LIST_HEAD(&cc.freepages);
	INIT_LIST_HEAD(&cc.migratepages);

1254 1255 1256 1257 1258 1259 1260
	ret = compact_zone(zone, &cc);

	VM_BUG_ON(!list_empty(&cc.freepages));
	VM_BUG_ON(!list_empty(&cc.migratepages));

	*contended = cc.contended;
	return ret;
1261 1262
}

1263 1264
int sysctl_extfrag_threshold = 500;

1265 1266 1267 1268 1269 1270
/**
 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
 * @zonelist: The zonelist used for the current allocation
 * @order: The order of the current allocation
 * @gfp_mask: The GFP mask of the current allocation
 * @nodemask: The allowed nodes to allocate from
1271
 * @mode: The migration mode for async, sync light, or sync migration
1272 1273
 * @contended: Return value that determines if compaction was aborted due to
 *	       need_resched() or lock contention
1274
 * @candidate_zone: Return the zone where we think allocation should succeed
1275 1276 1277 1278
 *
 * This is the main entry point for direct page compaction.
 */
unsigned long try_to_compact_pages(struct zonelist *zonelist,
1279
			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1280
			enum migrate_mode mode, int *contended,
1281
			struct zone **candidate_zone)
1282 1283 1284 1285 1286 1287
{
	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
	int may_enter_fs = gfp_mask & __GFP_FS;
	int may_perform_io = gfp_mask & __GFP_IO;
	struct zoneref *z;
	struct zone *zone;
1288
	int rc = COMPACT_DEFERRED;
1289
	int alloc_flags = 0;
1290 1291 1292
	int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */

	*contended = COMPACT_CONTENDED_NONE;
1293

1294
	/* Check if the GFP flags allow compaction */
1295
	if (!order || !may_enter_fs || !may_perform_io)
1296
		return COMPACT_SKIPPED;
1297

1298
#ifdef CONFIG_CMA
1299
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1300 1301
		alloc_flags |= ALLOC_CMA;
#endif
1302 1303 1304 1305
	/* Compact each zone in the list */
	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
								nodemask) {
		int status;
1306
		int zone_contended;
1307

1308 1309 1310
		if (compaction_deferred(zone, order))
			continue;

1311
		status = compact_zone_order(zone, order, gfp_mask, mode,
1312
							&zone_contended);
1313
		rc = max(status, rc);
1314 1315 1316 1317 1318
		/*
		 * It takes at least one zone that wasn't lock contended
		 * to clear all_zones_contended.
		 */
		all_zones_contended &= zone_contended;
1319

1320
		/* If a normal allocation would succeed, stop compacting */
1321
		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1322 1323 1324 1325 1326 1327 1328 1329 1330
				      alloc_flags)) {
			*candidate_zone = zone;
			/*
			 * We think the allocation will succeed in this zone,
			 * but it is not certain, hence the false. The caller
			 * will repeat this with true if allocation indeed
			 * succeeds in this zone.
			 */
			compaction_defer_reset(zone, order, false);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
			/*
			 * It is possible that async compaction aborted due to
			 * need_resched() and the watermarks were ok thanks to
			 * somebody else freeing memory. The allocation can
			 * however still fail so we better signal the
			 * need_resched() contention anyway (this will not
			 * prevent the allocation attempt).
			 */
			if (zone_contended == COMPACT_CONTENDED_SCHED)
				*contended = COMPACT_CONTENDED_SCHED;

			goto break_loop;
		}

		if (mode != MIGRATE_ASYNC) {
1346 1347 1348 1349 1350 1351 1352
			/*
			 * We think that allocation won't succeed in this zone
			 * so we defer compaction there. If it ends up
			 * succeeding after all, it will be reset.
			 */
			defer_compaction(zone, order);
		}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

		/*
		 * We might have stopped compacting due to need_resched() in
		 * async compaction, or due to a fatal signal detected. In that
		 * case do not try further zones and signal need_resched()
		 * contention.
		 */
		if ((zone_contended == COMPACT_CONTENDED_SCHED)
					|| fatal_signal_pending(current)) {
			*contended = COMPACT_CONTENDED_SCHED;
			goto break_loop;
		}

		continue;
break_loop:
		/*
		 * We might not have tried all the zones, so  be conservative
		 * and assume they are not all lock contended.
		 */
		all_zones_contended = 0;
		break;
1374 1375
	}

1376 1377 1378 1379 1380 1381 1382
	/*
	 * If at least one zone wasn't deferred or skipped, we report if all
	 * zones that were tried were lock contended.
	 */
	if (rc > COMPACT_SKIPPED && all_zones_contended)
		*contended = COMPACT_CONTENDED_LOCK;

1383 1384 1385 1386
	return rc;
}


1387
/* Compact all zones within a node */
1388
static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
{
	int zoneid;
	struct zone *zone;

	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {

		zone = &pgdat->node_zones[zoneid];
		if (!populated_zone(zone))
			continue;

1399 1400 1401 1402 1403
		cc->nr_freepages = 0;
		cc->nr_migratepages = 0;
		cc->zone = zone;
		INIT_LIST_HEAD(&cc->freepages);
		INIT_LIST_HEAD(&cc->migratepages);
1404

1405
		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1406
			compact_zone(zone, cc);
1407

1408
		if (cc->order > 0) {
1409 1410 1411
			if (zone_watermark_ok(zone, cc->order,
						low_wmark_pages(zone), 0, 0))
				compaction_defer_reset(zone, cc->order, false);
1412 1413
		}

1414 1415
		VM_BUG_ON(!list_empty(&cc->freepages));
		VM_BUG_ON(!list_empty(&cc->migratepages));
1416 1417 1418
	}
}

1419
void compact_pgdat(pg_data_t *pgdat, int order)
1420 1421 1422
{
	struct compact_control cc = {
		.order = order,
1423
		.mode = MIGRATE_ASYNC,
1424 1425
	};

1426 1427 1428
	if (!order)
		return;

1429
	__compact_pgdat(pgdat, &cc);
1430 1431
}

1432
static void compact_node(int nid)
1433 1434 1435
{
	struct compact_control cc = {
		.order = -1,
1436
		.mode = MIGRATE_SYNC,
1437
		.ignore_skip_hint = true,
1438 1439
	};

1440
	__compact_pgdat(NODE_DATA(nid), &cc);
1441 1442
}

1443
/* Compact all nodes in the system */
1444
static void compact_nodes(void)
1445 1446 1447
{
	int nid;

1448 1449 1450
	/* Flush pending updates to the LRU lists */
	lru_add_drain_all();

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
	for_each_online_node(nid)
		compact_node(nid);
}

/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;

/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	if (write)
1463
		compact_nodes();
1464 1465 1466

	return 0;
}
1467

1468 1469 1470 1471 1472 1473 1474 1475
int sysctl_extfrag_handler(struct ctl_table *table, int write,
			void __user *buffer, size_t *length, loff_t *ppos)
{
	proc_dointvec_minmax(table, write, buffer, length, ppos);

	return 0;
}

1476
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1477
static ssize_t sysfs_compact_node(struct device *dev,
1478
			struct device_attribute *attr,
1479 1480
			const char *buf, size_t count)
{
1481 1482 1483 1484 1485 1486 1487 1488
	int nid = dev->id;

	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
		/* Flush pending updates to the LRU lists */
		lru_add_drain_all();

		compact_node(nid);
	}
1489 1490 1491

	return count;
}
1492
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1493 1494 1495

int compaction_register_node(struct node *node)
{
1496
	return device_create_file(&node->dev, &dev_attr_compact);
1497 1498 1499 1500
}

void compaction_unregister_node(struct node *node)
{
1501
	return device_remove_file(&node->dev, &dev_attr_compact);
1502 1503
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1504 1505

#endif /* CONFIG_COMPACTION */