memory.c 106.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
/*
 *  linux/mm/memory.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 */

/*
 * demand-loading started 01.12.91 - seems it is high on the list of
 * things wanted, and it should be easy to implement. - Linus
 */

/*
 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
 * pages started 02.12.91, seems to work. - Linus.
 *
 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
 * would have taken more than the 6M I have free, but it worked well as
 * far as I could see.
 *
 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
 */

/*
 * Real VM (paging to/from disk) started 18.12.91. Much more work and
 * thought has to go into this. Oh, well..
 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
 *		Found it. Everything seems to work now.
 * 20.12.91  -  Ok, making the swap-device changeable like the root.
 */

/*
 * 05.04.94  -  Multi-page memory management added for v1.1.
 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
 *
 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
 *		(Gerhard.Wichert@pdb.siemens.de)
 *
 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
 */

#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/swap.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
H
Hugh Dickins 已提交
48
#include <linux/ksm.h>
L
Linus Torvalds 已提交
49
#include <linux/rmap.h>
50
#include <linux/export.h>
51
#include <linux/delayacct.h>
L
Linus Torvalds 已提交
52
#include <linux/init.h>
53
#include <linux/pfn_t.h>
P
Peter Zijlstra 已提交
54
#include <linux/writeback.h>
55
#include <linux/memcontrol.h>
A
Andrea Arcangeli 已提交
56
#include <linux/mmu_notifier.h>
57 58 59
#include <linux/kallsyms.h>
#include <linux/swapops.h>
#include <linux/elf.h>
60
#include <linux/gfp.h>
61
#include <linux/migrate.h>
A
Andy Shevchenko 已提交
62
#include <linux/string.h>
63
#include <linux/dma-debug.h>
64
#include <linux/debugfs.h>
65
#include <linux/userfaultfd_k.h>
L
Linus Torvalds 已提交
66

A
Alexey Dobriyan 已提交
67
#include <asm/io.h>
L
Linus Torvalds 已提交
68 69 70 71 72 73
#include <asm/pgalloc.h>
#include <asm/uaccess.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
#include <asm/pgtable.h>

74 75
#include "internal.h"

76 77
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
78 79
#endif

A
Andy Whitcroft 已提交
80
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
/* use the per-pgdat data instead for discontigmem - mbligh */
unsigned long max_mapnr;
struct page *mem_map;

EXPORT_SYMBOL(max_mapnr);
EXPORT_SYMBOL(mem_map);
#endif

/*
 * A number of key systems in x86 including ioremap() rely on the assumption
 * that high_memory defines the upper bound on direct map memory, then end
 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 * and ZONE_HIGHMEM.
 */
void * high_memory;

EXPORT_SYMBOL(high_memory);

100 101 102 103 104 105 106 107 108 109 110 111
/*
 * Randomize the address space (stacks, mmaps, brk, etc.).
 *
 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 *   as ancient (libc5 based) binaries can segfault. )
 */
int randomize_va_space __read_mostly =
#ifdef CONFIG_COMPAT_BRK
					1;
#else
					2;
#endif
112 113 114 115

static int __init disable_randmaps(char *s)
{
	randomize_va_space = 0;
116
	return 1;
117 118 119
}
__setup("norandmaps", disable_randmaps);

H
Hugh Dickins 已提交
120
unsigned long zero_pfn __read_mostly;
H
Hugh Dickins 已提交
121
unsigned long highest_memmap_pfn __read_mostly;
H
Hugh Dickins 已提交
122

123 124
EXPORT_SYMBOL(zero_pfn);

H
Hugh Dickins 已提交
125 126 127 128 129 130 131 132 133
/*
 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 */
static int __init init_zero_pfn(void)
{
	zero_pfn = page_to_pfn(ZERO_PAGE(0));
	return 0;
}
core_initcall(init_zero_pfn);
134

K
KAMEZAWA Hiroyuki 已提交
135

136 137
#if defined(SPLIT_RSS_COUNTING)

138
void sync_mm_rss(struct mm_struct *mm)
139 140 141 142
{
	int i;

	for (i = 0; i < NR_MM_COUNTERS; i++) {
143 144 145
		if (current->rss_stat.count[i]) {
			add_mm_counter(mm, i, current->rss_stat.count[i]);
			current->rss_stat.count[i] = 0;
146 147
		}
	}
148
	current->rss_stat.events = 0;
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
}

static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
{
	struct task_struct *task = current;

	if (likely(task->mm == mm))
		task->rss_stat.count[member] += val;
	else
		add_mm_counter(mm, member, val);
}
#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)

/* sync counter once per 64 page faults */
#define TASK_RSS_EVENTS_THRESH	(64)
static void check_sync_rss_stat(struct task_struct *task)
{
	if (unlikely(task != current))
		return;
	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
170
		sync_mm_rss(task->mm);
171
}
172
#else /* SPLIT_RSS_COUNTING */
173 174 175 176 177 178 179 180

#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)

static void check_sync_rss_stat(struct task_struct *task)
{
}

181 182 183 184
#endif /* SPLIT_RSS_COUNTING */

#ifdef HAVE_GENERIC_MMU_GATHER

185
static bool tlb_next_batch(struct mmu_gather *tlb)
186 187 188 189 190 191
{
	struct mmu_gather_batch *batch;

	batch = tlb->active;
	if (batch->next) {
		tlb->active = batch->next;
192
		return true;
193 194
	}

195
	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
196
		return false;
197

198 199
	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
	if (!batch)
200
		return false;
201

202
	tlb->batch_count++;
203 204 205 206 207 208 209
	batch->next = NULL;
	batch->nr   = 0;
	batch->max  = MAX_GATHER_BATCH;

	tlb->active->next = batch;
	tlb->active = batch;

210
	return true;
211 212 213 214 215 216 217
}

/* tlb_gather_mmu
 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 *	users and we're going to destroy the full address space (exit/execve).
 */
218
void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
219 220 221
{
	tlb->mm = mm;

222 223
	/* Is it from 0 to ~0? */
	tlb->fullmm     = !(start | (end+1));
224
	tlb->need_flush_all = 0;
225 226 227 228
	tlb->local.next = NULL;
	tlb->local.nr   = 0;
	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
	tlb->active     = &tlb->local;
229
	tlb->batch_count = 0;
230 231 232 233

#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb->batch = NULL;
#endif
234 235

	__tlb_reset_range(tlb);
236 237
}

238
static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
239
{
240 241 242
	if (!tlb->end)
		return;

243
	tlb_flush(tlb);
244
	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
245 246
#ifdef CONFIG_HAVE_RCU_TABLE_FREE
	tlb_table_flush(tlb);
247
#endif
248
	__tlb_reset_range(tlb);
249 250 251 252 253
}

static void tlb_flush_mmu_free(struct mmu_gather *tlb)
{
	struct mmu_gather_batch *batch;
254

255
	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
256 257 258 259 260 261
		free_pages_and_swap_cache(batch->pages, batch->nr);
		batch->nr = 0;
	}
	tlb->active = &tlb->local;
}

262 263 264 265 266 267
void tlb_flush_mmu(struct mmu_gather *tlb)
{
	tlb_flush_mmu_tlbonly(tlb);
	tlb_flush_mmu_free(tlb);
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/* tlb_finish_mmu
 *	Called at the end of the shootdown operation to free up any resources
 *	that were required.
 */
void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
{
	struct mmu_gather_batch *batch, *next;

	tlb_flush_mmu(tlb);

	/* keep the page table cache within bounds */
	check_pgt_cache();

	for (batch = tlb->local.next; batch; batch = next) {
		next = batch->next;
		free_pages((unsigned long)batch, 0);
	}
	tlb->local.next = NULL;
}

/* __tlb_remove_page
 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 *	handling the additional races in SMP caused by other CPUs caching valid
 *	mappings in their TLBs. Returns the number of free page slots left.
 *	When out of page slots we must call tlb_flush_mmu().
 */
int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
{
	struct mmu_gather_batch *batch;

298
	VM_BUG_ON(!tlb->end);
299 300 301 302 303 304

	batch = tlb->active;
	batch->pages[batch->nr++] = page;
	if (batch->nr == batch->max) {
		if (!tlb_next_batch(tlb))
			return 0;
305
		batch = tlb->active;
306
	}
307
	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
308 309 310 311 312 313

	return batch->max - batch->nr;
}

#endif /* HAVE_GENERIC_MMU_GATHER */

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
#ifdef CONFIG_HAVE_RCU_TABLE_FREE

/*
 * See the comment near struct mmu_table_batch.
 */

static void tlb_remove_table_smp_sync(void *arg)
{
	/* Simply deliver the interrupt */
}

static void tlb_remove_table_one(void *table)
{
	/*
	 * This isn't an RCU grace period and hence the page-tables cannot be
	 * assumed to be actually RCU-freed.
	 *
	 * It is however sufficient for software page-table walkers that rely on
	 * IRQ disabling. See the comment near struct mmu_table_batch.
	 */
	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
	__tlb_remove_table(table);
}

static void tlb_remove_table_rcu(struct rcu_head *head)
{
	struct mmu_table_batch *batch;
	int i;

	batch = container_of(head, struct mmu_table_batch, rcu);

	for (i = 0; i < batch->nr; i++)
		__tlb_remove_table(batch->tables[i]);

	free_page((unsigned long)batch);
}

void tlb_table_flush(struct mmu_gather *tlb)
{
	struct mmu_table_batch **batch = &tlb->batch;

	if (*batch) {
		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
		*batch = NULL;
	}
}

void tlb_remove_table(struct mmu_gather *tlb, void *table)
{
	struct mmu_table_batch **batch = &tlb->batch;

	/*
	 * When there's less then two users of this mm there cannot be a
	 * concurrent page-table walk.
	 */
	if (atomic_read(&tlb->mm->mm_users) < 2) {
		__tlb_remove_table(table);
		return;
	}

	if (*batch == NULL) {
		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
		if (*batch == NULL) {
			tlb_remove_table_one(table);
			return;
		}
		(*batch)->nr = 0;
	}
	(*batch)->tables[(*batch)->nr++] = table;
	if ((*batch)->nr == MAX_TABLE_BATCH)
		tlb_table_flush(tlb);
}

387
#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
388

L
Linus Torvalds 已提交
389 390 391 392
/*
 * Note: this doesn't free the actual pages themselves. That
 * has been handled earlier when unmapping all the memory regions.
 */
393 394
static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
			   unsigned long addr)
L
Linus Torvalds 已提交
395
{
396
	pgtable_t token = pmd_pgtable(*pmd);
397
	pmd_clear(pmd);
398
	pte_free_tlb(tlb, token, addr);
399
	atomic_long_dec(&tlb->mm->nr_ptes);
L
Linus Torvalds 已提交
400 401
}

402 403 404
static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
405 406 407
{
	pmd_t *pmd;
	unsigned long next;
408
	unsigned long start;
L
Linus Torvalds 已提交
409

410
	start = addr;
L
Linus Torvalds 已提交
411 412 413 414 415
	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
		if (pmd_none_or_clear_bad(pmd))
			continue;
416
		free_pte_range(tlb, pmd, addr);
L
Linus Torvalds 已提交
417 418
	} while (pmd++, addr = next, addr != end);

419 420 421 422 423 424 425
	start &= PUD_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PUD_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
426
	}
427 428 429 430 431
	if (end - 1 > ceiling - 1)
		return;

	pmd = pmd_offset(pud, start);
	pud_clear(pud);
432
	pmd_free_tlb(tlb, pmd, start);
433
	mm_dec_nr_pmds(tlb->mm);
L
Linus Torvalds 已提交
434 435
}

436 437 438
static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
				unsigned long addr, unsigned long end,
				unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
439 440 441
{
	pud_t *pud;
	unsigned long next;
442
	unsigned long start;
L
Linus Torvalds 已提交
443

444
	start = addr;
L
Linus Torvalds 已提交
445 446 447 448 449
	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(pud))
			continue;
450
		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
451 452
	} while (pud++, addr = next, addr != end);

453 454 455 456 457 458 459
	start &= PGDIR_MASK;
	if (start < floor)
		return;
	if (ceiling) {
		ceiling &= PGDIR_MASK;
		if (!ceiling)
			return;
L
Linus Torvalds 已提交
460
	}
461 462 463 464 465
	if (end - 1 > ceiling - 1)
		return;

	pud = pud_offset(pgd, start);
	pgd_clear(pgd);
466
	pud_free_tlb(tlb, pud, start);
L
Linus Torvalds 已提交
467 468 469
}

/*
470
 * This function frees user-level page tables of a process.
L
Linus Torvalds 已提交
471
 */
472
void free_pgd_range(struct mmu_gather *tlb,
473 474
			unsigned long addr, unsigned long end,
			unsigned long floor, unsigned long ceiling)
L
Linus Torvalds 已提交
475 476 477
{
	pgd_t *pgd;
	unsigned long next;
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	/*
	 * The next few lines have given us lots of grief...
	 *
	 * Why are we testing PMD* at this top level?  Because often
	 * there will be no work to do at all, and we'd prefer not to
	 * go all the way down to the bottom just to discover that.
	 *
	 * Why all these "- 1"s?  Because 0 represents both the bottom
	 * of the address space and the top of it (using -1 for the
	 * top wouldn't help much: the masks would do the wrong thing).
	 * The rule is that addr 0 and floor 0 refer to the bottom of
	 * the address space, but end 0 and ceiling 0 refer to the top
	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
	 * that end 0 case should be mythical).
	 *
	 * Wherever addr is brought up or ceiling brought down, we must
	 * be careful to reject "the opposite 0" before it confuses the
	 * subsequent tests.  But what about where end is brought down
	 * by PMD_SIZE below? no, end can't go down to 0 there.
	 *
	 * Whereas we round start (addr) and ceiling down, by different
	 * masks at different levels, in order to test whether a table
	 * now has no other vmas using it, so can be freed, we don't
	 * bother to round floor or end up - the tests don't need that.
	 */
L
Linus Torvalds 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
	addr &= PMD_MASK;
	if (addr < floor) {
		addr += PMD_SIZE;
		if (!addr)
			return;
	}
	if (ceiling) {
		ceiling &= PMD_MASK;
		if (!ceiling)
			return;
	}
	if (end - 1 > ceiling - 1)
		end -= PMD_SIZE;
	if (addr > end - 1)
		return;

521
	pgd = pgd_offset(tlb->mm, addr);
L
Linus Torvalds 已提交
522 523 524 525
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(pgd))
			continue;
526
		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
L
Linus Torvalds 已提交
527
	} while (pgd++, addr = next, addr != end);
528 529
}

530
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
531
		unsigned long floor, unsigned long ceiling)
532 533 534 535 536
{
	while (vma) {
		struct vm_area_struct *next = vma->vm_next;
		unsigned long addr = vma->vm_start;

537
		/*
N
npiggin@suse.de 已提交
538 539
		 * Hide vma from rmap and truncate_pagecache before freeing
		 * pgtables
540
		 */
541
		unlink_anon_vmas(vma);
542 543
		unlink_file_vma(vma);

544
		if (is_vm_hugetlb_page(vma)) {
545
			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
546
				floor, next? next->vm_start: ceiling);
547 548 549 550 551
		} else {
			/*
			 * Optimization: gather nearby vmas into one call down
			 */
			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
552
			       && !is_vm_hugetlb_page(next)) {
553 554
				vma = next;
				next = vma->vm_next;
555
				unlink_anon_vmas(vma);
556
				unlink_file_vma(vma);
557 558 559 560
			}
			free_pgd_range(tlb, addr, vma->vm_end,
				floor, next? next->vm_start: ceiling);
		}
561 562
		vma = next;
	}
L
Linus Torvalds 已提交
563 564
}

565
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
566
{
567
	spinlock_t *ptl;
568
	pgtable_t new = pte_alloc_one(mm, address);
569 570 571
	if (!new)
		return -ENOMEM;

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
	/*
	 * Ensure all pte setup (eg. pte page lock and page clearing) are
	 * visible before the pte is made visible to other CPUs by being
	 * put into page tables.
	 *
	 * The other side of the story is the pointer chasing in the page
	 * table walking code (when walking the page table without locking;
	 * ie. most of the time). Fortunately, these data accesses consist
	 * of a chain of data-dependent loads, meaning most CPUs (alpha
	 * being the notable exception) will already guarantee loads are
	 * seen in-order. See the alpha page table accessors for the
	 * smp_read_barrier_depends() barriers in page table walking code.
	 */
	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */

587
	ptl = pmd_lock(mm, pmd);
588
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
589
		atomic_long_inc(&mm->nr_ptes);
L
Linus Torvalds 已提交
590
		pmd_populate(mm, pmd, new);
591
		new = NULL;
592
	}
593
	spin_unlock(ptl);
594 595
	if (new)
		pte_free(mm, new);
596
	return 0;
L
Linus Torvalds 已提交
597 598
}

599
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
L
Linus Torvalds 已提交
600
{
601 602 603 604
	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
	if (!new)
		return -ENOMEM;

605 606
	smp_wmb(); /* See comment in __pte_alloc */

607
	spin_lock(&init_mm.page_table_lock);
608
	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
609
		pmd_populate_kernel(&init_mm, pmd, new);
610
		new = NULL;
611
	}
612
	spin_unlock(&init_mm.page_table_lock);
613 614
	if (new)
		pte_free_kernel(&init_mm, new);
615
	return 0;
L
Linus Torvalds 已提交
616 617
}

K
KAMEZAWA Hiroyuki 已提交
618 619 620 621 622 623
static inline void init_rss_vec(int *rss)
{
	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
}

static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
624
{
K
KAMEZAWA Hiroyuki 已提交
625 626
	int i;

627
	if (current->mm == mm)
628
		sync_mm_rss(mm);
K
KAMEZAWA Hiroyuki 已提交
629 630 631
	for (i = 0; i < NR_MM_COUNTERS; i++)
		if (rss[i])
			add_mm_counter(mm, i, rss[i]);
632 633
}

N
Nick Piggin 已提交
634
/*
635 636 637
 * This function is called to print an error when a bad pte
 * is found. For example, we might have a PFN-mapped pte in
 * a region that doesn't allow it.
N
Nick Piggin 已提交
638 639 640
 *
 * The calling function must still handle the error.
 */
641 642
static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
			  pte_t pte, struct page *page)
N
Nick Piggin 已提交
643
{
644 645 646 647 648
	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
	pud_t *pud = pud_offset(pgd, addr);
	pmd_t *pmd = pmd_offset(pud, addr);
	struct address_space *mapping;
	pgoff_t index;
649 650 651 652 653 654 655 656 657 658 659 660 661 662
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			return;
		}
		if (nr_unshown) {
663 664
			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
				 nr_unshown);
665 666 667 668 669 670
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;
671 672 673 674

	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
	index = linear_page_index(vma, addr);

675 676 677
	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
		 current->comm,
		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
678
	if (page)
679
		dump_page(page, "bad pte");
680 681
	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
682 683 684
	/*
	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
	 */
685 686 687 688 689
	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
		 vma->vm_file,
		 vma->vm_ops ? vma->vm_ops->fault : NULL,
		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
		 mapping ? mapping->a_ops->readpage : NULL);
N
Nick Piggin 已提交
690
	dump_stack();
691
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
N
Nick Piggin 已提交
692 693
}

H
Hugh Dickins 已提交
694
/*
N
Nick Piggin 已提交
695
 * vm_normal_page -- This function gets the "struct page" associated with a pte.
696
 *
N
Nick Piggin 已提交
697 698 699
 * "Special" mappings do not wish to be associated with a "struct page" (either
 * it doesn't exist, or it exists but they don't want to touch it). In this
 * case, NULL is returned here. "Normal" mappings do have a struct page.
J
Jared Hulbert 已提交
700
 *
N
Nick Piggin 已提交
701 702 703 704 705 706 707 708
 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 * pte bit, in which case this function is trivial. Secondly, an architecture
 * may not have a spare pte bit, which requires a more complicated scheme,
 * described below.
 *
 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 * special mapping (even if there are underlying and valid "struct pages").
 * COWed pages of a VM_PFNMAP are always normal.
709
 *
J
Jared Hulbert 已提交
710 711
 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
N
Nick Piggin 已提交
712 713
 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 * mapping will always honor the rule
714 715 716
 *
 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 *
N
Nick Piggin 已提交
717 718 719 720 721 722
 * And for normal mappings this is false.
 *
 * This restricts such mappings to be a linear translation from virtual address
 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 * as the vma is not a COW mapping; in that case, we know that all ptes are
 * special (because none can have been COWed).
J
Jared Hulbert 已提交
723 724
 *
 *
N
Nick Piggin 已提交
725
 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
J
Jared Hulbert 已提交
726 727 728 729 730 731 732 733 734
 *
 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 * page" backing, however the difference is that _all_ pages with a struct
 * page (that is, those where pfn_valid is true) are refcounted and considered
 * normal pages by the VM. The disadvantage is that pages are refcounted
 * (which can be slower and simply not an option for some PFNMAP users). The
 * advantage is that we don't have to follow the strict linearity rule of
 * PFNMAP mappings in order to support COWable mappings.
 *
H
Hugh Dickins 已提交
735
 */
N
Nick Piggin 已提交
736 737 738 739 740 741 742
#ifdef __HAVE_ARCH_PTE_SPECIAL
# define HAVE_PTE_SPECIAL 1
#else
# define HAVE_PTE_SPECIAL 0
#endif
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
				pte_t pte)
H
Hugh Dickins 已提交
743
{
744
	unsigned long pfn = pte_pfn(pte);
N
Nick Piggin 已提交
745 746

	if (HAVE_PTE_SPECIAL) {
747
		if (likely(!pte_special(pte)))
748
			goto check_pfn;
749 750
		if (vma->vm_ops && vma->vm_ops->find_special_page)
			return vma->vm_ops->find_special_page(vma, addr);
H
Hugh Dickins 已提交
751 752
		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
			return NULL;
H
Hugh Dickins 已提交
753
		if (!is_zero_pfn(pfn))
754
			print_bad_pte(vma, addr, pte, NULL);
N
Nick Piggin 已提交
755 756 757 758 759
		return NULL;
	}

	/* !HAVE_PTE_SPECIAL case follows: */

J
Jared Hulbert 已提交
760 761 762 763 764 765
	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
		if (vma->vm_flags & VM_MIXEDMAP) {
			if (!pfn_valid(pfn))
				return NULL;
			goto out;
		} else {
N
Nick Piggin 已提交
766 767
			unsigned long off;
			off = (addr - vma->vm_start) >> PAGE_SHIFT;
J
Jared Hulbert 已提交
768 769 770 771 772
			if (pfn == vma->vm_pgoff + off)
				return NULL;
			if (!is_cow_mapping(vma->vm_flags))
				return NULL;
		}
773 774
	}

775 776
	if (is_zero_pfn(pfn))
		return NULL;
777 778 779 780 781
check_pfn:
	if (unlikely(pfn > highest_memmap_pfn)) {
		print_bad_pte(vma, addr, pte, NULL);
		return NULL;
	}
782 783

	/*
N
Nick Piggin 已提交
784 785
	 * NOTE! We still have PageReserved() pages in the page tables.
	 * eg. VDSO mappings can cause them to exist.
786
	 */
J
Jared Hulbert 已提交
787
out:
788
	return pfn_to_page(pfn);
H
Hugh Dickins 已提交
789 790
}

L
Linus Torvalds 已提交
791 792 793 794 795 796
/*
 * copy one vm_area from one task to the other. Assumes the page tables
 * already present in the new task to be cleared in the whole range
 * covered by this vma.
 */

H
Hugh Dickins 已提交
797
static inline unsigned long
L
Linus Torvalds 已提交
798
copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
N
Nick Piggin 已提交
799
		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
H
Hugh Dickins 已提交
800
		unsigned long addr, int *rss)
L
Linus Torvalds 已提交
801
{
N
Nick Piggin 已提交
802
	unsigned long vm_flags = vma->vm_flags;
L
Linus Torvalds 已提交
803 804 805 806 807
	pte_t pte = *src_pte;
	struct page *page;

	/* pte contains position in swap or file, so copy. */
	if (unlikely(!pte_present(pte))) {
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
		swp_entry_t entry = pte_to_swp_entry(pte);

		if (likely(!non_swap_entry(entry))) {
			if (swap_duplicate(entry) < 0)
				return entry.val;

			/* make sure dst_mm is on swapoff's mmlist. */
			if (unlikely(list_empty(&dst_mm->mmlist))) {
				spin_lock(&mmlist_lock);
				if (list_empty(&dst_mm->mmlist))
					list_add(&dst_mm->mmlist,
							&src_mm->mmlist);
				spin_unlock(&mmlist_lock);
			}
			rss[MM_SWAPENTS]++;
		} else if (is_migration_entry(entry)) {
			page = migration_entry_to_page(entry);

826
			rss[mm_counter(page)]++;
827 828 829 830 831 832 833 834 835 836 837 838

			if (is_write_migration_entry(entry) &&
					is_cow_mapping(vm_flags)) {
				/*
				 * COW mappings require pages in both
				 * parent and child to be set to read.
				 */
				make_migration_entry_read(&entry);
				pte = swp_entry_to_pte(entry);
				if (pte_swp_soft_dirty(*src_pte))
					pte = pte_swp_mksoft_dirty(pte);
				set_pte_at(src_mm, addr, src_pte, pte);
839
			}
L
Linus Torvalds 已提交
840
		}
841
		goto out_set_pte;
L
Linus Torvalds 已提交
842 843 844 845 846 847
	}

	/*
	 * If it's a COW mapping, write protect it both
	 * in the parent and the child
	 */
848
	if (is_cow_mapping(vm_flags)) {
L
Linus Torvalds 已提交
849
		ptep_set_wrprotect(src_mm, addr, src_pte);
850
		pte = pte_wrprotect(pte);
L
Linus Torvalds 已提交
851 852 853 854 855 856 857 858 859
	}

	/*
	 * If it's a shared mapping, mark it clean in
	 * the child
	 */
	if (vm_flags & VM_SHARED)
		pte = pte_mkclean(pte);
	pte = pte_mkold(pte);
860 861 862 863

	page = vm_normal_page(vma, addr, pte);
	if (page) {
		get_page(page);
864
		page_dup_rmap(page, false);
865
		rss[mm_counter(page)]++;
866
	}
867 868 869

out_set_pte:
	set_pte_at(dst_mm, addr, dst_pte, pte);
H
Hugh Dickins 已提交
870
	return 0;
L
Linus Torvalds 已提交
871 872
}

873
static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
874 875
		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
		   unsigned long addr, unsigned long end)
L
Linus Torvalds 已提交
876
{
877
	pte_t *orig_src_pte, *orig_dst_pte;
L
Linus Torvalds 已提交
878
	pte_t *src_pte, *dst_pte;
H
Hugh Dickins 已提交
879
	spinlock_t *src_ptl, *dst_ptl;
880
	int progress = 0;
K
KAMEZAWA Hiroyuki 已提交
881
	int rss[NR_MM_COUNTERS];
H
Hugh Dickins 已提交
882
	swp_entry_t entry = (swp_entry_t){0};
L
Linus Torvalds 已提交
883 884

again:
K
KAMEZAWA Hiroyuki 已提交
885 886
	init_rss_vec(rss);

H
Hugh Dickins 已提交
887
	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
L
Linus Torvalds 已提交
888 889
	if (!dst_pte)
		return -ENOMEM;
P
Peter Zijlstra 已提交
890
	src_pte = pte_offset_map(src_pmd, addr);
H
Hugh Dickins 已提交
891
	src_ptl = pte_lockptr(src_mm, src_pmd);
I
Ingo Molnar 已提交
892
	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
893 894
	orig_src_pte = src_pte;
	orig_dst_pte = dst_pte;
895
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
896 897 898 899 900 901

	do {
		/*
		 * We are holding two locks at this point - either of them
		 * could generate latencies in another task on another CPU.
		 */
902 903 904
		if (progress >= 32) {
			progress = 0;
			if (need_resched() ||
N
Nick Piggin 已提交
905
			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
906 907
				break;
		}
L
Linus Torvalds 已提交
908 909 910 911
		if (pte_none(*src_pte)) {
			progress++;
			continue;
		}
H
Hugh Dickins 已提交
912 913 914 915
		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
							vma, addr, rss);
		if (entry.val)
			break;
L
Linus Torvalds 已提交
916 917 918
		progress += 8;
	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);

919
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
920
	spin_unlock(src_ptl);
P
Peter Zijlstra 已提交
921
	pte_unmap(orig_src_pte);
K
KAMEZAWA Hiroyuki 已提交
922
	add_mm_rss_vec(dst_mm, rss);
923
	pte_unmap_unlock(orig_dst_pte, dst_ptl);
H
Hugh Dickins 已提交
924
	cond_resched();
H
Hugh Dickins 已提交
925 926 927 928 929 930

	if (entry.val) {
		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
			return -ENOMEM;
		progress = 0;
	}
L
Linus Torvalds 已提交
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
	if (addr != end)
		goto again;
	return 0;
}

static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pmd_t *src_pmd, *dst_pmd;
	unsigned long next;

	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
	if (!dst_pmd)
		return -ENOMEM;
	src_pmd = pmd_offset(src_pud, addr);
	do {
		next = pmd_addr_end(addr, end);
949
		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
950
			int err;
951
			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
952 953 954 955 956 957 958 959
			err = copy_huge_pmd(dst_mm, src_mm,
					    dst_pmd, src_pmd, addr, vma);
			if (err == -ENOMEM)
				return -ENOMEM;
			if (!err)
				continue;
			/* fall through */
		}
L
Linus Torvalds 已提交
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
		if (pmd_none_or_clear_bad(src_pmd))
			continue;
		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
	return 0;
}

static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
		unsigned long addr, unsigned long end)
{
	pud_t *src_pud, *dst_pud;
	unsigned long next;

	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
	if (!dst_pud)
		return -ENOMEM;
	src_pud = pud_offset(src_pgd, addr);
	do {
		next = pud_addr_end(addr, end);
		if (pud_none_or_clear_bad(src_pud))
			continue;
		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
						vma, addr, next))
			return -ENOMEM;
	} while (dst_pud++, src_pud++, addr = next, addr != end);
	return 0;
}

int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
		struct vm_area_struct *vma)
{
	pgd_t *src_pgd, *dst_pgd;
	unsigned long next;
	unsigned long addr = vma->vm_start;
	unsigned long end = vma->vm_end;
998 999 1000
	unsigned long mmun_start;	/* For mmu_notifiers */
	unsigned long mmun_end;		/* For mmu_notifiers */
	bool is_cow;
A
Andrea Arcangeli 已提交
1001
	int ret;
L
Linus Torvalds 已提交
1002

1003 1004 1005 1006 1007 1008
	/*
	 * Don't copy ptes where a page fault will fill them correctly.
	 * Fork becomes much lighter when there are big shared or private
	 * readonly mappings. The tradeoff is that copy_page_range is more
	 * efficient than faulting.
	 */
1009 1010 1011
	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
			!vma->anon_vma)
		return 0;
1012

L
Linus Torvalds 已提交
1013 1014 1015
	if (is_vm_hugetlb_page(vma))
		return copy_hugetlb_page_range(dst_mm, src_mm, vma);

1016
	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1017 1018 1019 1020
		/*
		 * We do not free on error cases below as remove_vma
		 * gets called on error from higher level routine
		 */
1021
		ret = track_pfn_copy(vma);
1022 1023 1024 1025
		if (ret)
			return ret;
	}

A
Andrea Arcangeli 已提交
1026 1027 1028 1029 1030 1031
	/*
	 * We need to invalidate the secondary MMU mappings only when
	 * there could be a permission downgrade on the ptes of the
	 * parent mm. And a permission downgrade will only happen if
	 * is_cow_mapping() returns true.
	 */
1032 1033 1034 1035 1036 1037
	is_cow = is_cow_mapping(vma->vm_flags);
	mmun_start = addr;
	mmun_end   = end;
	if (is_cow)
		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
						    mmun_end);
A
Andrea Arcangeli 已提交
1038 1039

	ret = 0;
L
Linus Torvalds 已提交
1040 1041 1042 1043 1044 1045
	dst_pgd = pgd_offset(dst_mm, addr);
	src_pgd = pgd_offset(src_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		if (pgd_none_or_clear_bad(src_pgd))
			continue;
A
Andrea Arcangeli 已提交
1046 1047 1048 1049 1050
		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
					    vma, addr, next))) {
			ret = -ENOMEM;
			break;
		}
L
Linus Torvalds 已提交
1051
	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
A
Andrea Arcangeli 已提交
1052

1053 1054
	if (is_cow)
		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
A
Andrea Arcangeli 已提交
1055
	return ret;
L
Linus Torvalds 已提交
1056 1057
}

1058
static unsigned long zap_pte_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1059
				struct vm_area_struct *vma, pmd_t *pmd,
L
Linus Torvalds 已提交
1060
				unsigned long addr, unsigned long end,
1061
				struct zap_details *details)
L
Linus Torvalds 已提交
1062
{
N
Nick Piggin 已提交
1063
	struct mm_struct *mm = tlb->mm;
P
Peter Zijlstra 已提交
1064
	int force_flush = 0;
K
KAMEZAWA Hiroyuki 已提交
1065
	int rss[NR_MM_COUNTERS];
1066
	spinlock_t *ptl;
1067
	pte_t *start_pte;
1068
	pte_t *pte;
1069
	swp_entry_t entry;
K
KAMEZAWA Hiroyuki 已提交
1070

P
Peter Zijlstra 已提交
1071
again:
1072
	init_rss_vec(rss);
1073 1074
	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
	pte = start_pte;
1075
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1076 1077
	do {
		pte_t ptent = *pte;
1078
		if (pte_none(ptent)) {
L
Linus Torvalds 已提交
1079
			continue;
1080
		}
1081

L
Linus Torvalds 已提交
1082
		if (pte_present(ptent)) {
H
Hugh Dickins 已提交
1083
			struct page *page;
1084

1085
			page = vm_normal_page(vma, addr, ptent);
L
Linus Torvalds 已提交
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
			if (unlikely(details) && page) {
				/*
				 * unmap_shared_mapping_pages() wants to
				 * invalidate cache without truncating:
				 * unmap shared but keep private pages.
				 */
				if (details->check_mapping &&
				    details->check_mapping != page->mapping)
					continue;
			}
N
Nick Piggin 已提交
1096
			ptent = ptep_get_and_clear_full(mm, addr, pte,
1097
							tlb->fullmm);
L
Linus Torvalds 已提交
1098 1099 1100
			tlb_remove_tlb_entry(tlb, pte, addr);
			if (unlikely(!page))
				continue;
1101 1102

			if (!PageAnon(page)) {
1103 1104
				if (pte_dirty(ptent)) {
					force_flush = 1;
1105
					set_page_dirty(page);
1106
				}
1107
				if (pte_young(ptent) &&
1108
				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1109
					mark_page_accessed(page);
1110
			}
1111
			rss[mm_counter(page)]--;
1112
			page_remove_rmap(page, false);
1113 1114
			if (unlikely(page_mapcount(page) < 0))
				print_bad_pte(vma, addr, ptent, page);
1115 1116
			if (unlikely(!__tlb_remove_page(tlb, page))) {
				force_flush = 1;
1117
				addr += PAGE_SIZE;
P
Peter Zijlstra 已提交
1118
				break;
1119
			}
L
Linus Torvalds 已提交
1120 1121
			continue;
		}
1122
		/* If details->check_mapping, we leave swap entries. */
L
Linus Torvalds 已提交
1123 1124
		if (unlikely(details))
			continue;
K
KAMEZAWA Hiroyuki 已提交
1125

1126 1127 1128 1129 1130
		entry = pte_to_swp_entry(ptent);
		if (!non_swap_entry(entry))
			rss[MM_SWAPENTS]--;
		else if (is_migration_entry(entry)) {
			struct page *page;
1131

1132
			page = migration_entry_to_page(entry);
1133
			rss[mm_counter(page)]--;
K
KAMEZAWA Hiroyuki 已提交
1134
		}
1135 1136
		if (unlikely(!free_swap_and_cache(entry)))
			print_bad_pte(vma, addr, ptent, NULL);
1137
		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1138
	} while (pte++, addr += PAGE_SIZE, addr != end);
1139

K
KAMEZAWA Hiroyuki 已提交
1140
	add_mm_rss_vec(mm, rss);
1141
	arch_leave_lazy_mmu_mode();
1142

1143
	/* Do the actual TLB flush before dropping ptl */
1144
	if (force_flush)
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		tlb_flush_mmu_tlbonly(tlb);
	pte_unmap_unlock(start_pte, ptl);

	/*
	 * If we forced a TLB flush (either due to running out of
	 * batch buffers or because we needed to flush dirty TLB
	 * entries before releasing the ptl), free the batched
	 * memory too. Restart if we didn't do everything.
	 */
	if (force_flush) {
		force_flush = 0;
		tlb_flush_mmu_free(tlb);
1157 1158

		if (addr != end)
P
Peter Zijlstra 已提交
1159 1160 1161
			goto again;
	}

1162
	return addr;
L
Linus Torvalds 已提交
1163 1164
}

1165
static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1166
				struct vm_area_struct *vma, pud_t *pud,
L
Linus Torvalds 已提交
1167
				unsigned long addr, unsigned long end,
1168
				struct zap_details *details)
L
Linus Torvalds 已提交
1169 1170 1171 1172 1173 1174 1175
{
	pmd_t *pmd;
	unsigned long next;

	pmd = pmd_offset(pud, addr);
	do {
		next = pmd_addr_end(addr, end);
1176
		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177
			if (next - addr != HPAGE_PMD_SIZE) {
1178 1179 1180 1181 1182 1183 1184 1185 1186
#ifdef CONFIG_DEBUG_VM
				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
						__func__, addr, end,
						vma->vm_start,
						vma->vm_end);
					BUG();
				}
#endif
1187
				split_huge_pmd(vma, pmd, addr);
S
Shaohua Li 已提交
1188
			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1189
				goto next;
1190 1191
			/* fall through */
		}
1192 1193 1194 1195 1196 1197 1198 1199 1200
		/*
		 * Here there can be other concurrent MADV_DONTNEED or
		 * trans huge page faults running, and if the pmd is
		 * none or trans huge it can change under us. This is
		 * because MADV_DONTNEED holds the mmap_sem in read
		 * mode.
		 */
		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
			goto next;
1201
		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1202
next:
1203 1204
		cond_resched();
	} while (pmd++, addr = next, addr != end);
1205 1206

	return addr;
L
Linus Torvalds 已提交
1207 1208
}

1209
static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
N
Nick Piggin 已提交
1210
				struct vm_area_struct *vma, pgd_t *pgd,
L
Linus Torvalds 已提交
1211
				unsigned long addr, unsigned long end,
1212
				struct zap_details *details)
L
Linus Torvalds 已提交
1213 1214 1215 1216 1217 1218 1219
{
	pud_t *pud;
	unsigned long next;

	pud = pud_offset(pgd, addr);
	do {
		next = pud_addr_end(addr, end);
1220
		if (pud_none_or_clear_bad(pud))
L
Linus Torvalds 已提交
1221
			continue;
1222 1223
		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
	} while (pud++, addr = next, addr != end);
1224 1225

	return addr;
L
Linus Torvalds 已提交
1226 1227
}

A
Al Viro 已提交
1228 1229 1230 1231
static void unmap_page_range(struct mmu_gather *tlb,
			     struct vm_area_struct *vma,
			     unsigned long addr, unsigned long end,
			     struct zap_details *details)
L
Linus Torvalds 已提交
1232 1233 1234 1235
{
	pgd_t *pgd;
	unsigned long next;

1236
	if (details && !details->check_mapping)
L
Linus Torvalds 已提交
1237 1238 1239 1240 1241 1242 1243
		details = NULL;

	BUG_ON(addr >= end);
	tlb_start_vma(tlb, vma);
	pgd = pgd_offset(vma->vm_mm, addr);
	do {
		next = pgd_addr_end(addr, end);
1244
		if (pgd_none_or_clear_bad(pgd))
L
Linus Torvalds 已提交
1245
			continue;
1246 1247
		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
	} while (pgd++, addr = next, addr != end);
L
Linus Torvalds 已提交
1248 1249
	tlb_end_vma(tlb, vma);
}
1250

1251 1252 1253

static void unmap_single_vma(struct mmu_gather *tlb,
		struct vm_area_struct *vma, unsigned long start_addr,
1254
		unsigned long end_addr,
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		struct zap_details *details)
{
	unsigned long start = max(vma->vm_start, start_addr);
	unsigned long end;

	if (start >= vma->vm_end)
		return;
	end = min(vma->vm_end, end_addr);
	if (end <= vma->vm_start)
		return;

1266 1267 1268
	if (vma->vm_file)
		uprobe_munmap(vma, start, end);

1269
	if (unlikely(vma->vm_flags & VM_PFNMAP))
1270
		untrack_pfn(vma, 0, 0);
1271 1272 1273 1274 1275 1276 1277

	if (start != end) {
		if (unlikely(is_vm_hugetlb_page(vma))) {
			/*
			 * It is undesirable to test vma->vm_file as it
			 * should be non-null for valid hugetlb area.
			 * However, vm_file will be NULL in the error
1278
			 * cleanup path of mmap_region. When
1279
			 * hugetlbfs ->mmap method fails,
1280
			 * mmap_region() nullifies vma->vm_file
1281 1282 1283 1284
			 * before calling this function to clean up.
			 * Since no pte has actually been setup, it is
			 * safe to do nothing in this case.
			 */
1285
			if (vma->vm_file) {
1286
				i_mmap_lock_write(vma->vm_file->f_mapping);
1287
				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1288
				i_mmap_unlock_write(vma->vm_file->f_mapping);
1289
			}
1290 1291 1292
		} else
			unmap_page_range(tlb, vma, start, end, details);
	}
L
Linus Torvalds 已提交
1293 1294 1295 1296
}

/**
 * unmap_vmas - unmap a range of memory covered by a list of vma's
1297
 * @tlb: address of the caller's struct mmu_gather
L
Linus Torvalds 已提交
1298 1299 1300 1301
 * @vma: the starting vma
 * @start_addr: virtual address at which to start unmapping
 * @end_addr: virtual address at which to end unmapping
 *
1302
 * Unmap all pages in the vma list.
L
Linus Torvalds 已提交
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
 *
 * Only addresses between `start' and `end' will be unmapped.
 *
 * The VMA list must be sorted in ascending virtual address order.
 *
 * unmap_vmas() assumes that the caller will flush the whole unmapped address
 * range after unmap_vmas() returns.  So the only responsibility here is to
 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
 * drops the lock and schedules.
 */
A
Al Viro 已提交
1313
void unmap_vmas(struct mmu_gather *tlb,
L
Linus Torvalds 已提交
1314
		struct vm_area_struct *vma, unsigned long start_addr,
1315
		unsigned long end_addr)
L
Linus Torvalds 已提交
1316
{
A
Andrea Arcangeli 已提交
1317
	struct mm_struct *mm = vma->vm_mm;
L
Linus Torvalds 已提交
1318

A
Andrea Arcangeli 已提交
1319
	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1320
	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1321
		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
A
Andrea Arcangeli 已提交
1322
	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
L
Linus Torvalds 已提交
1323 1324 1325 1326 1327
}

/**
 * zap_page_range - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
1328
 * @start: starting address of pages to zap
L
Linus Torvalds 已提交
1329
 * @size: number of bytes to zap
1330
 * @details: details of shared cache invalidation
1331 1332
 *
 * Caller must protect the VMA list
L
Linus Torvalds 已提交
1333
 */
1334
void zap_page_range(struct vm_area_struct *vma, unsigned long start,
L
Linus Torvalds 已提交
1335 1336 1337
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1338
	struct mmu_gather tlb;
1339
	unsigned long end = start + size;
L
Linus Torvalds 已提交
1340 1341

	lru_add_drain();
1342
	tlb_gather_mmu(&tlb, mm, start, end);
1343
	update_hiwater_rss(mm);
1344 1345
	mmu_notifier_invalidate_range_start(mm, start, end);
	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1346
		unmap_single_vma(&tlb, vma, start, end, details);
1347 1348
	mmu_notifier_invalidate_range_end(mm, start, end);
	tlb_finish_mmu(&tlb, start, end);
L
Linus Torvalds 已提交
1349 1350
}

1351 1352 1353 1354 1355
/**
 * zap_page_range_single - remove user pages in a given range
 * @vma: vm_area_struct holding the applicable pages
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
1356
 * @details: details of shared cache invalidation
1357 1358
 *
 * The range must fit into one VMA.
L
Linus Torvalds 已提交
1359
 */
1360
static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
L
Linus Torvalds 已提交
1361 1362 1363
		unsigned long size, struct zap_details *details)
{
	struct mm_struct *mm = vma->vm_mm;
P
Peter Zijlstra 已提交
1364
	struct mmu_gather tlb;
L
Linus Torvalds 已提交
1365 1366 1367
	unsigned long end = address + size;

	lru_add_drain();
1368
	tlb_gather_mmu(&tlb, mm, address, end);
1369
	update_hiwater_rss(mm);
1370
	mmu_notifier_invalidate_range_start(mm, address, end);
1371
	unmap_single_vma(&tlb, vma, address, end, details);
1372
	mmu_notifier_invalidate_range_end(mm, address, end);
P
Peter Zijlstra 已提交
1373
	tlb_finish_mmu(&tlb, address, end);
L
Linus Torvalds 已提交
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
/**
 * zap_vma_ptes - remove ptes mapping the vma
 * @vma: vm_area_struct holding ptes to be zapped
 * @address: starting address of pages to zap
 * @size: number of bytes to zap
 *
 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
 *
 * The entire address range must be fully contained within the vma.
 *
 * Returns 0 if successful.
 */
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
		unsigned long size)
{
	if (address < vma->vm_start || address + size > vma->vm_end ||
	    		!(vma->vm_flags & VM_PFNMAP))
		return -1;
1394
	zap_page_range_single(vma, address, size, NULL);
1395 1396 1397 1398
	return 0;
}
EXPORT_SYMBOL_GPL(zap_vma_ptes);

1399
pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
H
Harvey Harrison 已提交
1400
			spinlock_t **ptl)
1401 1402 1403 1404
{
	pgd_t * pgd = pgd_offset(mm, addr);
	pud_t * pud = pud_alloc(mm, pgd, addr);
	if (pud) {
1405
		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1406 1407
		if (pmd) {
			VM_BUG_ON(pmd_trans_huge(*pmd));
1408
			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1409
		}
1410 1411 1412 1413
	}
	return NULL;
}

1414 1415 1416 1417 1418 1419 1420
/*
 * This is the old fallback for page remapping.
 *
 * For historical reasons, it only allows reserved pages. Only
 * old drivers should use this, and they needed to mark their
 * pages reserved for the old functions anyway.
 */
N
Nick Piggin 已提交
1421 1422
static int insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page, pgprot_t prot)
1423
{
N
Nick Piggin 已提交
1424
	struct mm_struct *mm = vma->vm_mm;
1425
	int retval;
1426
	pte_t *pte;
1427 1428
	spinlock_t *ptl;

1429
	retval = -EINVAL;
1430
	if (PageAnon(page))
1431
		goto out;
1432 1433
	retval = -ENOMEM;
	flush_dcache_page(page);
1434
	pte = get_locked_pte(mm, addr, &ptl);
1435
	if (!pte)
1436
		goto out;
1437 1438 1439 1440 1441 1442
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
	get_page(page);
1443
	inc_mm_counter_fast(mm, mm_counter_file(page));
1444 1445 1446 1447
	page_add_file_rmap(page);
	set_pte_at(mm, addr, pte, mk_pte(page, prot));

	retval = 0;
1448 1449
	pte_unmap_unlock(pte, ptl);
	return retval;
1450 1451 1452 1453 1454 1455
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

1456 1457 1458 1459 1460 1461
/**
 * vm_insert_page - insert single page into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @page: source kernel page
 *
1462 1463 1464 1465 1466 1467
 * This allows drivers to insert individual pages they've allocated
 * into a user vma.
 *
 * The page has to be a nice clean _individual_ kernel allocation.
 * If you allocate a compound page, you need to have marked it as
 * such (__GFP_COMP), or manually just split the page up yourself
N
Nick Piggin 已提交
1468
 * (see split_page()).
1469 1470 1471 1472 1473 1474 1475 1476
 *
 * NOTE! Traditionally this was done with "remap_pfn_range()" which
 * took an arbitrary page protection parameter. This doesn't allow
 * that. Your vma protection will have to be set up correctly, which
 * means that if you want a shared writable mapping, you'd better
 * ask for a shared writable mapping!
 *
 * The page does not need to be reserved.
1477 1478 1479 1480 1481
 *
 * Usually this function is called from f_op->mmap() handler
 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
 * Caller must set VM_MIXEDMAP on vma if it wants to call this
 * function from other places, for example from page-fault handler.
1482
 */
N
Nick Piggin 已提交
1483 1484
int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
			struct page *page)
1485 1486 1487 1488 1489
{
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
	if (!page_count(page))
		return -EINVAL;
1490 1491 1492 1493 1494
	if (!(vma->vm_flags & VM_MIXEDMAP)) {
		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
		BUG_ON(vma->vm_flags & VM_PFNMAP);
		vma->vm_flags |= VM_MIXEDMAP;
	}
N
Nick Piggin 已提交
1495
	return insert_page(vma, addr, page, vma->vm_page_prot);
1496
}
1497
EXPORT_SYMBOL(vm_insert_page);
1498

N
Nick Piggin 已提交
1499
static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1500
			pfn_t pfn, pgprot_t prot)
N
Nick Piggin 已提交
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
{
	struct mm_struct *mm = vma->vm_mm;
	int retval;
	pte_t *pte, entry;
	spinlock_t *ptl;

	retval = -ENOMEM;
	pte = get_locked_pte(mm, addr, &ptl);
	if (!pte)
		goto out;
	retval = -EBUSY;
	if (!pte_none(*pte))
		goto out_unlock;

	/* Ok, finally just insert the thing.. */
1516 1517 1518 1519
	if (pfn_t_devmap(pfn))
		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
	else
		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
N
Nick Piggin 已提交
1520
	set_pte_at(mm, addr, pte, entry);
1521
	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
N
Nick Piggin 已提交
1522 1523 1524 1525 1526 1527 1528 1529

	retval = 0;
out_unlock:
	pte_unmap_unlock(pte, ptl);
out:
	return retval;
}

N
Nick Piggin 已提交
1530 1531 1532 1533 1534 1535
/**
 * vm_insert_pfn - insert single pfn into user vma
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 *
1536
 * Similar to vm_insert_page, this allows drivers to insert individual pages
N
Nick Piggin 已提交
1537 1538 1539 1540
 * they've allocated into a user vma. Same comments apply.
 *
 * This function should only be called from a vm_ops->fault handler, and
 * in that case the handler should return NULL.
N
Nick Piggin 已提交
1541 1542 1543 1544 1545
 *
 * vma cannot be a COW mapping.
 *
 * As this is called only for pages that do not currently exist, we
 * do not need to flush old virtual caches or the TLB.
N
Nick Piggin 已提交
1546 1547
 */
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
N
Nick Piggin 已提交
1548
			unsigned long pfn)
A
Andy Lutomirski 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570
{
	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_insert_pfn);

/**
 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
 * @vma: user vma to map to
 * @addr: target user address of this page
 * @pfn: source kernel pfn
 * @pgprot: pgprot flags for the inserted page
 *
 * This is exactly like vm_insert_pfn, except that it allows drivers to
 * to override pgprot on a per-page basis.
 *
 * This only makes sense for IO mappings, and it makes no sense for
 * cow mappings.  In general, using multiple vmas is preferable;
 * vm_insert_pfn_prot should only be used if using multiple VMAs is
 * impractical.
 */
int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
			unsigned long pfn, pgprot_t pgprot)
N
Nick Piggin 已提交
1571
{
1572
	int ret;
N
Nick Piggin 已提交
1573 1574 1575 1576 1577 1578
	/*
	 * Technically, architectures with pte_special can avoid all these
	 * restrictions (same for remap_pfn_range).  However we would like
	 * consistency in testing and feature parity among all, so we should
	 * try to keep these invariants in place for everybody.
	 */
J
Jared Hulbert 已提交
1579 1580 1581 1582 1583
	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
						(VM_PFNMAP|VM_MIXEDMAP));
	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
N
Nick Piggin 已提交
1584

N
Nick Piggin 已提交
1585 1586
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
1587
	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1588 1589
		return -EINVAL;

1590
	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1591 1592

	return ret;
N
Nick Piggin 已提交
1593
}
A
Andy Lutomirski 已提交
1594
EXPORT_SYMBOL(vm_insert_pfn_prot);
N
Nick Piggin 已提交
1595

N
Nick Piggin 已提交
1596
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1597
			pfn_t pfn)
N
Nick Piggin 已提交
1598 1599
{
	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
N
Nick Piggin 已提交
1600

N
Nick Piggin 已提交
1601 1602
	if (addr < vma->vm_start || addr >= vma->vm_end)
		return -EFAULT;
N
Nick Piggin 已提交
1603

N
Nick Piggin 已提交
1604 1605 1606 1607
	/*
	 * If we don't have pte special, then we have to use the pfn_valid()
	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
	 * refcount the page if pfn_valid is true (hence insert_page rather
H
Hugh Dickins 已提交
1608 1609
	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
	 * without pte special, it would there be refcounted as a normal page.
N
Nick Piggin 已提交
1610
	 */
1611
	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
N
Nick Piggin 已提交
1612 1613
		struct page *page;

1614 1615 1616 1617 1618 1619
		/*
		 * At this point we are committed to insert_page()
		 * regardless of whether the caller specified flags that
		 * result in pfn_t_has_page() == false.
		 */
		page = pfn_to_page(pfn_t_to_pfn(pfn));
N
Nick Piggin 已提交
1620 1621 1622
		return insert_page(vma, addr, page, vma->vm_page_prot);
	}
	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
N
Nick Piggin 已提交
1623
}
N
Nick Piggin 已提交
1624
EXPORT_SYMBOL(vm_insert_mixed);
N
Nick Piggin 已提交
1625

L
Linus Torvalds 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/*
 * maps a range of physical memory into the requested pages. the old
 * mappings are removed. any references to nonexistent pages results
 * in null mappings (currently treated as "copy-on-access")
 */
static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pte_t *pte;
H
Hugh Dickins 已提交
1636
	spinlock_t *ptl;
L
Linus Torvalds 已提交
1637

H
Hugh Dickins 已提交
1638
	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
L
Linus Torvalds 已提交
1639 1640
	if (!pte)
		return -ENOMEM;
1641
	arch_enter_lazy_mmu_mode();
L
Linus Torvalds 已提交
1642 1643
	do {
		BUG_ON(!pte_none(*pte));
N
Nick Piggin 已提交
1644
		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
L
Linus Torvalds 已提交
1645 1646
		pfn++;
	} while (pte++, addr += PAGE_SIZE, addr != end);
1647
	arch_leave_lazy_mmu_mode();
H
Hugh Dickins 已提交
1648
	pte_unmap_unlock(pte - 1, ptl);
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
	return 0;
}

static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pmd_t *pmd;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
1663
	VM_BUG_ON(pmd_trans_huge(*pmd));
L
Linus Torvalds 已提交
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
	do {
		next = pmd_addr_end(addr, end);
		if (remap_pte_range(mm, pmd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pmd++, addr = next, addr != end);
	return 0;
}

static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
			unsigned long addr, unsigned long end,
			unsigned long pfn, pgprot_t prot)
{
	pud_t *pud;
	unsigned long next;

	pfn -= addr >> PAGE_SHIFT;
	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		if (remap_pmd_range(mm, pud, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot))
			return -ENOMEM;
	} while (pud++, addr = next, addr != end);
	return 0;
}

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
/**
 * remap_pfn_range - remap kernel memory to userspace
 * @vma: user vma to map to
 * @addr: target user address to start at
 * @pfn: physical address of kernel memory
 * @size: size of map area
 * @prot: page protection flags for this mapping
 *
 *  Note: this is only safe if the mm semaphore is held when called.
 */
L
Linus Torvalds 已提交
1703 1704 1705 1706 1707
int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
		    unsigned long pfn, unsigned long size, pgprot_t prot)
{
	pgd_t *pgd;
	unsigned long next;
1708
	unsigned long end = addr + PAGE_ALIGN(size);
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713 1714 1715 1716
	struct mm_struct *mm = vma->vm_mm;
	int err;

	/*
	 * Physically remapped pages are special. Tell the
	 * rest of the world about it:
	 *   VM_IO tells people not to look at these pages
	 *	(accesses can have side effects).
1717 1718 1719
	 *   VM_PFNMAP tells the core MM that the base pages are just
	 *	raw PFN mappings, and do not have a "struct page" associated
	 *	with them.
1720 1721 1722 1723
	 *   VM_DONTEXPAND
	 *      Disable vma merging and expanding with mremap().
	 *   VM_DONTDUMP
	 *      Omit vma from core dump, even when VM_IO turned off.
L
Linus Torvalds 已提交
1724 1725 1726 1727
	 *
	 * There's a horrible special case to handle copy-on-write
	 * behaviour that some programs depend on. We mark the "original"
	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1728
	 * See vm_normal_page() for details.
L
Linus Torvalds 已提交
1729
	 */
1730 1731 1732
	if (is_cow_mapping(vma->vm_flags)) {
		if (addr != vma->vm_start || end != vma->vm_end)
			return -EINVAL;
L
Linus Torvalds 已提交
1733
		vma->vm_pgoff = pfn;
1734 1735 1736 1737
	}

	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
	if (err)
1738
		return -EINVAL;
L
Linus Torvalds 已提交
1739

1740
	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752

	BUG_ON(addr >= end);
	pfn -= addr >> PAGE_SHIFT;
	pgd = pgd_offset(mm, addr);
	flush_cache_range(vma, addr, end);
	do {
		next = pgd_addr_end(addr, end);
		err = remap_pud_range(mm, pgd, addr, next,
				pfn + (addr >> PAGE_SHIFT), prot);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1753 1754

	if (err)
1755
		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1756

L
Linus Torvalds 已提交
1757 1758 1759 1760
	return err;
}
EXPORT_SYMBOL(remap_pfn_range);

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/**
 * vm_iomap_memory - remap memory to userspace
 * @vma: user vma to map to
 * @start: start of area
 * @len: size of area
 *
 * This is a simplified io_remap_pfn_range() for common driver use. The
 * driver just needs to give us the physical memory range to be mapped,
 * we'll figure out the rest from the vma information.
 *
 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
 * whatever write-combining details or similar.
 */
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
{
	unsigned long vm_len, pfn, pages;

	/* Check that the physical memory area passed in looks valid */
	if (start + len < start)
		return -EINVAL;
	/*
	 * You *really* shouldn't map things that aren't page-aligned,
	 * but we've historically allowed it because IO memory might
	 * just have smaller alignment.
	 */
	len += start & ~PAGE_MASK;
	pfn = start >> PAGE_SHIFT;
	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
	if (pfn + pages < pfn)
		return -EINVAL;

	/* We start the mapping 'vm_pgoff' pages into the area */
	if (vma->vm_pgoff > pages)
		return -EINVAL;
	pfn += vma->vm_pgoff;
	pages -= vma->vm_pgoff;

	/* Can we fit all of the mapping? */
	vm_len = vma->vm_end - vma->vm_start;
	if (vm_len >> PAGE_SHIFT > pages)
		return -EINVAL;

	/* Ok, let it rip */
	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
}
EXPORT_SYMBOL(vm_iomap_memory);

1808 1809 1810 1811 1812 1813
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pte_t *pte;
	int err;
1814
	pgtable_t token;
1815
	spinlock_t *uninitialized_var(ptl);
1816 1817 1818 1819 1820 1821 1822 1823 1824

	pte = (mm == &init_mm) ?
		pte_alloc_kernel(pmd, addr) :
		pte_alloc_map_lock(mm, pmd, addr, &ptl);
	if (!pte)
		return -ENOMEM;

	BUG_ON(pmd_huge(*pmd));

1825 1826
	arch_enter_lazy_mmu_mode();

1827
	token = pmd_pgtable(*pmd);
1828 1829

	do {
1830
		err = fn(pte++, token, addr, data);
1831 1832
		if (err)
			break;
1833
	} while (addr += PAGE_SIZE, addr != end);
1834

1835 1836
	arch_leave_lazy_mmu_mode();

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	if (mm != &init_mm)
		pte_unmap_unlock(pte-1, ptl);
	return err;
}

static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pmd_t *pmd;
	unsigned long next;
	int err;

A
Andi Kleen 已提交
1850 1851
	BUG_ON(pud_huge(*pud));

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
	pmd = pmd_alloc(mm, pud, addr);
	if (!pmd)
		return -ENOMEM;
	do {
		next = pmd_addr_end(addr, end);
		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
		if (err)
			break;
	} while (pmd++, addr = next, addr != end);
	return err;
}

static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
				     unsigned long addr, unsigned long end,
				     pte_fn_t fn, void *data)
{
	pud_t *pud;
	unsigned long next;
	int err;

	pud = pud_alloc(mm, pgd, addr);
	if (!pud)
		return -ENOMEM;
	do {
		next = pud_addr_end(addr, end);
		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
		if (err)
			break;
	} while (pud++, addr = next, addr != end);
	return err;
}

/*
 * Scan a region of virtual memory, filling in page tables as necessary
 * and calling a provided function on each leaf page table.
 */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
			unsigned long size, pte_fn_t fn, void *data)
{
	pgd_t *pgd;
	unsigned long next;
1893
	unsigned long end = addr + size;
1894 1895
	int err;

1896 1897 1898
	if (WARN_ON(addr >= end))
		return -EINVAL;

1899 1900 1901 1902 1903 1904 1905
	pgd = pgd_offset(mm, addr);
	do {
		next = pgd_addr_end(addr, end);
		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
		if (err)
			break;
	} while (pgd++, addr = next, addr != end);
1906

1907 1908 1909 1910
	return err;
}
EXPORT_SYMBOL_GPL(apply_to_page_range);

1911
/*
1912 1913 1914 1915 1916
 * handle_pte_fault chooses page fault handler according to an entry which was
 * read non-atomically.  Before making any commitment, on those architectures
 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
 * parts, do_swap_page must check under lock before unmapping the pte and
 * proceeding (but do_wp_page is only called after already making such a check;
1917
 * and do_anonymous_page can safely check later on).
1918
 */
H
Hugh Dickins 已提交
1919
static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1920 1921 1922 1923 1924
				pte_t *page_table, pte_t orig_pte)
{
	int same = 1;
#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
	if (sizeof(pte_t) > sizeof(unsigned long)) {
H
Hugh Dickins 已提交
1925 1926
		spinlock_t *ptl = pte_lockptr(mm, pmd);
		spin_lock(ptl);
1927
		same = pte_same(*page_table, orig_pte);
H
Hugh Dickins 已提交
1928
		spin_unlock(ptl);
1929 1930 1931 1932 1933 1934
	}
#endif
	pte_unmap(page_table);
	return same;
}

1935
static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1936
{
1937 1938
	debug_dma_assert_idle(src);

1939 1940 1941 1942 1943 1944 1945
	/*
	 * If the source page was a PFN mapping, we don't have
	 * a "struct page" for it. We do a best-effort copy by
	 * just copying from the original user address. If that
	 * fails, we just zero-fill it. Live with it.
	 */
	if (unlikely(!src)) {
1946
		void *kaddr = kmap_atomic(dst);
L
Linus Torvalds 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955
		void __user *uaddr = (void __user *)(va & PAGE_MASK);

		/*
		 * This really shouldn't fail, because the page is there
		 * in the page tables. But it might just be unreadable,
		 * in which case we just give up and fill the result with
		 * zeroes.
		 */
		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1956
			clear_page(kaddr);
1957
		kunmap_atomic(kaddr);
1958
		flush_dcache_page(dst);
N
Nick Piggin 已提交
1959 1960
	} else
		copy_user_highpage(dst, src, va, vma);
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976
static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
{
	struct file *vm_file = vma->vm_file;

	if (vm_file)
		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;

	/*
	 * Special mappings (e.g. VDSO) do not have any file so fake
	 * a default GFP_KERNEL for them.
	 */
	return GFP_KERNEL;
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
/*
 * Notify the address space that the page is about to become writable so that
 * it can prohibit this or wait for the page to get into an appropriate state.
 *
 * We do this without the lock held, so that it can sleep if it needs to.
 */
static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
	       unsigned long address)
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = page->index;
	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1992
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1993
	vmf.page = page;
1994
	vmf.cow_page = NULL;
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
		return ret;
	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
		lock_page(page);
		if (!page->mapping) {
			unlock_page(page);
			return 0; /* retry */
		}
		ret |= VM_FAULT_LOCKED;
	} else
		VM_BUG_ON_PAGE(!PageLocked(page), page);
	return ret;
}

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * Handle write page faults for pages that can be reused in the current vma
 *
 * This can happen either due to the mapping being with the VM_SHARED flag,
 * or due to us being the last reference standing to the page. In either
 * case, all we need to do here is to mark the page as writable and update
 * any related book-keeping.
 */
static inline int wp_page_reuse(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			struct page *page, int page_mkwrite,
			int dirty_shared)
	__releases(ptl)
{
	pte_t entry;
	/*
	 * Clear the pages cpupid information as the existing
	 * information potentially belongs to a now completely
	 * unrelated process.
	 */
	if (page)
		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);

	flush_cache_page(vma, address, pte_pfn(orig_pte));
	entry = pte_mkyoung(orig_pte);
	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
		update_mmu_cache(vma, address, page_table);
	pte_unmap_unlock(page_table, ptl);

	if (dirty_shared) {
		struct address_space *mapping;
		int dirtied;

		if (!page_mkwrite)
			lock_page(page);

		dirtied = set_page_dirty(page);
		VM_BUG_ON_PAGE(PageAnon(page), page);
		mapping = page->mapping;
		unlock_page(page);
		page_cache_release(page);

		if ((dirtied || page_mkwrite) && mapping) {
			/*
			 * Some device drivers do not set page.mapping
			 * but still dirty their pages
			 */
			balance_dirty_pages_ratelimited(mapping);
		}

		if (!page_mkwrite)
			file_update_time(vma->vm_file);
	}

	return VM_FAULT_WRITE;
}

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
/*
 * Handle the case of a page which we actually need to copy to a new page.
 *
 * Called with mmap_sem locked and the old page referenced, but
 * without the ptl held.
 *
 * High level logic flow:
 *
 * - Allocate a page, copy the content of the old page to the new one.
 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
 * - Take the PTL. If the pte changed, bail out and release the allocated page
 * - If the pte is still the way we remember it, update the page table and all
 *   relevant references. This includes dropping the reference the page-table
 *   held to the old page, as well as updating the rmap.
 * - In any case, unlock the PTL and drop the reference we took to the old page.
 */
static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pte_t *page_table, pmd_t *pmd,
			pte_t orig_pte, struct page *old_page)
{
	struct page *new_page = NULL;
	spinlock_t *ptl = NULL;
	pte_t entry;
	int page_copied = 0;
	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
	struct mem_cgroup *memcg;

	if (unlikely(anon_vma_prepare(vma)))
		goto oom;

	if (is_zero_pfn(pte_pfn(orig_pte))) {
		new_page = alloc_zeroed_user_highpage_movable(vma, address);
		if (!new_page)
			goto oom;
	} else {
		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
		if (!new_page)
			goto oom;
		cow_user_page(new_page, old_page, address, vma);
	}

2112
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2113 2114
		goto oom_free_new;

2115 2116
	__SetPageUptodate(new_page);

2117 2118 2119 2120 2121 2122 2123 2124 2125
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);

	/*
	 * Re-check the pte - we dropped the lock
	 */
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (likely(pte_same(*page_table, orig_pte))) {
		if (old_page) {
			if (!PageAnon(old_page)) {
2126 2127
				dec_mm_counter_fast(mm,
						mm_counter_file(old_page));
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
				inc_mm_counter_fast(mm, MM_ANONPAGES);
			}
		} else {
			inc_mm_counter_fast(mm, MM_ANONPAGES);
		}
		flush_cache_page(vma, address, pte_pfn(orig_pte));
		entry = mk_pte(new_page, vma->vm_page_prot);
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
		/*
		 * Clear the pte entry and flush it first, before updating the
		 * pte with the new entry. This will avoid a race condition
		 * seen in the presence of one thread doing SMC and another
		 * thread doing COW.
		 */
		ptep_clear_flush_notify(vma, address, page_table);
2143
		page_add_new_anon_rmap(new_page, vma, address, false);
2144
		mem_cgroup_commit_charge(new_page, memcg, false, false);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
		lru_cache_add_active_or_unevictable(new_page, vma);
		/*
		 * We call the notify macro here because, when using secondary
		 * mmu page tables (such as kvm shadow page tables), we want the
		 * new page to be mapped directly into the secondary page table.
		 */
		set_pte_at_notify(mm, address, page_table, entry);
		update_mmu_cache(vma, address, page_table);
		if (old_page) {
			/*
			 * Only after switching the pte to the new page may
			 * we remove the mapcount here. Otherwise another
			 * process may come and find the rmap count decremented
			 * before the pte is switched to the new page, and
			 * "reuse" the old page writing into it while our pte
			 * here still points into it and can be read by other
			 * threads.
			 *
			 * The critical issue is to order this
			 * page_remove_rmap with the ptp_clear_flush above.
			 * Those stores are ordered by (if nothing else,)
			 * the barrier present in the atomic_add_negative
			 * in page_remove_rmap.
			 *
			 * Then the TLB flush in ptep_clear_flush ensures that
			 * no process can access the old page before the
			 * decremented mapcount is visible. And the old page
			 * cannot be reused until after the decremented
			 * mapcount is visible. So transitively, TLBs to
			 * old page will be flushed before it can be reused.
			 */
2176
			page_remove_rmap(old_page, false);
2177 2178 2179 2180 2181 2182
		}

		/* Free the old page.. */
		new_page = old_page;
		page_copied = 1;
	} else {
2183
		mem_cgroup_cancel_charge(new_page, memcg, false);
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
	}

	if (new_page)
		page_cache_release(new_page);

	pte_unmap_unlock(page_table, ptl);
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
	if (old_page) {
		/*
		 * Don't let another task, with possibly unlocked vma,
		 * keep the mlocked page.
		 */
		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
			lock_page(old_page);	/* LRU manipulation */
2198 2199
			if (PageMlocked(old_page))
				munlock_vma_page(old_page);
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
			unlock_page(old_page);
		}
		page_cache_release(old_page);
	}
	return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
	page_cache_release(new_page);
oom:
	if (old_page)
		page_cache_release(old_page);
	return VM_FAULT_OOM;
}

2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/*
 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
 * mapping
 */
static int wp_pfn_shared(struct mm_struct *mm,
			struct vm_area_struct *vma, unsigned long address,
			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
			pmd_t *pmd)
{
	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
		struct vm_fault vmf = {
			.page = NULL,
			.pgoff = linear_page_index(vma, address),
			.virtual_address = (void __user *)(address & PAGE_MASK),
			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
		};
		int ret;

		pte_unmap_unlock(page_table, ptl);
		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
		if (ret & VM_FAULT_ERROR)
			return ret;
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
		/*
		 * We might have raced with another page fault while we
		 * released the pte_offset_map_lock.
		 */
		if (!pte_same(*page_table, orig_pte)) {
			pte_unmap_unlock(page_table, ptl);
			return 0;
		}
	}
	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
			     NULL, 0, 0);
}

2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
			  unsigned long address, pte_t *page_table,
			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
			  struct page *old_page)
	__releases(ptl)
{
	int page_mkwrite = 0;

	page_cache_get(old_page);

	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
		int tmp;

		pte_unmap_unlock(page_table, ptl);
		tmp = do_page_mkwrite(vma, old_page, address);
		if (unlikely(!tmp || (tmp &
				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
			page_cache_release(old_page);
			return tmp;
		}
		/*
		 * Since we dropped the lock we need to revalidate
		 * the PTE as someone else may have changed it.  If
		 * they did, we just return, as we can count on the
		 * MMU to tell us if they didn't also make it writable.
		 */
		page_table = pte_offset_map_lock(mm, pmd, address,
						 &ptl);
		if (!pte_same(*page_table, orig_pte)) {
			unlock_page(old_page);
			pte_unmap_unlock(page_table, ptl);
			page_cache_release(old_page);
			return 0;
		}
		page_mkwrite = 1;
	}

	return wp_page_reuse(mm, vma, address, page_table, ptl,
			     orig_pte, old_page, page_mkwrite, 1);
}

L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
/*
 * This routine handles present pages, when users try to write
 * to a shared page. It is done by copying the page to a new address
 * and decrementing the shared-page counter for the old page.
 *
 * Note that this routine assumes that the protection checks have been
 * done by the caller (the low-level page fault routine in most cases).
 * Thus we can safely just mark it writable once we've done any necessary
 * COW.
 *
 * We also mark the page dirty at this point even though the page will
 * change only once the write actually happens. This avoids a few races,
 * and potentially makes it more efficient.
 *
2304 2305 2306
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), with pte both mapped and locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2307
 */
2308 2309
static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2310
		spinlock_t *ptl, pte_t orig_pte)
2311
	__releases(ptl)
L
Linus Torvalds 已提交
2312
{
2313
	struct page *old_page;
L
Linus Torvalds 已提交
2314

2315
	old_page = vm_normal_page(vma, address, orig_pte);
2316 2317
	if (!old_page) {
		/*
2318 2319
		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
		 * VM_PFNMAP VMA.
2320 2321
		 *
		 * We should not cow pages in a shared writeable mapping.
2322
		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2323 2324 2325
		 */
		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
				     (VM_WRITE|VM_SHARED))
2326 2327
			return wp_pfn_shared(mm, vma, address, page_table, ptl,
					     orig_pte, pmd);
2328 2329 2330 2331

		pte_unmap_unlock(page_table, ptl);
		return wp_page_copy(mm, vma, address, page_table, pmd,
				    orig_pte, old_page);
2332
	}
L
Linus Torvalds 已提交
2333

2334
	/*
P
Peter Zijlstra 已提交
2335 2336
	 * Take out anonymous pages first, anonymous shared vmas are
	 * not dirty accountable.
2337
	 */
H
Hugh Dickins 已提交
2338
	if (PageAnon(old_page) && !PageKsm(old_page)) {
2339 2340 2341 2342 2343 2344 2345 2346
		if (!trylock_page(old_page)) {
			page_cache_get(old_page);
			pte_unmap_unlock(page_table, ptl);
			lock_page(old_page);
			page_table = pte_offset_map_lock(mm, pmd, address,
							 &ptl);
			if (!pte_same(*page_table, orig_pte)) {
				unlock_page(old_page);
2347 2348 2349
				pte_unmap_unlock(page_table, ptl);
				page_cache_release(old_page);
				return 0;
2350 2351
			}
			page_cache_release(old_page);
P
Peter Zijlstra 已提交
2352
		}
2353
		if (reuse_swap_page(old_page)) {
2354 2355 2356 2357 2358 2359
			/*
			 * The page is all ours.  Move it to our anon_vma so
			 * the rmap code will not search our parent or siblings.
			 * Protected against the rmap code by the page lock.
			 */
			page_move_anon_rmap(old_page, vma, address);
2360
			unlock_page(old_page);
2361 2362
			return wp_page_reuse(mm, vma, address, page_table, ptl,
					     orig_pte, old_page, 0, 0);
2363
		}
2364
		unlock_page(old_page);
P
Peter Zijlstra 已提交
2365
	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2366
					(VM_WRITE|VM_SHARED))) {
2367 2368
		return wp_page_shared(mm, vma, address, page_table, pmd,
				      ptl, orig_pte, old_page);
L
Linus Torvalds 已提交
2369 2370 2371 2372 2373
	}

	/*
	 * Ok, we need to copy. Oh, well..
	 */
N
Nick Piggin 已提交
2374
	page_cache_get(old_page);
2375

2376
	pte_unmap_unlock(page_table, ptl);
2377 2378
	return wp_page_copy(mm, vma, address, page_table, pmd,
			    orig_pte, old_page);
L
Linus Torvalds 已提交
2379 2380
}

2381
static void unmap_mapping_range_vma(struct vm_area_struct *vma,
L
Linus Torvalds 已提交
2382 2383 2384
		unsigned long start_addr, unsigned long end_addr,
		struct zap_details *details)
{
2385
	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
L
Linus Torvalds 已提交
2386 2387
}

2388
static inline void unmap_mapping_range_tree(struct rb_root *root,
L
Linus Torvalds 已提交
2389 2390 2391 2392 2393
					    struct zap_details *details)
{
	struct vm_area_struct *vma;
	pgoff_t vba, vea, zba, zea;

2394
	vma_interval_tree_foreach(vma, root,
L
Linus Torvalds 已提交
2395 2396 2397
			details->first_index, details->last_index) {

		vba = vma->vm_pgoff;
2398
		vea = vba + vma_pages(vma) - 1;
L
Linus Torvalds 已提交
2399 2400 2401 2402 2403 2404 2405 2406
		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
		zba = details->first_index;
		if (zba < vba)
			zba = vba;
		zea = details->last_index;
		if (zea > vea)
			zea = vea;

2407
		unmap_mapping_range_vma(vma,
L
Linus Torvalds 已提交
2408 2409
			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2410
				details);
L
Linus Torvalds 已提交
2411 2412 2413 2414
	}
}

/**
2415 2416 2417 2418
 * unmap_mapping_range - unmap the portion of all mmaps in the specified
 * address_space corresponding to the specified page range in the underlying
 * file.
 *
M
Martin Waitz 已提交
2419
 * @mapping: the address space containing mmaps to be unmapped.
L
Linus Torvalds 已提交
2420 2421
 * @holebegin: byte in first page to unmap, relative to the start of
 * the underlying file.  This will be rounded down to a PAGE_SIZE
N
npiggin@suse.de 已提交
2422
 * boundary.  Note that this is different from truncate_pagecache(), which
L
Linus Torvalds 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451
 * must keep the partial page.  In contrast, we must get rid of
 * partial pages.
 * @holelen: size of prospective hole in bytes.  This will be rounded
 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
 * end of the file.
 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
 * but 0 when invalidating pagecache, don't throw away private data.
 */
void unmap_mapping_range(struct address_space *mapping,
		loff_t const holebegin, loff_t const holelen, int even_cows)
{
	struct zap_details details;
	pgoff_t hba = holebegin >> PAGE_SHIFT;
	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;

	/* Check for overflow. */
	if (sizeof(holelen) > sizeof(hlen)) {
		long long holeend =
			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (holeend & ~(long long)ULONG_MAX)
			hlen = ULONG_MAX - hba + 1;
	}

	details.check_mapping = even_cows? NULL: mapping;
	details.first_index = hba;
	details.last_index = hba + hlen - 1;
	if (details.last_index < details.first_index)
		details.last_index = ULONG_MAX;

R
Ross Zwisler 已提交
2452 2453

	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2454
	i_mmap_lock_write(mapping);
2455
	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
L
Linus Torvalds 已提交
2456
		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2457
	i_mmap_unlock_write(mapping);
L
Linus Torvalds 已提交
2458 2459 2460 2461
}
EXPORT_SYMBOL(unmap_mapping_range);

/*
2462 2463
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
2464 2465 2466 2467
 * We return with pte unmapped and unlocked.
 *
 * We return with the mmap_sem locked or unlocked in the same cases
 * as does filemap_fault().
L
Linus Torvalds 已提交
2468
 */
2469 2470
static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2471
		unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
2472
{
2473
	spinlock_t *ptl;
2474
	struct page *page, *swapcache;
2475
	struct mem_cgroup *memcg;
2476
	swp_entry_t entry;
L
Linus Torvalds 已提交
2477
	pte_t pte;
2478
	int locked;
2479
	int exclusive = 0;
N
Nick Piggin 已提交
2480
	int ret = 0;
L
Linus Torvalds 已提交
2481

H
Hugh Dickins 已提交
2482
	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2483
		goto out;
2484 2485

	entry = pte_to_swp_entry(orig_pte);
2486 2487 2488 2489 2490 2491 2492
	if (unlikely(non_swap_entry(entry))) {
		if (is_migration_entry(entry)) {
			migration_entry_wait(mm, pmd, address);
		} else if (is_hwpoison_entry(entry)) {
			ret = VM_FAULT_HWPOISON;
		} else {
			print_bad_pte(vma, address, orig_pte, NULL);
H
Hugh Dickins 已提交
2493
			ret = VM_FAULT_SIGBUS;
2494
		}
2495 2496
		goto out;
	}
2497
	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
L
Linus Torvalds 已提交
2498 2499
	page = lookup_swap_cache(entry);
	if (!page) {
2500 2501
		page = swapin_readahead(entry,
					GFP_HIGHUSER_MOVABLE, vma, address);
L
Linus Torvalds 已提交
2502 2503
		if (!page) {
			/*
2504 2505
			 * Back out if somebody else faulted in this pte
			 * while we released the pte lock.
L
Linus Torvalds 已提交
2506
			 */
2507
			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
L
Linus Torvalds 已提交
2508 2509
			if (likely(pte_same(*page_table, orig_pte)))
				ret = VM_FAULT_OOM;
2510
			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2511
			goto unlock;
L
Linus Torvalds 已提交
2512 2513 2514 2515
		}

		/* Had to read the page from swap area: Major fault */
		ret = VM_FAULT_MAJOR;
2516
		count_vm_event(PGMAJFAULT);
2517
		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2518
	} else if (PageHWPoison(page)) {
2519 2520 2521 2522
		/*
		 * hwpoisoned dirty swapcache pages are kept for killing
		 * owner processes (which may be unknown at hwpoison time)
		 */
2523 2524
		ret = VM_FAULT_HWPOISON;
		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2525
		swapcache = page;
2526
		goto out_release;
L
Linus Torvalds 已提交
2527 2528
	}

2529
	swapcache = page;
2530
	locked = lock_page_or_retry(page, mm, flags);
R
Rik van Riel 已提交
2531

2532
	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2533 2534 2535 2536
	if (!locked) {
		ret |= VM_FAULT_RETRY;
		goto out_release;
	}
2537

A
Andrea Arcangeli 已提交
2538
	/*
2539 2540 2541 2542
	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
	 * release the swapcache from under us.  The page pin, and pte_same
	 * test below, are not enough to exclude that.  Even if it is still
	 * swapcache, we need to check that the page's swap has not changed.
A
Andrea Arcangeli 已提交
2543
	 */
2544
	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
A
Andrea Arcangeli 已提交
2545 2546
		goto out_page;

2547 2548 2549 2550 2551
	page = ksm_might_need_to_copy(page, vma, address);
	if (unlikely(!page)) {
		ret = VM_FAULT_OOM;
		page = swapcache;
		goto out_page;
H
Hugh Dickins 已提交
2552 2553
	}

2554
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2555
		ret = VM_FAULT_OOM;
2556
		goto out_page;
2557 2558
	}

L
Linus Torvalds 已提交
2559
	/*
2560
	 * Back out if somebody else already faulted in this pte.
L
Linus Torvalds 已提交
2561
	 */
2562
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2563
	if (unlikely(!pte_same(*page_table, orig_pte)))
2564 2565 2566 2567 2568
		goto out_nomap;

	if (unlikely(!PageUptodate(page))) {
		ret = VM_FAULT_SIGBUS;
		goto out_nomap;
L
Linus Torvalds 已提交
2569 2570
	}

2571 2572 2573 2574 2575 2576 2577 2578 2579
	/*
	 * The page isn't present yet, go ahead with the fault.
	 *
	 * Be careful about the sequence of operations here.
	 * To get its accounting right, reuse_swap_page() must be called
	 * while the page is counted on swap but not yet in mapcount i.e.
	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
	 * must be called after the swap_free(), or it will never succeed.
	 */
L
Linus Torvalds 已提交
2580

2581
	inc_mm_counter_fast(mm, MM_ANONPAGES);
K
KAMEZAWA Hiroyuki 已提交
2582
	dec_mm_counter_fast(mm, MM_SWAPENTS);
L
Linus Torvalds 已提交
2583
	pte = mk_pte(page, vma->vm_page_prot);
2584
	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
L
Linus Torvalds 已提交
2585
		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2586
		flags &= ~FAULT_FLAG_WRITE;
2587
		ret |= VM_FAULT_WRITE;
2588
		exclusive = RMAP_EXCLUSIVE;
L
Linus Torvalds 已提交
2589 2590
	}
	flush_icache_page(vma, page);
2591 2592
	if (pte_swp_soft_dirty(orig_pte))
		pte = pte_mksoft_dirty(pte);
L
Linus Torvalds 已提交
2593
	set_pte_at(mm, address, page_table, pte);
2594
	if (page == swapcache) {
2595
		do_page_add_anon_rmap(page, vma, address, exclusive);
2596
		mem_cgroup_commit_charge(page, memcg, true, false);
2597
	} else { /* ksm created a completely new copy */
2598
		page_add_new_anon_rmap(page, vma, address, false);
2599
		mem_cgroup_commit_charge(page, memcg, false, false);
2600 2601
		lru_cache_add_active_or_unevictable(page, vma);
	}
L
Linus Torvalds 已提交
2602

2603
	swap_free(entry);
2604 2605
	if (mem_cgroup_swap_full(page) ||
	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2606
		try_to_free_swap(page);
2607
	unlock_page(page);
2608
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
		/*
		 * Hold the lock to avoid the swap entry to be reused
		 * until we take the PT lock for the pte_same() check
		 * (to avoid false positives from pte_same). For
		 * further safety release the lock after the swap_free
		 * so that the swap count won't change under a
		 * parallel locked swapcache.
		 */
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2620

2621
	if (flags & FAULT_FLAG_WRITE) {
2622 2623 2624
		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
		if (ret & VM_FAULT_ERROR)
			ret &= VM_FAULT_ERROR;
L
Linus Torvalds 已提交
2625 2626 2627 2628
		goto out;
	}

	/* No need to invalidate - it was non-present before */
2629
	update_mmu_cache(vma, address, page_table);
2630
unlock:
2631
	pte_unmap_unlock(page_table, ptl);
L
Linus Torvalds 已提交
2632 2633
out:
	return ret;
2634
out_nomap:
2635
	mem_cgroup_cancel_charge(page, memcg, false);
2636
	pte_unmap_unlock(page_table, ptl);
2637
out_page:
2638
	unlock_page(page);
2639
out_release:
2640
	page_cache_release(page);
2641
	if (page != swapcache) {
A
Andrea Arcangeli 已提交
2642 2643 2644
		unlock_page(swapcache);
		page_cache_release(swapcache);
	}
2645
	return ret;
L
Linus Torvalds 已提交
2646 2647
}

2648
/*
2649 2650
 * This is like a special single-page "expand_{down|up}wards()",
 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2651 2652 2653 2654 2655 2656
 * doesn't hit another vma.
 */
static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
{
	address &= PAGE_MASK;
	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
		struct vm_area_struct *prev = vma->vm_prev;

		/*
		 * Is there a mapping abutting this one below?
		 *
		 * That's only ok if it's the same stack mapping
		 * that has gotten split..
		 */
		if (prev && prev->vm_end == address)
			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2667

2668
		return expand_downwards(vma, address - PAGE_SIZE);
2669
	}
2670 2671 2672 2673 2674 2675 2676
	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
		struct vm_area_struct *next = vma->vm_next;

		/* As VM_GROWSDOWN but s/below/above/ */
		if (next && next->vm_start == address + PAGE_SIZE)
			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;

2677
		return expand_upwards(vma, address + PAGE_SIZE);
2678
	}
2679 2680 2681
	return 0;
}

L
Linus Torvalds 已提交
2682
/*
2683 2684 2685
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
 * We return with mmap_sem still held, but pte unmapped and unlocked.
L
Linus Torvalds 已提交
2686
 */
2687 2688
static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pte_t *page_table, pmd_t *pmd,
2689
		unsigned int flags)
L
Linus Torvalds 已提交
2690
{
2691
	struct mem_cgroup *memcg;
2692 2693
	struct page *page;
	spinlock_t *ptl;
L
Linus Torvalds 已提交
2694 2695
	pte_t entry;

2696 2697
	pte_unmap(page_table);

2698 2699 2700 2701
	/* File mapping without ->vm_ops ? */
	if (vma->vm_flags & VM_SHARED)
		return VM_FAULT_SIGBUS;

2702 2703
	/* Check if we need to add a guard page to the stack */
	if (check_stack_guard_page(vma, address) < 0)
2704
		return VM_FAULT_SIGSEGV;
2705

2706
	/* Use the zero-page for reads */
2707
	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
H
Hugh Dickins 已提交
2708 2709
		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
						vma->vm_page_prot));
2710
		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
H
Hugh Dickins 已提交
2711 2712
		if (!pte_none(*page_table))
			goto unlock;
2713 2714 2715 2716 2717 2718
		/* Deliver the page fault to userland, check inside PT lock */
		if (userfaultfd_missing(vma)) {
			pte_unmap_unlock(page_table, ptl);
			return handle_userfault(vma, address, flags,
						VM_UFFD_MISSING);
		}
H
Hugh Dickins 已提交
2719 2720 2721
		goto setpte;
	}

N
Nick Piggin 已提交
2722 2723 2724 2725 2726 2727
	/* Allocate our own private page. */
	if (unlikely(anon_vma_prepare(vma)))
		goto oom;
	page = alloc_zeroed_user_highpage_movable(vma, address);
	if (!page)
		goto oom;
2728

2729
	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2730 2731
		goto oom_free_page;

2732 2733 2734 2735 2736
	/*
	 * The memory barrier inside __SetPageUptodate makes sure that
	 * preceeding stores to the page contents become visible before
	 * the set_pte_at() write.
	 */
N
Nick Piggin 已提交
2737
	__SetPageUptodate(page);
2738

N
Nick Piggin 已提交
2739
	entry = mk_pte(page, vma->vm_page_prot);
H
Hugh Dickins 已提交
2740 2741
	if (vma->vm_flags & VM_WRITE)
		entry = pte_mkwrite(pte_mkdirty(entry));
L
Linus Torvalds 已提交
2742

N
Nick Piggin 已提交
2743
	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2744
	if (!pte_none(*page_table))
N
Nick Piggin 已提交
2745
		goto release;
H
Hugh Dickins 已提交
2746

2747 2748 2749
	/* Deliver the page fault to userland, check inside PT lock */
	if (userfaultfd_missing(vma)) {
		pte_unmap_unlock(page_table, ptl);
2750
		mem_cgroup_cancel_charge(page, memcg, false);
2751 2752 2753 2754 2755
		page_cache_release(page);
		return handle_userfault(vma, address, flags,
					VM_UFFD_MISSING);
	}

2756
	inc_mm_counter_fast(mm, MM_ANONPAGES);
2757
	page_add_new_anon_rmap(page, vma, address, false);
2758
	mem_cgroup_commit_charge(page, memcg, false, false);
2759
	lru_cache_add_active_or_unevictable(page, vma);
H
Hugh Dickins 已提交
2760
setpte:
2761
	set_pte_at(mm, address, page_table, entry);
L
Linus Torvalds 已提交
2762 2763

	/* No need to invalidate - it was non-present before */
2764
	update_mmu_cache(vma, address, page_table);
2765
unlock:
2766
	pte_unmap_unlock(page_table, ptl);
N
Nick Piggin 已提交
2767
	return 0;
2768
release:
2769
	mem_cgroup_cancel_charge(page, memcg, false);
2770 2771
	page_cache_release(page);
	goto unlock;
2772
oom_free_page:
2773
	page_cache_release(page);
2774
oom:
L
Linus Torvalds 已提交
2775 2776 2777
	return VM_FAULT_OOM;
}

2778 2779 2780 2781 2782
/*
 * The mmap_sem must have been held on entry, and may have been
 * released depending on flags and vma->vm_ops->fault() return value.
 * See filemap_fault() and __lock_page_retry().
 */
2783
static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2784 2785
			pgoff_t pgoff, unsigned int flags,
			struct page *cow_page, struct page **page)
2786 2787 2788 2789 2790 2791 2792 2793
{
	struct vm_fault vmf;
	int ret;

	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
	vmf.pgoff = pgoff;
	vmf.flags = flags;
	vmf.page = NULL;
2794
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2795
	vmf.cow_page = cow_page;
2796 2797 2798 2799

	ret = vma->vm_ops->fault(vma, &vmf);
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;
2800 2801
	if (!vmf.page)
		goto out;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814

	if (unlikely(PageHWPoison(vmf.page))) {
		if (ret & VM_FAULT_LOCKED)
			unlock_page(vmf.page);
		page_cache_release(vmf.page);
		return VM_FAULT_HWPOISON;
	}

	if (unlikely(!(ret & VM_FAULT_LOCKED)))
		lock_page(vmf.page);
	else
		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);

2815
 out:
2816 2817 2818 2819
	*page = vmf.page;
	return ret;
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
/**
 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
 *
 * @vma: virtual memory area
 * @address: user virtual address
 * @page: page to map
 * @pte: pointer to target page table entry
 * @write: true, if new entry is writable
 * @anon: true, if it's anonymous page
 *
 * Caller must hold page table lock relevant for @pte.
 *
 * Target users are page handler itself and implementations of
 * vm_ops->map_pages.
 */
void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
		struct page *page, pte_t *pte, bool write, bool anon)
{
	pte_t entry;

	flush_icache_page(vma, page);
	entry = mk_pte(page, vma->vm_page_prot);
	if (write)
		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
	if (anon) {
		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2846
		page_add_new_anon_rmap(page, vma, address, false);
2847
	} else {
2848
		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2849 2850 2851 2852 2853 2854 2855 2856
		page_add_file_rmap(page);
	}
	set_pte_at(vma->vm_mm, address, pte, entry);

	/* no need to invalidate: a not-present page won't be cached */
	update_mmu_cache(vma, address, pte);
}

2857 2858
static unsigned long fault_around_bytes __read_mostly =
	rounddown_pow_of_two(65536);
2859 2860 2861

#ifdef CONFIG_DEBUG_FS
static int fault_around_bytes_get(void *data, u64 *val)
2862
{
2863
	*val = fault_around_bytes;
2864 2865 2866
	return 0;
}

2867 2868 2869 2870 2871
/*
 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
 * rounded down to nearest page order. It's what do_fault_around() expects to
 * see.
 */
2872
static int fault_around_bytes_set(void *data, u64 val)
2873
{
2874
	if (val / PAGE_SIZE > PTRS_PER_PTE)
2875
		return -EINVAL;
2876 2877 2878 2879
	if (val > PAGE_SIZE)
		fault_around_bytes = rounddown_pow_of_two(val);
	else
		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2880 2881
	return 0;
}
2882 2883
DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2884 2885 2886 2887 2888

static int __init fault_around_debugfs(void)
{
	void *ret;

2889 2890
	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
			&fault_around_bytes_fops);
2891
	if (!ret)
2892
		pr_warn("Failed to create fault_around_bytes in debugfs");
2893 2894 2895 2896
	return 0;
}
late_initcall(fault_around_debugfs);
#endif
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
/*
 * do_fault_around() tries to map few pages around the fault address. The hope
 * is that the pages will be needed soon and this will lower the number of
 * faults to handle.
 *
 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
 * not ready to be mapped: not up-to-date, locked, etc.
 *
 * This function is called with the page table lock taken. In the split ptlock
 * case the page table lock only protects only those entries which belong to
 * the page table corresponding to the fault address.
 *
 * This function doesn't cross the VMA boundaries, in order to call map_pages()
 * only once.
 *
 * fault_around_pages() defines how many pages we'll try to map.
 * do_fault_around() expects it to return a power of two less than or equal to
 * PTRS_PER_PTE.
 *
 * The virtual address of the area that we map is naturally aligned to the
 * fault_around_pages() value (and therefore to page order).  This way it's
 * easier to guarantee that we don't cross page table boundaries.
 */
2921 2922 2923
static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
		pte_t *pte, pgoff_t pgoff, unsigned int flags)
{
2924
	unsigned long start_addr, nr_pages, mask;
2925 2926 2927 2928
	pgoff_t max_pgoff;
	struct vm_fault vmf;
	int off;

2929
	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2930 2931 2932
	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;

	start_addr = max(address & mask, vma->vm_start);
2933 2934 2935 2936 2937 2938
	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
	pte -= off;
	pgoff -= off;

	/*
	 *  max_pgoff is either end of page table or end of vma
2939
	 *  or fault_around_pages() from pgoff, depending what is nearest.
2940 2941 2942 2943
	 */
	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
		PTRS_PER_PTE - 1;
	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2944
			pgoff + nr_pages - 1);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960

	/* Check if it makes any sense to call ->map_pages */
	while (!pte_none(*pte)) {
		if (++pgoff > max_pgoff)
			return;
		start_addr += PAGE_SIZE;
		if (start_addr >= vma->vm_end)
			return;
		pte++;
	}

	vmf.virtual_address = (void __user *) start_addr;
	vmf.pte = pte;
	vmf.pgoff = pgoff;
	vmf.max_pgoff = max_pgoff;
	vmf.flags = flags;
2961
	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2962 2963 2964
	vma->vm_ops->map_pages(vma, &vmf);
}

2965 2966 2967 2968 2969 2970
static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page;
	spinlock_t *ptl;
2971
	pte_t *pte;
2972 2973 2974 2975 2976 2977 2978
	int ret = 0;

	/*
	 * Let's call ->map_pages() first and use ->fault() as fallback
	 * if page by the offset is not ready to be mapped (cold cache or
	 * something).
	 */
2979
	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2980 2981 2982 2983 2984 2985
		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
		do_fault_around(vma, address, pte, pgoff, flags);
		if (!pte_same(*pte, orig_pte))
			goto unlock_out;
		pte_unmap_unlock(pte, ptl);
	}
2986

2987
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		return ret;

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
	}
2998
	do_set_pte(vma, address, fault_page, pte, false, false);
2999
	unlock_page(fault_page);
3000 3001
unlock_out:
	pte_unmap_unlock(pte, ptl);
3002 3003 3004
	return ret;
}

3005 3006 3007 3008 3009
static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		unsigned long address, pmd_t *pmd,
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
{
	struct page *fault_page, *new_page;
3010
	struct mem_cgroup *memcg;
3011
	spinlock_t *ptl;
3012
	pte_t *pte;
3013 3014 3015 3016 3017 3018 3019 3020 3021
	int ret;

	if (unlikely(anon_vma_prepare(vma)))
		return VM_FAULT_OOM;

	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
	if (!new_page)
		return VM_FAULT_OOM;

3022
	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3023 3024 3025 3026
		page_cache_release(new_page);
		return VM_FAULT_OOM;
	}

3027
	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3028 3029 3030
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
		goto uncharge_out;

3031 3032
	if (fault_page)
		copy_user_highpage(new_page, fault_page, address, vma);
3033 3034 3035 3036 3037
	__SetPageUptodate(new_page);

	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
3038 3039 3040 3041 3042 3043
		if (fault_page) {
			unlock_page(fault_page);
			page_cache_release(fault_page);
		} else {
			/*
			 * The fault handler has no page to lock, so it holds
3044
			 * i_mmap_lock for read to protect against truncate.
3045
			 */
3046
			i_mmap_unlock_read(vma->vm_file->f_mapping);
3047
		}
3048 3049
		goto uncharge_out;
	}
3050
	do_set_pte(vma, address, new_page, pte, true, true);
3051
	mem_cgroup_commit_charge(new_page, memcg, false, false);
3052
	lru_cache_add_active_or_unevictable(new_page, vma);
3053
	pte_unmap_unlock(pte, ptl);
3054 3055 3056 3057 3058 3059
	if (fault_page) {
		unlock_page(fault_page);
		page_cache_release(fault_page);
	} else {
		/*
		 * The fault handler has no page to lock, so it holds
3060
		 * i_mmap_lock for read to protect against truncate.
3061
		 */
3062
		i_mmap_unlock_read(vma->vm_file->f_mapping);
3063
	}
3064 3065
	return ret;
uncharge_out:
3066
	mem_cgroup_cancel_charge(new_page, memcg, false);
3067 3068 3069 3070
	page_cache_release(new_page);
	return ret;
}

3071
static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3072
		unsigned long address, pmd_t *pmd,
3073
		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
L
Linus Torvalds 已提交
3074
{
3075 3076
	struct page *fault_page;
	struct address_space *mapping;
3077
	spinlock_t *ptl;
3078
	pte_t *pte;
3079 3080
	int dirtied = 0;
	int ret, tmp;
3081

3082
	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3083
	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3084
		return ret;
L
Linus Torvalds 已提交
3085 3086

	/*
3087 3088
	 * Check if the backing address space wants to know that the page is
	 * about to become writable
L
Linus Torvalds 已提交
3089
	 */
3090 3091 3092 3093 3094
	if (vma->vm_ops->page_mkwrite) {
		unlock_page(fault_page);
		tmp = do_page_mkwrite(vma, fault_page, address);
		if (unlikely(!tmp ||
				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3095
			page_cache_release(fault_page);
3096
			return tmp;
3097
		}
3098 3099
	}

3100 3101 3102 3103 3104 3105
	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
	if (unlikely(!pte_same(*pte, orig_pte))) {
		pte_unmap_unlock(pte, ptl);
		unlock_page(fault_page);
		page_cache_release(fault_page);
		return ret;
L
Linus Torvalds 已提交
3106
	}
3107
	do_set_pte(vma, address, fault_page, pte, true, false);
3108
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3109

3110 3111
	if (set_page_dirty(fault_page))
		dirtied = 1;
3112 3113 3114 3115 3116 3117
	/*
	 * Take a local copy of the address_space - page.mapping may be zeroed
	 * by truncate after unlock_page().   The address_space itself remains
	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
	 * release semantics to prevent the compiler from undoing this copying.
	 */
3118
	mapping = page_rmapping(fault_page);
3119 3120 3121 3122 3123 3124 3125
	unlock_page(fault_page);
	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
		/*
		 * Some device drivers do not set page.mapping but still
		 * dirty their pages
		 */
		balance_dirty_pages_ratelimited(mapping);
3126
	}
3127

3128
	if (!vma->vm_ops->page_mkwrite)
3129
		file_update_time(vma->vm_file);
N
Nick Piggin 已提交
3130

3131
	return ret;
3132
}
3133

3134 3135 3136 3137 3138 3139
/*
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults).
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3140
static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3141
		unsigned long address, pte_t *page_table, pmd_t *pmd,
3142
		unsigned int flags, pte_t orig_pte)
3143
{
3144
	pgoff_t pgoff = linear_page_index(vma, address);
3145

3146
	pte_unmap(page_table);
3147 3148 3149
	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
	if (!vma->vm_ops->fault)
		return VM_FAULT_SIGBUS;
3150 3151 3152
	if (!(flags & FAULT_FLAG_WRITE))
		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3153 3154 3155
	if (!(vma->vm_flags & VM_SHARED))
		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
				orig_pte);
3156
	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3157 3158
}

3159
static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3160 3161
				unsigned long addr, int page_nid,
				int *flags)
3162 3163 3164 3165
{
	get_page(page);

	count_vm_numa_event(NUMA_HINT_FAULTS);
3166
	if (page_nid == numa_node_id()) {
3167
		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3168 3169
		*flags |= TNF_FAULT_LOCAL;
	}
3170 3171 3172 3173

	return mpol_misplaced(page, vma, addr);
}

3174
static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3175 3176
		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
{
3177
	struct page *page = NULL;
3178
	spinlock_t *ptl;
3179
	int page_nid = -1;
3180
	int last_cpupid;
3181
	int target_nid;
3182
	bool migrated = false;
3183
	bool was_writable = pte_write(pte);
3184
	int flags = 0;
3185

3186 3187 3188
	/* A PROT_NONE fault should not end up here */
	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));

3189 3190 3191 3192 3193
	/*
	* The "pte" at this point cannot be used safely without
	* validation through pte_unmap_same(). It's of NUMA type but
	* the pfn may be screwed if the read is non atomic.
	*
3194 3195 3196
	* We can safely just do a "set_pte_at()", because the old
	* page table entry is not accessible, so there would be no
	* concurrent hardware modifications to the PTE.
3197 3198 3199
	*/
	ptl = pte_lockptr(mm, pmd);
	spin_lock(ptl);
3200 3201 3202 3203 3204
	if (unlikely(!pte_same(*ptep, pte))) {
		pte_unmap_unlock(ptep, ptl);
		goto out;
	}

3205 3206 3207
	/* Make it present again */
	pte = pte_modify(pte, vma->vm_page_prot);
	pte = pte_mkyoung(pte);
3208 3209
	if (was_writable)
		pte = pte_mkwrite(pte);
3210 3211 3212 3213 3214 3215 3216 3217 3218
	set_pte_at(mm, addr, ptep, pte);
	update_mmu_cache(vma, addr, ptep);

	page = vm_normal_page(vma, addr, pte);
	if (!page) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3219 3220 3221 3222 3223 3224
	/* TODO: handle PTE-mapped THP */
	if (PageCompound(page)) {
		pte_unmap_unlock(ptep, ptl);
		return 0;
	}

3225
	/*
3226 3227 3228 3229 3230 3231
	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
	 * much anyway since they can be in shared cache state. This misses
	 * the case where a mapping is writable but the process never writes
	 * to it but pte_write gets cleared during protection updates and
	 * pte_dirty has unpredictable behaviour between PTE scan updates,
	 * background writeback, dirty balancing and application behaviour.
3232
	 */
3233
	if (!(vma->vm_flags & VM_WRITE))
3234 3235
		flags |= TNF_NO_GROUP;

3236 3237 3238 3239 3240 3241 3242
	/*
	 * Flag if the page is shared between multiple address spaces. This
	 * is later used when determining whether to group tasks together
	 */
	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
		flags |= TNF_SHARED;

3243
	last_cpupid = page_cpupid_last(page);
3244
	page_nid = page_to_nid(page);
3245
	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3246
	pte_unmap_unlock(ptep, ptl);
3247 3248 3249 3250 3251 3252
	if (target_nid == -1) {
		put_page(page);
		goto out;
	}

	/* Migrate to the requested node */
3253
	migrated = migrate_misplaced_page(page, vma, target_nid);
3254
	if (migrated) {
3255
		page_nid = target_nid;
3256
		flags |= TNF_MIGRATED;
3257 3258
	} else
		flags |= TNF_MIGRATE_FAIL;
3259 3260

out:
3261
	if (page_nid != -1)
3262
		task_numa_fault(last_cpupid, page_nid, 1, flags);
3263 3264 3265
	return 0;
}

M
Matthew Wilcox 已提交
3266 3267 3268
static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, unsigned int flags)
{
3269
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
			unsigned int flags)
{
3280
	if (vma_is_anonymous(vma))
M
Matthew Wilcox 已提交
3281 3282 3283 3284 3285 3286
		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
	if (vma->vm_ops->pmd_fault)
		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
	return VM_FAULT_FALLBACK;
}

L
Linus Torvalds 已提交
3287 3288 3289 3290 3291 3292 3293 3294 3295
/*
 * These routines also need to handle stuff like marking pages dirty
 * and/or accessed for architectures that don't do it in hardware (most
 * RISC architectures).  The early dirtying is also good on the i386.
 *
 * There is also a hook called "update_mmu_cache()" that architectures
 * with external mmu caches can use to update those (ie the Sparc or
 * PowerPC hashed page tables that act as extended TLBs).
 *
H
Hugh Dickins 已提交
3296 3297
 * We enter with non-exclusive mmap_sem (to exclude vma changes,
 * but allow concurrent faults), and pte mapped but not yet locked.
3298 3299 3300 3301
 * We return with pte unmapped and unlocked.
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3302
 */
3303
static int handle_pte_fault(struct mm_struct *mm,
3304 3305
		     struct vm_area_struct *vma, unsigned long address,
		     pte_t *pte, pmd_t *pmd, unsigned int flags)
L
Linus Torvalds 已提交
3306 3307
{
	pte_t entry;
3308
	spinlock_t *ptl;
L
Linus Torvalds 已提交
3309

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	/*
	 * some architectures can have larger ptes than wordsize,
	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
	 * The code below just needs a consistent view for the ifs and
	 * we later double check anyway with the ptl lock held. So here
	 * a barrier will do.
	 */
	entry = *pte;
	barrier();
L
Linus Torvalds 已提交
3320
	if (!pte_present(entry)) {
3321
		if (pte_none(entry)) {
3322 3323 3324 3325
			if (vma_is_anonymous(vma))
				return do_anonymous_page(mm, vma, address,
							 pte, pmd, flags);
			else
3326 3327
				return do_fault(mm, vma, address, pte, pmd,
						flags, entry);
3328 3329
		}
		return do_swap_page(mm, vma, address,
3330
					pte, pmd, flags, entry);
L
Linus Torvalds 已提交
3331 3332
	}

3333
	if (pte_protnone(entry))
3334 3335
		return do_numa_page(mm, vma, address, entry, pte, pmd);

H
Hugh Dickins 已提交
3336
	ptl = pte_lockptr(mm, pmd);
3337 3338 3339
	spin_lock(ptl);
	if (unlikely(!pte_same(*pte, entry)))
		goto unlock;
3340
	if (flags & FAULT_FLAG_WRITE) {
L
Linus Torvalds 已提交
3341
		if (!pte_write(entry))
3342 3343
			return do_wp_page(mm, vma, address,
					pte, pmd, ptl, entry);
L
Linus Torvalds 已提交
3344 3345 3346
		entry = pte_mkdirty(entry);
	}
	entry = pte_mkyoung(entry);
3347
	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3348
		update_mmu_cache(vma, address, pte);
3349 3350 3351 3352 3353 3354 3355
	} else {
		/*
		 * This is needed only for protection faults but the arch code
		 * is not yet telling us if this is a protection fault or not.
		 * This still avoids useless tlb flushes for .text page faults
		 * with threads.
		 */
3356
		if (flags & FAULT_FLAG_WRITE)
3357
			flush_tlb_fix_spurious_fault(vma, address);
3358
	}
3359 3360
unlock:
	pte_unmap_unlock(pte, ptl);
N
Nick Piggin 已提交
3361
	return 0;
L
Linus Torvalds 已提交
3362 3363 3364 3365
}

/*
 * By the time we get here, we already hold the mm semaphore
3366 3367 3368
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
L
Linus Torvalds 已提交
3369
 */
3370 3371
static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
			     unsigned long address, unsigned int flags)
L
Linus Torvalds 已提交
3372 3373 3374 3375 3376 3377
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

3378
	if (unlikely(is_vm_hugetlb_page(vma)))
3379
		return hugetlb_fault(mm, vma, address, flags);
L
Linus Torvalds 已提交
3380 3381 3382 3383

	pgd = pgd_offset(mm, address);
	pud = pud_alloc(mm, pgd, address);
	if (!pud)
H
Hugh Dickins 已提交
3384
		return VM_FAULT_OOM;
L
Linus Torvalds 已提交
3385 3386
	pmd = pmd_alloc(mm, pud, address);
	if (!pmd)
H
Hugh Dickins 已提交
3387
		return VM_FAULT_OOM;
3388
	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
M
Matthew Wilcox 已提交
3389
		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3390 3391
		if (!(ret & VM_FAULT_FALLBACK))
			return ret;
3392 3393
	} else {
		pmd_t orig_pmd = *pmd;
3394 3395
		int ret;

3396
		barrier();
3397
		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3398 3399
			unsigned int dirty = flags & FAULT_FLAG_WRITE;

3400
			if (pmd_protnone(orig_pmd))
3401
				return do_huge_pmd_numa_page(mm, vma, address,
3402 3403
							     orig_pmd, pmd);

3404
			if (dirty && !pmd_write(orig_pmd)) {
M
Matthew Wilcox 已提交
3405 3406
				ret = wp_huge_pmd(mm, vma, address, pmd,
							orig_pmd, flags);
3407 3408
				if (!(ret & VM_FAULT_FALLBACK))
					return ret;
3409 3410 3411
			} else {
				huge_pmd_set_accessed(mm, vma, address, pmd,
						      orig_pmd, dirty);
3412
				return 0;
3413
			}
3414 3415 3416 3417
		}
	}

	/*
3418
	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3419 3420 3421
	 * run pte_offset_map on the pmd, if an huge pmd could
	 * materialize from under us from a different thread.
	 */
3422
	if (unlikely(pte_alloc(mm, pmd, address)))
H
Hugh Dickins 已提交
3423
		return VM_FAULT_OOM;
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
	/*
	 * If a huge pmd materialized under us just retry later.  Use
	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
	 * in a different thread of this mm, in turn leading to a misleading
	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
	 * regular pmd that we can walk with pte_offset_map() and we can do that
	 * through an atomic read in C, which is what pmd_trans_unstable()
	 * provides.
	 */
	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3436 3437 3438 3439 3440 3441 3442 3443
		return 0;
	/*
	 * A regular pmd is established and it can't morph into a huge pmd
	 * from under us anymore at this point because we hold the mmap_sem
	 * read mode and khugepaged takes it in write mode. So now it's
	 * safe to run pte_offset_map().
	 */
	pte = pte_offset_map(pmd, address);
L
Linus Torvalds 已提交
3444

3445
	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
L
Linus Torvalds 已提交
3446 3447
}

3448 3449 3450 3451 3452 3453
/*
 * By the time we get here, we already hold the mm semaphore
 *
 * The mmap_sem may have been released depending on flags and our
 * return value.  See filemap_fault() and __lock_page_or_retry().
 */
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
		    unsigned long address, unsigned int flags)
{
	int ret;

	__set_current_state(TASK_RUNNING);

	count_vm_event(PGFAULT);
	mem_cgroup_count_vm_event(mm, PGFAULT);

	/* do counter updates before entering really critical section. */
	check_sync_rss_stat(current);

	/*
	 * Enable the memcg OOM handling for faults triggered in user
	 * space.  Kernel faults are handled more gracefully.
	 */
	if (flags & FAULT_FLAG_USER)
3472
		mem_cgroup_oom_enable();
3473 3474 3475

	ret = __handle_mm_fault(mm, vma, address, flags);

3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	if (flags & FAULT_FLAG_USER) {
		mem_cgroup_oom_disable();
                /*
                 * The task may have entered a memcg OOM situation but
                 * if the allocation error was handled gracefully (no
                 * VM_FAULT_OOM), there is no need to kill anything.
                 * Just clean up the OOM state peacefully.
                 */
                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
                        mem_cgroup_oom_synchronize(false);
	}
3487

3488 3489
	return ret;
}
3490
EXPORT_SYMBOL_GPL(handle_mm_fault);
3491

L
Linus Torvalds 已提交
3492 3493 3494
#ifndef __PAGETABLE_PUD_FOLDED
/*
 * Allocate page upper directory.
H
Hugh Dickins 已提交
3495
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3496
 */
3497
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
L
Linus Torvalds 已提交
3498
{
H
Hugh Dickins 已提交
3499 3500
	pud_t *new = pud_alloc_one(mm, address);
	if (!new)
3501
		return -ENOMEM;
L
Linus Torvalds 已提交
3502

3503 3504
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3505
	spin_lock(&mm->page_table_lock);
3506
	if (pgd_present(*pgd))		/* Another has populated it */
3507
		pud_free(mm, new);
3508 3509
	else
		pgd_populate(mm, pgd, new);
H
Hugh Dickins 已提交
3510
	spin_unlock(&mm->page_table_lock);
3511
	return 0;
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516 3517
}
#endif /* __PAGETABLE_PUD_FOLDED */

#ifndef __PAGETABLE_PMD_FOLDED
/*
 * Allocate page middle directory.
H
Hugh Dickins 已提交
3518
 * We've already handled the fast-path in-line.
L
Linus Torvalds 已提交
3519
 */
3520
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
L
Linus Torvalds 已提交
3521
{
H
Hugh Dickins 已提交
3522 3523
	pmd_t *new = pmd_alloc_one(mm, address);
	if (!new)
3524
		return -ENOMEM;
L
Linus Torvalds 已提交
3525

3526 3527
	smp_wmb(); /* See comment in __pte_alloc */

H
Hugh Dickins 已提交
3528
	spin_lock(&mm->page_table_lock);
L
Linus Torvalds 已提交
3529
#ifndef __ARCH_HAS_4LEVEL_HACK
3530 3531
	if (!pud_present(*pud)) {
		mm_inc_nr_pmds(mm);
3532
		pud_populate(mm, pud, new);
3533
	} else	/* Another has populated it */
3534
		pmd_free(mm, new);
3535 3536 3537
#else
	if (!pgd_present(*pud)) {
		mm_inc_nr_pmds(mm);
3538
		pgd_populate(mm, pud, new);
3539 3540
	} else /* Another has populated it */
		pmd_free(mm, new);
L
Linus Torvalds 已提交
3541
#endif /* __ARCH_HAS_4LEVEL_HACK */
H
Hugh Dickins 已提交
3542
	spin_unlock(&mm->page_table_lock);
3543
	return 0;
3544
}
L
Linus Torvalds 已提交
3545 3546
#endif /* __PAGETABLE_PMD_FOLDED */

3547
static int __follow_pte(struct mm_struct *mm, unsigned long address,
J
Johannes Weiner 已提交
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563
		pte_t **ptepp, spinlock_t **ptlp)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;

	pgd = pgd_offset(mm, address);
	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
		goto out;

	pud = pud_offset(pgd, address);
	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
		goto out;

	pmd = pmd_offset(pud, address);
3564
	VM_BUG_ON(pmd_trans_huge(*pmd));
J
Johannes Weiner 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
		goto out;

	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
	if (pmd_huge(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
	if (!ptep)
		goto out;
	if (!pte_present(*ptep))
		goto unlock;
	*ptepp = ptep;
	return 0;
unlock:
	pte_unmap_unlock(ptep, *ptlp);
out:
	return -EINVAL;
}

3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
static inline int follow_pte(struct mm_struct *mm, unsigned long address,
			     pte_t **ptepp, spinlock_t **ptlp)
{
	int res;

	/* (void) is needed to make gcc happy */
	(void) __cond_lock(*ptlp,
			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
	return res;
}

J
Johannes Weiner 已提交
3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
/**
 * follow_pfn - look up PFN at a user virtual address
 * @vma: memory mapping
 * @address: user virtual address
 * @pfn: location to store found PFN
 *
 * Only IO mappings and raw PFN mappings are allowed.
 *
 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 */
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
	unsigned long *pfn)
{
	int ret = -EINVAL;
	spinlock_t *ptl;
	pte_t *ptep;

	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		return ret;

	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
	if (ret)
		return ret;
	*pfn = pte_pfn(*ptep);
	pte_unmap_unlock(ptep, ptl);
	return 0;
}
EXPORT_SYMBOL(follow_pfn);

3625
#ifdef CONFIG_HAVE_IOREMAP_PROT
3626 3627 3628
int follow_phys(struct vm_area_struct *vma,
		unsigned long address, unsigned int flags,
		unsigned long *prot, resource_size_t *phys)
3629
{
3630
	int ret = -EINVAL;
3631 3632 3633
	pte_t *ptep, pte;
	spinlock_t *ptl;

3634 3635
	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
		goto out;
3636

3637
	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3638
		goto out;
3639
	pte = *ptep;
3640

3641 3642 3643 3644
	if ((flags & FOLL_WRITE) && !pte_write(pte))
		goto unlock;

	*prot = pgprot_val(pte_pgprot(pte));
3645
	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3646

3647
	ret = 0;
3648 3649 3650
unlock:
	pte_unmap_unlock(ptep, ptl);
out:
3651
	return ret;
3652 3653 3654 3655 3656 3657 3658
}

int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
			void *buf, int len, int write)
{
	resource_size_t phys_addr;
	unsigned long prot = 0;
K
KOSAKI Motohiro 已提交
3659
	void __iomem *maddr;
3660 3661
	int offset = addr & (PAGE_SIZE-1);

3662
	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3663 3664
		return -EINVAL;

3665
	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3666 3667 3668 3669 3670 3671 3672 3673
	if (write)
		memcpy_toio(maddr + offset, buf, len);
	else
		memcpy_fromio(buf, maddr + offset, len);
	iounmap(maddr);

	return len;
}
3674
EXPORT_SYMBOL_GPL(generic_access_phys);
3675 3676
#endif

3677
/*
3678 3679
 * Access another process' address space as given in mm.  If non-NULL, use the
 * given task for page fault accounting.
3680
 */
3681 3682
static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
		unsigned long addr, void *buf, int len, int write)
3683 3684 3685 3686 3687
{
	struct vm_area_struct *vma;
	void *old_buf = buf;

	down_read(&mm->mmap_sem);
S
Simon Arlott 已提交
3688
	/* ignore errors, just check how much was successfully transferred */
3689 3690 3691
	while (len) {
		int bytes, ret, offset;
		void *maddr;
3692
		struct page *page = NULL;
3693 3694 3695

		ret = get_user_pages(tsk, mm, addr, 1,
				write, 1, &page, &vma);
3696
		if (ret <= 0) {
3697 3698 3699
#ifndef CONFIG_HAVE_IOREMAP_PROT
			break;
#else
3700 3701 3702 3703 3704
			/*
			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
			 * we can access using slightly different code.
			 */
			vma = find_vma(mm, addr);
3705
			if (!vma || vma->vm_start > addr)
3706 3707 3708 3709 3710 3711 3712
				break;
			if (vma->vm_ops && vma->vm_ops->access)
				ret = vma->vm_ops->access(vma, addr, buf,
							  len, write);
			if (ret <= 0)
				break;
			bytes = ret;
3713
#endif
3714
		} else {
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
			bytes = len;
			offset = addr & (PAGE_SIZE-1);
			if (bytes > PAGE_SIZE-offset)
				bytes = PAGE_SIZE-offset;

			maddr = kmap(page);
			if (write) {
				copy_to_user_page(vma, page, addr,
						  maddr + offset, buf, bytes);
				set_page_dirty_lock(page);
			} else {
				copy_from_user_page(vma, page, addr,
						    buf, maddr + offset, bytes);
			}
			kunmap(page);
			page_cache_release(page);
3731 3732 3733 3734 3735 3736 3737 3738 3739
		}
		len -= bytes;
		buf += bytes;
		addr += bytes;
	}
	up_read(&mm->mmap_sem);

	return buf - old_buf;
}
3740

S
Stephen Wilson 已提交
3741
/**
3742
 * access_remote_vm - access another process' address space
S
Stephen Wilson 已提交
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
 * @mm:		the mm_struct of the target address space
 * @addr:	start address to access
 * @buf:	source or destination buffer
 * @len:	number of bytes to transfer
 * @write:	whether the access is a write
 *
 * The caller must hold a reference on @mm.
 */
int access_remote_vm(struct mm_struct *mm, unsigned long addr,
		void *buf, int len, int write)
{
	return __access_remote_vm(NULL, mm, addr, buf, len, write);
}

3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
/*
 * Access another process' address space.
 * Source/target buffer must be kernel space,
 * Do not walk the page table directly, use get_user_pages
 */
int access_process_vm(struct task_struct *tsk, unsigned long addr,
		void *buf, int len, int write)
{
	struct mm_struct *mm;
	int ret;

	mm = get_task_mm(tsk);
	if (!mm)
		return 0;

	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
	mmput(mm);

	return ret;
}

3778 3779 3780 3781 3782 3783 3784 3785
/*
 * Print the name of a VMA.
 */
void print_vma_addr(char *prefix, unsigned long ip)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

3786 3787 3788 3789 3790 3791 3792
	/*
	 * Do not print if we are in atomic
	 * contexts (in exception stacks, etc.):
	 */
	if (preempt_count())
		return;

3793 3794 3795 3796 3797 3798
	down_read(&mm->mmap_sem);
	vma = find_vma(mm, ip);
	if (vma && vma->vm_file) {
		struct file *f = vma->vm_file;
		char *buf = (char *)__get_free_page(GFP_KERNEL);
		if (buf) {
A
Andy Shevchenko 已提交
3799
			char *p;
3800

M
Miklos Szeredi 已提交
3801
			p = file_path(f, buf, PAGE_SIZE);
3802 3803
			if (IS_ERR(p))
				p = "?";
A
Andy Shevchenko 已提交
3804
			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3805 3806 3807 3808 3809
					vma->vm_start,
					vma->vm_end - vma->vm_start);
			free_page((unsigned long)buf);
		}
	}
3810
	up_read(&mm->mmap_sem);
3811
}
3812

3813
#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3814
void __might_fault(const char *file, int line)
3815
{
3816 3817 3818 3819 3820 3821 3822 3823
	/*
	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
	 * holding the mmap_sem, this is safe because kernel memory doesn't
	 * get paged out, therefore we'll never actually fault, and the
	 * below annotations will generate false positives.
	 */
	if (segment_eq(get_fs(), KERNEL_DS))
		return;
3824
	if (pagefault_disabled())
3825
		return;
3826 3827
	__might_sleep(file, line, 0);
#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3828
	if (current->mm)
3829
		might_lock_read(&current->mm->mmap_sem);
3830
#endif
3831
}
3832
EXPORT_SYMBOL(__might_fault);
3833
#endif
A
Andrea Arcangeli 已提交
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904

#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
static void clear_gigantic_page(struct page *page,
				unsigned long addr,
				unsigned int pages_per_huge_page)
{
	int i;
	struct page *p = page;

	might_sleep();
	for (i = 0; i < pages_per_huge_page;
	     i++, p = mem_map_next(p, page, i)) {
		cond_resched();
		clear_user_highpage(p, addr + i * PAGE_SIZE);
	}
}
void clear_huge_page(struct page *page,
		     unsigned long addr, unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		clear_gigantic_page(page, addr, pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
	}
}

static void copy_user_gigantic_page(struct page *dst, struct page *src,
				    unsigned long addr,
				    struct vm_area_struct *vma,
				    unsigned int pages_per_huge_page)
{
	int i;
	struct page *dst_base = dst;
	struct page *src_base = src;

	for (i = 0; i < pages_per_huge_page; ) {
		cond_resched();
		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);

		i++;
		dst = mem_map_next(dst, dst_base, i);
		src = mem_map_next(src, src_base, i);
	}
}

void copy_user_huge_page(struct page *dst, struct page *src,
			 unsigned long addr, struct vm_area_struct *vma,
			 unsigned int pages_per_huge_page)
{
	int i;

	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
		copy_user_gigantic_page(dst, src, addr, vma,
					pages_per_huge_page);
		return;
	}

	might_sleep();
	for (i = 0; i < pages_per_huge_page; i++) {
		cond_resched();
		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
	}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3905

3906
#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3907 3908 3909 3910 3911 3912 3913 3914 3915

static struct kmem_cache *page_ptl_cachep;

void __init ptlock_cache_init(void)
{
	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
			SLAB_PANIC, NULL);
}

3916
bool ptlock_alloc(struct page *page)
3917 3918 3919
{
	spinlock_t *ptl;

3920
	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3921 3922
	if (!ptl)
		return false;
3923
	page->ptl = ptl;
3924 3925 3926
	return true;
}

3927
void ptlock_free(struct page *page)
3928
{
3929
	kmem_cache_free(page_ptl_cachep, page->ptl);
3930 3931
}
#endif