hugetlbpage.c 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright 2010 Tilera Corporation. All Rights Reserved.
 *
 *   This program is free software; you can redistribute it and/or
 *   modify it under the terms of the GNU General Public License
 *   as published by the Free Software Foundation, version 2.
 *
 *   This program is distributed in the hope that it will be useful, but
 *   WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
 *   NON INFRINGEMENT.  See the GNU General Public License for
 *   more details.
 *
 * TILE Huge TLB Page Support for Kernel.
 * Taken from i386 hugetlb implementation:
 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 */

#include <linux/init.h>
#include <linux/fs.h>
#include <linux/mm.h>
22
#include <linux/sched/mm.h>
23 24 25 26 27 28 29 30
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/sysctl.h>
#include <linux/mman.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
#include <asm/setup.h>

#ifdef CONFIG_HUGETLB_SUPER_PAGES

/*
 * Provide an additional huge page size (in addition to the regular default
 * huge page size) if no "hugepagesz" arguments are specified.
 * Note that it must be smaller than the default huge page size so
 * that it's possible to allocate them on demand from the buddy allocator.
 * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
 * or not define it at all.
 */
#define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)

/* "Extra" page-size multipliers, one per level of the page table. */
int huge_shift[HUGE_SHIFT_ENTRIES] = {
#ifdef ADDITIONAL_HUGE_SIZE
#define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
	[HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
#endif
};

#endif
54 55 56 57 58 59 60

pte_t *huge_pte_alloc(struct mm_struct *mm,
		      unsigned long addr, unsigned long sz)
{
	pgd_t *pgd;
	pud_t *pud;

61
	addr &= -sz;   /* Mask off any low bits in the address. */
62 63 64 65

	pgd = pgd_offset(mm, addr);
	pud = pud_alloc(mm, pgd, addr);

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
#ifdef CONFIG_HUGETLB_SUPER_PAGES
	if (sz >= PGDIR_SIZE) {
		BUG_ON(sz != PGDIR_SIZE &&
		       sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
		return (pte_t *)pud;
	} else {
		pmd_t *pmd = pmd_alloc(mm, pud, addr);
		if (sz >= PMD_SIZE) {
			BUG_ON(sz != PMD_SIZE &&
			       sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
			return (pte_t *)pmd;
		}
		else {
			if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
				panic("Unexpected page size %#lx\n", sz);
81
			return pte_alloc_map(mm, pmd, addr);
82 83 84 85 86 87
		}
	}
#else
	BUG_ON(sz != PMD_SIZE);
	return (pte_t *) pmd_alloc(mm, pud, addr);
#endif
88 89
}

90
static pte_t *get_pte(pte_t *base, int index, int level)
91
{
92 93 94 95 96 97 98 99
	pte_t *ptep = base + index;
#ifdef CONFIG_HUGETLB_SUPER_PAGES
	if (!pte_present(*ptep) && huge_shift[level] != 0) {
		unsigned long mask = -1UL << huge_shift[level];
		pte_t *super_ptep = base + (index & mask);
		pte_t pte = *super_ptep;
		if (pte_present(pte) && pte_super(pte))
			ptep = super_ptep;
100
	}
101 102
#endif
	return ptep;
103 104
}

105
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
106
{
107 108 109 110 111 112
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
#ifdef CONFIG_HUGETLB_SUPER_PAGES
	pte_t *pte;
#endif
113

114 115
	/* Get the top-level page table entry. */
	pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
116

117 118 119 120 121
	/* We don't have four levels. */
	pud = pud_offset(pgd, addr);
#ifndef __PAGETABLE_PUD_FOLDED
# error support fourth page table level
#endif
122 123
	if (!pud_present(*pud))
		return NULL;
124

125 126 127 128
	/* Check for an L0 huge PTE, if we have three levels. */
#ifndef __PAGETABLE_PMD_FOLDED
	if (pud_huge(*pud))
		return (pte_t *)pud;
129

130 131 132 133 134 135 136
	pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
			       pmd_index(addr), 1);
	if (!pmd_present(*pmd))
		return NULL;
#else
	pmd = pmd_offset(pud, addr);
#endif
137

138 139 140 141 142 143 144 145 146 147 148 149
	/* Check for an L1 huge PTE. */
	if (pmd_huge(*pmd))
		return (pte_t *)pmd;

#ifdef CONFIG_HUGETLB_SUPER_PAGES
	/* Check for an L2 huge PTE. */
	pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
	if (!pte_present(*pte))
		return NULL;
	if (pte_super(*pte))
		return pte;
#endif
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	return NULL;
}

int pmd_huge(pmd_t pmd)
{
	return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
}

int pud_huge(pud_t pud)
{
	return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
}

#ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
		unsigned long addr, unsigned long len,
		unsigned long pgoff, unsigned long flags)
{
	struct hstate *h = hstate_file(file);
170 171 172 173 174 175 176 177 178
	struct vm_unmapped_area_info info;

	info.flags = 0;
	info.length = len;
	info.low_limit = TASK_UNMAPPED_BASE;
	info.high_limit = TASK_SIZE;
	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
	info.align_offset = 0;
	return vm_unmapped_area(&info);
179 180 181 182 183 184 185
}

static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
		unsigned long addr0, unsigned long len,
		unsigned long pgoff, unsigned long flags)
{
	struct hstate *h = hstate_file(file);
186 187
	struct vm_unmapped_area_info info;
	unsigned long addr;
188

189 190 191 192 193 194 195
	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
	info.length = len;
	info.low_limit = PAGE_SIZE;
	info.high_limit = current->mm->mmap_base;
	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
	info.align_offset = 0;
	addr = vm_unmapped_area(&info);
196 197 198 199 200 201 202

	/*
	 * A failed mmap() very likely causes application failure,
	 * so fall back to the bottom-up function here. This scenario
	 * can happen with large stack limits and large mmap()
	 * allocations.
	 */
203 204 205 206 207 208 209
	if (addr & ~PAGE_MASK) {
		VM_BUG_ON(addr != -ENOMEM);
		info.flags = 0;
		info.low_limit = TASK_UNMAPPED_BASE;
		info.high_limit = TASK_SIZE;
		addr = vm_unmapped_area(&info);
	}
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	return addr;
}

unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	struct hstate *h = hstate_file(file);
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;

	if (len & ~huge_page_mask(h))
		return -EINVAL;
	if (len > TASK_SIZE)
		return -ENOMEM;

	if (flags & MAP_FIXED) {
		if (prepare_hugepage_range(file, addr, len))
			return -EINVAL;
		return addr;
	}

	if (addr) {
		addr = ALIGN(addr, huge_page_size(h));
		vma = find_vma(mm, addr);
		if (TASK_SIZE - len >= addr &&
		    (!vma || addr + len <= vma->vm_start))
			return addr;
	}
	if (current->mm->get_unmapped_area == arch_get_unmapped_area)
		return hugetlb_get_unmapped_area_bottomup(file, addr, len,
				pgoff, flags);
	else
		return hugetlb_get_unmapped_area_topdown(file, addr, len,
				pgoff, flags);
}
246
#endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
247

248 249
#ifdef CONFIG_HUGETLB_SUPER_PAGES
static __init int __setup_hugepagesz(unsigned long ps)
250
{
251 252 253 254
	int log_ps = __builtin_ctzl(ps);
	int level, base_shift;

	if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
255 256
		pr_warn("Not enabling %ld byte huge pages; must be a power of four\n",
			ps);
257 258 259 260
		return -EINVAL;
	}

	if (ps > 64*1024*1024*1024UL) {
261 262
		pr_warn("Not enabling %ld MB huge pages; largest legal value is 64 GB\n",
			ps >> 20);
263 264 265 266 267 268
		return -EINVAL;
	} else if (ps >= PUD_SIZE) {
		static long hv_jpage_size;
		if (hv_jpage_size == 0)
			hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
		if (hv_jpage_size != PUD_SIZE) {
269
			pr_warn("Not enabling >= %ld MB huge pages: hypervisor reports size %ld\n",
270 271 272 273 274 275 276 277 278 279 280
				PUD_SIZE >> 20, hv_jpage_size);
			return -EINVAL;
		}
		level = 0;
		base_shift = PUD_SHIFT;
	} else if (ps >= PMD_SIZE) {
		level = 1;
		base_shift = PMD_SHIFT;
	} else if (ps > PAGE_SIZE) {
		level = 2;
		base_shift = PAGE_SHIFT;
281
	} else {
282 283
		pr_err("hugepagesz: huge page size %ld too small\n", ps);
		return -EINVAL;
284
	}
285 286 287 288 289

	if (log_ps != base_shift) {
		int shift_val = log_ps - base_shift;
		if (huge_shift[level] != 0) {
			int old_shift = base_shift + huge_shift[level];
290
			pr_warn("Not enabling %ld MB huge pages; already have size %ld MB\n",
291 292 293 294
				ps >> 20, (1UL << old_shift) >> 20);
			return -EINVAL;
		}
		if (hv_set_pte_super_shift(level, shift_val) != 0) {
295 296
			pr_warn("Not enabling %ld MB huge pages; no hypervisor support\n",
				ps >> 20);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
			return -EINVAL;
		}
		printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
		huge_shift[level] = shift_val;
	}

	hugetlb_add_hstate(log_ps - PAGE_SHIFT);

	return 0;
}

static bool saw_hugepagesz;

static __init int setup_hugepagesz(char *opt)
{
312 313
	int rc;

314 315 316 317
	if (!saw_hugepagesz) {
		saw_hugepagesz = true;
		memset(huge_shift, 0, sizeof(huge_shift));
	}
318 319 320 321
	rc = __setup_hugepagesz(memparse(opt, NULL));
	if (rc)
		hugetlb_bad_size();
	return rc;
322 323 324
}
__setup("hugepagesz=", setup_hugepagesz);

325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
#ifdef ADDITIONAL_HUGE_SIZE
/*
 * Provide an additional huge page size if no "hugepagesz" args are given.
 * In that case, all the cores have properly set up their hv super_shift
 * already, but we need to notify the hugetlb code to enable the
 * new huge page size from the Linux point of view.
 */
static __init int add_default_hugepagesz(void)
{
	if (!saw_hugepagesz) {
		BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
			     ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
		BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
			     ADDITIONAL_HUGE_SIZE);
		BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
		hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
	}
	return 0;
}
arch_initcall(add_default_hugepagesz);
#endif

#endif /* CONFIG_HUGETLB_SUPER_PAGES */