amd_iommu.c 82.4 KB
Newer Older
1
/*
2
 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 * Author: Joerg Roedel <joerg.roedel@amd.com>
 *         Leo Duran <leo.duran@amd.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */

20
#include <linux/ratelimit.h>
21
#include <linux/pci.h>
22
#include <linux/pci-ats.h>
A
Akinobu Mita 已提交
23
#include <linux/bitmap.h>
24
#include <linux/slab.h>
25
#include <linux/debugfs.h>
26
#include <linux/scatterlist.h>
27
#include <linux/dma-mapping.h>
28
#include <linux/iommu-helper.h>
29
#include <linux/iommu.h>
30
#include <linux/delay.h>
31
#include <linux/amd-iommu.h>
32 33
#include <linux/notifier.h>
#include <linux/export.h>
34
#include <asm/msidef.h>
35
#include <asm/proto.h>
36
#include <asm/iommu.h>
37
#include <asm/gart.h>
38
#include <asm/dma.h>
39 40 41

#include "amd_iommu_proto.h"
#include "amd_iommu_types.h"
42 43 44

#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))

45
#define LOOP_TIMEOUT	100000
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
/*
 * This bitmap is used to advertise the page sizes our hardware support
 * to the IOMMU core, which will then use this information to split
 * physically contiguous memory regions it is mapping into page sizes
 * that we support.
 *
 * Traditionally the IOMMU core just handed us the mappings directly,
 * after making sure the size is an order of a 4KiB page and that the
 * mapping has natural alignment.
 *
 * To retain this behavior, we currently advertise that we support
 * all page sizes that are an order of 4KiB.
 *
 * If at some point we'd like to utilize the IOMMU core's new behavior,
 * we could change this to advertise the real page sizes we support.
 */
#define AMD_IOMMU_PGSIZES	(~0xFFFUL)

65 66
static DEFINE_RWLOCK(amd_iommu_devtable_lock);

67 68 69 70
/* A list of preallocated protection domains */
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);

71 72 73 74
/* List of all available dev_data structures */
static LIST_HEAD(dev_data_list);
static DEFINE_SPINLOCK(dev_data_list_lock);

75 76 77 78 79 80
/*
 * Domain for untranslated devices - only allocated
 * if iommu=pt passed on kernel cmd line.
 */
static struct protection_domain *pt_domain;

81 82
static struct iommu_ops amd_iommu_ops;

83
static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84
int amd_iommu_max_glx_val = -1;
85

86 87 88
/*
 * general struct to manage commands send to an IOMMU
 */
89
struct iommu_cmd {
90 91 92
	u32 data[4];
};

93
static void update_domain(struct protection_domain *domain);
94
static int __init alloc_passthrough_domain(void);
95

96 97 98 99 100 101
/****************************************************************************
 *
 * Helper functions
 *
 ****************************************************************************/

102
static struct iommu_dev_data *alloc_dev_data(u16 devid)
103 104 105 106 107 108 109 110
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
	if (!dev_data)
		return NULL;

111
	dev_data->devid = devid;
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
	atomic_set(&dev_data->bind, 0);

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_add_tail(&dev_data->dev_data_list, &dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static void free_dev_data(struct iommu_dev_data *dev_data)
{
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_del(&dev_data->dev_data_list);
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	kfree(dev_data);
}

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
static struct iommu_dev_data *search_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;
	unsigned long flags;

	spin_lock_irqsave(&dev_data_list_lock, flags);
	list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
		if (dev_data->devid == devid)
			goto out_unlock;
	}

	dev_data = NULL;

out_unlock:
	spin_unlock_irqrestore(&dev_data_list_lock, flags);

	return dev_data;
}

static struct iommu_dev_data *find_dev_data(u16 devid)
{
	struct iommu_dev_data *dev_data;

	dev_data = search_dev_data(devid);

	if (dev_data == NULL)
		dev_data = alloc_dev_data(devid);

	return dev_data;
}

163 164 165 166 167 168 169
static inline u16 get_device_id(struct device *dev)
{
	struct pci_dev *pdev = to_pci_dev(dev);

	return calc_devid(pdev->bus->number, pdev->devfn);
}

170 171 172 173 174
static struct iommu_dev_data *get_dev_data(struct device *dev)
{
	return dev->archdata.iommu;
}

175 176 177 178
static bool pci_iommuv2_capable(struct pci_dev *pdev)
{
	static const int caps[] = {
		PCI_EXT_CAP_ID_ATS,
179 180
		PCI_EXT_CAP_ID_PRI,
		PCI_EXT_CAP_ID_PASID,
181 182 183 184 185 186 187 188 189 190 191 192
	};
	int i, pos;

	for (i = 0; i < 3; ++i) {
		pos = pci_find_ext_capability(pdev, caps[i]);
		if (pos == 0)
			return false;
	}

	return true;
}

193 194 195 196 197 198 199 200 201
static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	dev_data = get_dev_data(&pdev->dev);

	return dev_data->errata & (1 << erratum) ? true : false;
}

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/*
 * In this function the list of preallocated protection domains is traversed to
 * find the domain for a specific device
 */
static struct dma_ops_domain *find_protection_domain(u16 devid)
{
	struct dma_ops_domain *entry, *ret = NULL;
	unsigned long flags;
	u16 alias = amd_iommu_alias_table[devid];

	if (list_empty(&iommu_pd_list))
		return NULL;

	spin_lock_irqsave(&iommu_pd_list_lock, flags);

	list_for_each_entry(entry, &iommu_pd_list, list) {
		if (entry->target_dev == devid ||
		    entry->target_dev == alias) {
			ret = entry;
			break;
		}
	}

	spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

	return ret;
}

230 231 232 233 234 235 236 237 238 239 240 241
/*
 * This function checks if the driver got a valid device from the caller to
 * avoid dereferencing invalid pointers.
 */
static bool check_device(struct device *dev)
{
	u16 devid;

	if (!dev || !dev->dma_mask)
		return false;

	/* No device or no PCI device */
242
	if (dev->bus != &pci_bus_type)
243 244 245 246 247 248 249 250 251 252 253 254 255 256
		return false;

	devid = get_device_id(dev);

	/* Out of our scope? */
	if (devid > amd_iommu_last_bdf)
		return false;

	if (amd_iommu_rlookup_table[devid] == NULL)
		return false;

	return true;
}

257 258
static int iommu_init_device(struct device *dev)
{
259
	struct pci_dev *pdev = to_pci_dev(dev);
260
	struct iommu_dev_data *dev_data;
261
	u16 alias;
262 263 264 265

	if (dev->archdata.iommu)
		return 0;

266
	dev_data = find_dev_data(get_device_id(dev));
267 268 269
	if (!dev_data)
		return -ENOMEM;

270
	alias = amd_iommu_alias_table[dev_data->devid];
271
	if (alias != dev_data->devid) {
272
		struct iommu_dev_data *alias_data;
273

274 275 276 277
		alias_data = find_dev_data(alias);
		if (alias_data == NULL) {
			pr_err("AMD-Vi: Warning: Unhandled device %s\n",
					dev_name(dev));
278 279 280
			free_dev_data(dev_data);
			return -ENOTSUPP;
		}
281
		dev_data->alias_data = alias_data;
282
	}
283

284 285 286 287 288 289 290
	if (pci_iommuv2_capable(pdev)) {
		struct amd_iommu *iommu;

		iommu              = amd_iommu_rlookup_table[dev_data->devid];
		dev_data->iommu_v2 = iommu->is_iommu_v2;
	}

291 292 293 294 295
	dev->archdata.iommu = dev_data;

	return 0;
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309
static void iommu_ignore_device(struct device *dev)
{
	u16 devid, alias;

	devid = get_device_id(dev);
	alias = amd_iommu_alias_table[devid];

	memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
	memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));

	amd_iommu_rlookup_table[devid] = NULL;
	amd_iommu_rlookup_table[alias] = NULL;
}

310 311
static void iommu_uninit_device(struct device *dev)
{
312 313 314 315 316
	/*
	 * Nothing to do here - we keep dev_data around for unplugged devices
	 * and reuse it when the device is re-plugged - not doing so would
	 * introduce a ton of races.
	 */
317
}
J
Joerg Roedel 已提交
318 319 320

void __init amd_iommu_uninit_devices(void)
{
321
	struct iommu_dev_data *dev_data, *n;
J
Joerg Roedel 已提交
322 323 324 325 326 327 328 329 330
	struct pci_dev *pdev = NULL;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		iommu_uninit_device(&pdev->dev);
	}
331 332 333 334

	/* Free all of our dev_data structures */
	list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
		free_dev_data(dev_data);
J
Joerg Roedel 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347
}

int __init amd_iommu_init_devices(void)
{
	struct pci_dev *pdev = NULL;
	int ret = 0;

	for_each_pci_dev(pdev) {

		if (!check_device(&pdev->dev))
			continue;

		ret = iommu_init_device(&pdev->dev);
348 349 350
		if (ret == -ENOTSUPP)
			iommu_ignore_device(&pdev->dev);
		else if (ret)
J
Joerg Roedel 已提交
351 352 353 354 355 356 357 358 359 360 361
			goto out_free;
	}

	return 0;

out_free:

	amd_iommu_uninit_devices();

	return ret;
}
362 363 364 365 366 367
#ifdef CONFIG_AMD_IOMMU_STATS

/*
 * Initialization code for statistics collection
 */

368
DECLARE_STATS_COUNTER(compl_wait);
369
DECLARE_STATS_COUNTER(cnt_map_single);
370
DECLARE_STATS_COUNTER(cnt_unmap_single);
371
DECLARE_STATS_COUNTER(cnt_map_sg);
372
DECLARE_STATS_COUNTER(cnt_unmap_sg);
373
DECLARE_STATS_COUNTER(cnt_alloc_coherent);
374
DECLARE_STATS_COUNTER(cnt_free_coherent);
375
DECLARE_STATS_COUNTER(cross_page);
376
DECLARE_STATS_COUNTER(domain_flush_single);
377
DECLARE_STATS_COUNTER(domain_flush_all);
378
DECLARE_STATS_COUNTER(alloced_io_mem);
379
DECLARE_STATS_COUNTER(total_map_requests);
380 381 382 383 384
DECLARE_STATS_COUNTER(complete_ppr);
DECLARE_STATS_COUNTER(invalidate_iotlb);
DECLARE_STATS_COUNTER(invalidate_iotlb_all);
DECLARE_STATS_COUNTER(pri_requests);

385

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
static struct dentry *stats_dir;
static struct dentry *de_fflush;

static void amd_iommu_stats_add(struct __iommu_counter *cnt)
{
	if (stats_dir == NULL)
		return;

	cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
				       &cnt->value);
}

static void amd_iommu_stats_init(void)
{
	stats_dir = debugfs_create_dir("amd-iommu", NULL);
	if (stats_dir == NULL)
		return;

	de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
					 (u32 *)&amd_iommu_unmap_flush);
406 407

	amd_iommu_stats_add(&compl_wait);
408
	amd_iommu_stats_add(&cnt_map_single);
409
	amd_iommu_stats_add(&cnt_unmap_single);
410
	amd_iommu_stats_add(&cnt_map_sg);
411
	amd_iommu_stats_add(&cnt_unmap_sg);
412
	amd_iommu_stats_add(&cnt_alloc_coherent);
413
	amd_iommu_stats_add(&cnt_free_coherent);
414
	amd_iommu_stats_add(&cross_page);
415
	amd_iommu_stats_add(&domain_flush_single);
416
	amd_iommu_stats_add(&domain_flush_all);
417
	amd_iommu_stats_add(&alloced_io_mem);
418
	amd_iommu_stats_add(&total_map_requests);
419 420 421 422
	amd_iommu_stats_add(&complete_ppr);
	amd_iommu_stats_add(&invalidate_iotlb);
	amd_iommu_stats_add(&invalidate_iotlb_all);
	amd_iommu_stats_add(&pri_requests);
423 424 425 426
}

#endif

427 428 429 430 431 432
/****************************************************************************
 *
 * Interrupt handling functions
 *
 ****************************************************************************/

433 434 435 436
static void dump_dte_entry(u16 devid)
{
	int i;

437 438
	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
439 440 441
			amd_iommu_dev_table[devid].data[i]);
}

442 443 444 445 446 447 448 449 450
static void dump_command(unsigned long phys_addr)
{
	struct iommu_cmd *cmd = phys_to_virt(phys_addr);
	int i;

	for (i = 0; i < 4; ++i)
		pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}

451
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
452 453 454 455 456 457 458 459
{
	u32 *event = __evt;
	int type  = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
	int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
	int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
	int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
	u64 address = (u64)(((u64)event[3]) << 32) | event[2];

460
	printk(KERN_ERR "AMD-Vi: Event logged [");
461 462 463 464 465 466 467

	switch (type) {
	case EVENT_TYPE_ILL_DEV:
		printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
468
		dump_dte_entry(devid);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
		break;
	case EVENT_TYPE_IO_FAULT:
		printk("IO_PAGE_FAULT device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_DEV_TAB_ERR:
		printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	case EVENT_TYPE_PAGE_TAB_ERR:
		printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
		       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       domid, address, flags);
		break;
	case EVENT_TYPE_ILL_CMD:
		printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
490
		dump_command(address);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
		break;
	case EVENT_TYPE_CMD_HARD_ERR:
		printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
		       "flags=0x%04x]\n", address, flags);
		break;
	case EVENT_TYPE_IOTLB_INV_TO:
		printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
		       "address=0x%016llx]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address);
		break;
	case EVENT_TYPE_INV_DEV_REQ:
		printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
		       "address=0x%016llx flags=0x%04x]\n",
		       PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
		       address, flags);
		break;
	default:
		printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
	}
}

static void iommu_poll_events(struct amd_iommu *iommu)
{
	u32 head, tail;
	unsigned long flags;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);

	while (head != tail) {
524
		iommu_print_event(iommu, iommu->evt_buf + head);
525 526 527 528 529 530 531 532
		head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
	}

	writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

533 534 535 536 537 538
static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u32 head)
{
	struct amd_iommu_fault fault;
	volatile u64 *raw;
	int i;

539 540
	INC_STATS_COUNTER(pri_requests);

541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
	raw = (u64 *)(iommu->ppr_log + head);

	/*
	 * Hardware bug: Interrupt may arrive before the entry is written to
	 * memory. If this happens we need to wait for the entry to arrive.
	 */
	for (i = 0; i < LOOP_TIMEOUT; ++i) {
		if (PPR_REQ_TYPE(raw[0]) != 0)
			break;
		udelay(1);
	}

	if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
		pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
		return;
	}

	fault.address   = raw[1];
	fault.pasid     = PPR_PASID(raw[0]);
	fault.device_id = PPR_DEVID(raw[0]);
	fault.tag       = PPR_TAG(raw[0]);
	fault.flags     = PPR_FLAGS(raw[0]);

	/*
	 * To detect the hardware bug we need to clear the entry
	 * to back to zero.
	 */
	raw[0] = raw[1] = 0;

	atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
}

static void iommu_poll_ppr_log(struct amd_iommu *iommu)
{
	unsigned long flags;
	u32 head, tail;

	if (iommu->ppr_log == NULL)
		return;

	spin_lock_irqsave(&iommu->lock, flags);

	head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
	tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);

	while (head != tail) {

		/* Handle PPR entry */
		iommu_handle_ppr_entry(iommu, head);

		/* Update and refresh ring-buffer state*/
		head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
		writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
		tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
	}

	/* enable ppr interrupts again */
	writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);

	spin_unlock_irqrestore(&iommu->lock, flags);
}

603
irqreturn_t amd_iommu_int_thread(int irq, void *data)
604
{
605 606
	struct amd_iommu *iommu;

607
	for_each_iommu(iommu) {
608
		iommu_poll_events(iommu);
609 610
		iommu_poll_ppr_log(iommu);
	}
611 612

	return IRQ_HANDLED;
613 614
}

615 616 617 618 619
irqreturn_t amd_iommu_int_handler(int irq, void *data)
{
	return IRQ_WAKE_THREAD;
}

620 621 622 623 624 625
/****************************************************************************
 *
 * IOMMU command queuing functions
 *
 ****************************************************************************/

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
static int wait_on_sem(volatile u64 *sem)
{
	int i = 0;

	while (*sem == 0 && i < LOOP_TIMEOUT) {
		udelay(1);
		i += 1;
	}

	if (i == LOOP_TIMEOUT) {
		pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
		return -EIO;
	}

	return 0;
}

static void copy_cmd_to_buffer(struct amd_iommu *iommu,
			       struct iommu_cmd *cmd,
			       u32 tail)
646 647 648
{
	u8 *target;

649
	target = iommu->cmd_buf + tail;
650 651 652 653 654 655
	tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;

	/* Copy command to buffer */
	memcpy(target, cmd, sizeof(*cmd));

	/* Tell the IOMMU about it */
656
	writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
657
}
658

659
static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
660
{
661 662
	WARN_ON(address & 0x7ULL);

663
	memset(cmd, 0, sizeof(*cmd));
664 665 666
	cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
	cmd->data[1] = upper_32_bits(__pa(address));
	cmd->data[2] = 1;
667 668 669
	CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
}

670 671 672 673 674 675 676
static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
{
	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0] = devid;
	CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
}

677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
				  size_t size, u16 domid, int pde)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[1] |= domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
	if (s) /* size bit - we flush more than one 4kb page */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
				  u64 address, size_t size)
{
	u64 pages;
	int s;

	pages = iommu_num_pages(address, size, PAGE_SIZE);
	s     = 0;

	if (pages > 1) {
		/*
		 * If we have to flush more than one page, flush all
		 * TLB entries for this domain
		 */
		address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
		s = 1;
	}

	address &= PAGE_MASK;

	memset(cmd, 0, sizeof(*cmd));
	cmd->data[0]  = devid;
	cmd->data[0] |= (qdep & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
	if (s)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
}

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
				  u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = pasid & PASID_MASK;
	cmd->data[1]  = domid;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[3]  = upper_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
}

static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
				  int qdep, u64 address, bool size)
{
	memset(cmd, 0, sizeof(*cmd));

	address &= ~(0xfffULL);

	cmd->data[0]  = devid;
	cmd->data[0] |= (pasid & 0xff) << 16;
	cmd->data[0] |= (qdep  & 0xff) << 24;
	cmd->data[1]  = devid;
	cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
	cmd->data[2]  = lower_32_bits(address);
	cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
	cmd->data[3]  = upper_32_bits(address);
	if (size)
		cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
	CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
			       int status, int tag, bool gn)
{
	memset(cmd, 0, sizeof(*cmd));

	cmd->data[0]  = devid;
	if (gn) {
		cmd->data[1]  = pasid & PASID_MASK;
		cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
	}
	cmd->data[3]  = tag & 0x1ff;
	cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;

	CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
}

793 794 795 796
static void build_inv_all(struct iommu_cmd *cmd)
{
	memset(cmd, 0, sizeof(*cmd));
	CMD_SET_TYPE(cmd, CMD_INV_ALL);
797 798
}

799 800
/*
 * Writes the command to the IOMMUs command buffer and informs the
801
 * hardware about the new command.
802
 */
803 804 805
static int iommu_queue_command_sync(struct amd_iommu *iommu,
				    struct iommu_cmd *cmd,
				    bool sync)
806
{
807
	u32 left, tail, head, next_tail;
808 809
	unsigned long flags;

810
	WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
811 812

again:
813 814
	spin_lock_irqsave(&iommu->lock, flags);

815 816 817 818
	head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
	tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
	next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
	left      = (head - next_tail) % iommu->cmd_buf_size;
819

820 821 822 823
	if (left <= 2) {
		struct iommu_cmd sync_cmd;
		volatile u64 sem = 0;
		int ret;
824

825 826
		build_completion_wait(&sync_cmd, (u64)&sem);
		copy_cmd_to_buffer(iommu, &sync_cmd, tail);
827

828 829 830 831 832 833
		spin_unlock_irqrestore(&iommu->lock, flags);

		if ((ret = wait_on_sem(&sem)) != 0)
			return ret;

		goto again;
834 835
	}

836 837 838
	copy_cmd_to_buffer(iommu, cmd, tail);

	/* We need to sync now to make sure all commands are processed */
839
	iommu->need_sync = sync;
840

841
	spin_unlock_irqrestore(&iommu->lock, flags);
842

843
	return 0;
844 845
}

846 847 848 849 850
static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
{
	return iommu_queue_command_sync(iommu, cmd, true);
}

851 852 853 854
/*
 * This function queues a completion wait command into the command
 * buffer of an IOMMU
 */
855
static int iommu_completion_wait(struct amd_iommu *iommu)
856 857
{
	struct iommu_cmd cmd;
858
	volatile u64 sem = 0;
859
	int ret;
860

861
	if (!iommu->need_sync)
862
		return 0;
863

864
	build_completion_wait(&cmd, (u64)&sem);
865

866
	ret = iommu_queue_command_sync(iommu, &cmd, false);
867
	if (ret)
868
		return ret;
869

870
	return wait_on_sem(&sem);
871 872
}

873
static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
874
{
875
	struct iommu_cmd cmd;
876

877
	build_inv_dte(&cmd, devid);
878

879 880
	return iommu_queue_command(iommu, &cmd);
}
881

882 883 884
static void iommu_flush_dte_all(struct amd_iommu *iommu)
{
	u32 devid;
885

886 887
	for (devid = 0; devid <= 0xffff; ++devid)
		iommu_flush_dte(iommu, devid);
888

889 890
	iommu_completion_wait(iommu);
}
891

892 893 894 895 896 897 898
/*
 * This function uses heavy locking and may disable irqs for some time. But
 * this is no issue because it is only called during resume.
 */
static void iommu_flush_tlb_all(struct amd_iommu *iommu)
{
	u32 dom_id;
899

900 901 902 903 904 905
	for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
		struct iommu_cmd cmd;
		build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
				      dom_id, 1);
		iommu_queue_command(iommu, &cmd);
	}
906

907
	iommu_completion_wait(iommu);
908 909
}

910
static void iommu_flush_all(struct amd_iommu *iommu)
911
{
912
	struct iommu_cmd cmd;
913

914
	build_inv_all(&cmd);
915

916 917 918 919
	iommu_queue_command(iommu, &cmd);
	iommu_completion_wait(iommu);
}

920 921
void iommu_flush_all_caches(struct amd_iommu *iommu)
{
922 923 924 925 926
	if (iommu_feature(iommu, FEATURE_IA)) {
		iommu_flush_all(iommu);
	} else {
		iommu_flush_dte_all(iommu);
		iommu_flush_tlb_all(iommu);
927 928 929
	}
}

930
/*
931
 * Command send function for flushing on-device TLB
932
 */
933 934
static int device_flush_iotlb(struct iommu_dev_data *dev_data,
			      u64 address, size_t size)
935 936
{
	struct amd_iommu *iommu;
937
	struct iommu_cmd cmd;
938
	int qdep;
939

940 941
	qdep     = dev_data->ats.qdep;
	iommu    = amd_iommu_rlookup_table[dev_data->devid];
942

943
	build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
944 945

	return iommu_queue_command(iommu, &cmd);
946 947
}

948 949 950
/*
 * Command send function for invalidating a device table entry
 */
951
static int device_flush_dte(struct iommu_dev_data *dev_data)
952
{
953
	struct amd_iommu *iommu;
954
	int ret;
955

956
	iommu = amd_iommu_rlookup_table[dev_data->devid];
957

958
	ret = iommu_flush_dte(iommu, dev_data->devid);
959 960 961
	if (ret)
		return ret;

962
	if (dev_data->ats.enabled)
963
		ret = device_flush_iotlb(dev_data, 0, ~0UL);
964 965

	return ret;
966 967
}

968 969 970 971 972
/*
 * TLB invalidation function which is called from the mapping functions.
 * It invalidates a single PTE if the range to flush is within a single
 * page. Otherwise it flushes the whole TLB of the IOMMU.
 */
973 974
static void __domain_flush_pages(struct protection_domain *domain,
				 u64 address, size_t size, int pde)
975
{
976
	struct iommu_dev_data *dev_data;
977 978
	struct iommu_cmd cmd;
	int ret = 0, i;
979

980
	build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
981

982 983 984 985 986 987 988 989
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;

		/*
		 * Devices of this domain are behind this IOMMU
		 * We need a TLB flush
		 */
990
		ret |= iommu_queue_command(amd_iommus[i], &cmd);
991 992
	}

993 994
	list_for_each_entry(dev_data, &domain->dev_list, list) {

995
		if (!dev_data->ats.enabled)
996 997
			continue;

998
		ret |= device_flush_iotlb(dev_data, address, size);
999 1000
	}

1001
	WARN_ON(ret);
1002 1003
}

1004 1005
static void domain_flush_pages(struct protection_domain *domain,
			       u64 address, size_t size)
1006
{
1007
	__domain_flush_pages(domain, address, size, 0);
1008
}
1009

1010
/* Flush the whole IO/TLB for a given protection domain */
1011
static void domain_flush_tlb(struct protection_domain *domain)
1012
{
1013
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1014 1015
}

1016
/* Flush the whole IO/TLB for a given protection domain - including PDE */
1017
static void domain_flush_tlb_pde(struct protection_domain *domain)
1018
{
1019
	__domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1020 1021
}

1022
static void domain_flush_complete(struct protection_domain *domain)
1023
{
1024
	int i;
1025

1026 1027 1028
	for (i = 0; i < amd_iommus_present; ++i) {
		if (!domain->dev_iommu[i])
			continue;
1029

1030 1031 1032 1033 1034
		/*
		 * Devices of this domain are behind this IOMMU
		 * We need to wait for completion of all commands.
		 */
		iommu_completion_wait(amd_iommus[i]);
1035
	}
1036 1037
}

1038

1039
/*
1040
 * This function flushes the DTEs for all devices in domain
1041
 */
1042
static void domain_flush_devices(struct protection_domain *domain)
1043
{
1044
	struct iommu_dev_data *dev_data;
1045

1046
	list_for_each_entry(dev_data, &domain->dev_list, list)
1047
		device_flush_dte(dev_data);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056
/****************************************************************************
 *
 * The functions below are used the create the page table mappings for
 * unity mapped regions.
 *
 ****************************************************************************/

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
/*
 * This function is used to add another level to an IO page table. Adding
 * another level increases the size of the address space by 9 bits to a size up
 * to 64 bits.
 */
static bool increase_address_space(struct protection_domain *domain,
				   gfp_t gfp)
{
	u64 *pte;

	if (domain->mode == PAGE_MODE_6_LEVEL)
		/* address space already 64 bit large */
		return false;

	pte = (void *)get_zeroed_page(gfp);
	if (!pte)
		return false;

	*pte             = PM_LEVEL_PDE(domain->mode,
					virt_to_phys(domain->pt_root));
	domain->pt_root  = pte;
	domain->mode    += 1;
	domain->updated  = true;

	return true;
}

static u64 *alloc_pte(struct protection_domain *domain,
		      unsigned long address,
1086
		      unsigned long page_size,
1087 1088 1089
		      u64 **pte_page,
		      gfp_t gfp)
{
1090
	int level, end_lvl;
1091
	u64 *pte, *page;
1092 1093

	BUG_ON(!is_power_of_2(page_size));
1094 1095 1096 1097

	while (address > PM_LEVEL_SIZE(domain->mode))
		increase_address_space(domain, gfp);

1098 1099 1100 1101
	level   = domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
	address = PAGE_SIZE_ALIGN(address, page_size);
	end_lvl = PAGE_SIZE_LEVEL(page_size);
1102 1103 1104 1105 1106 1107 1108 1109 1110

	while (level > end_lvl) {
		if (!IOMMU_PTE_PRESENT(*pte)) {
			page = (u64 *)get_zeroed_page(gfp);
			if (!page)
				return NULL;
			*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
		}

1111 1112 1113 1114
		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
		level -= 1;

		pte = IOMMU_PTE_PAGE(*pte);

		if (pte_page && level == end_lvl)
			*pte_page = pte;

		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

/*
 * This function checks if there is a PTE for a given dma address. If
 * there is one, it returns the pointer to it.
 */
1132
static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1133 1134 1135 1136
{
	int level;
	u64 *pte;

1137 1138 1139 1140 1141
	if (address > PM_LEVEL_SIZE(domain->mode))
		return NULL;

	level   =  domain->mode - 1;
	pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1142

1143 1144 1145
	while (level > 0) {

		/* Not Present */
1146 1147 1148
		if (!IOMMU_PTE_PRESENT(*pte))
			return NULL;

1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/* Large PTE */
		if (PM_PTE_LEVEL(*pte) == 0x07) {
			unsigned long pte_mask, __pte;

			/*
			 * If we have a series of large PTEs, make
			 * sure to return a pointer to the first one.
			 */
			pte_mask = PTE_PAGE_SIZE(*pte);
			pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
			__pte    = ((unsigned long)pte) & pte_mask;

			return (u64 *)__pte;
		}

		/* No level skipping support yet */
		if (PM_PTE_LEVEL(*pte) != level)
			return NULL;

1168 1169
		level -= 1;

1170
		/* Walk to the next level */
1171 1172 1173 1174 1175 1176 1177
		pte = IOMMU_PTE_PAGE(*pte);
		pte = &pte[PM_LEVEL_INDEX(level, address)];
	}

	return pte;
}

1178 1179 1180 1181 1182 1183 1184
/*
 * Generic mapping functions. It maps a physical address into a DMA
 * address space. It allocates the page table pages if necessary.
 * In the future it can be extended to a generic mapping function
 * supporting all features of AMD IOMMU page tables like level skipping
 * and full 64 bit address spaces.
 */
1185 1186 1187
static int iommu_map_page(struct protection_domain *dom,
			  unsigned long bus_addr,
			  unsigned long phys_addr,
1188
			  int prot,
1189
			  unsigned long page_size)
1190
{
1191
	u64 __pte, *pte;
1192
	int i, count;
1193

1194
	if (!(prot & IOMMU_PROT_MASK))
1195 1196
		return -EINVAL;

1197 1198 1199 1200 1201 1202 1203 1204
	bus_addr  = PAGE_ALIGN(bus_addr);
	phys_addr = PAGE_ALIGN(phys_addr);
	count     = PAGE_SIZE_PTE_COUNT(page_size);
	pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);

	for (i = 0; i < count; ++i)
		if (IOMMU_PTE_PRESENT(pte[i]))
			return -EBUSY;
1205

1206 1207 1208 1209 1210
	if (page_size > PAGE_SIZE) {
		__pte = PAGE_SIZE_PTE(phys_addr, page_size);
		__pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
	} else
		__pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1211 1212 1213 1214 1215 1216

	if (prot & IOMMU_PROT_IR)
		__pte |= IOMMU_PTE_IR;
	if (prot & IOMMU_PROT_IW)
		__pte |= IOMMU_PTE_IW;

1217 1218
	for (i = 0; i < count; ++i)
		pte[i] = __pte;
1219

1220 1221
	update_domain(dom);

1222 1223 1224
	return 0;
}

1225 1226 1227
static unsigned long iommu_unmap_page(struct protection_domain *dom,
				      unsigned long bus_addr,
				      unsigned long page_size)
1228
{
1229 1230 1231 1232 1233 1234
	unsigned long long unmap_size, unmapped;
	u64 *pte;

	BUG_ON(!is_power_of_2(page_size));

	unmapped = 0;
1235

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	while (unmapped < page_size) {

		pte = fetch_pte(dom, bus_addr);

		if (!pte) {
			/*
			 * No PTE for this address
			 * move forward in 4kb steps
			 */
			unmap_size = PAGE_SIZE;
		} else if (PM_PTE_LEVEL(*pte) == 0) {
			/* 4kb PTE found for this address */
			unmap_size = PAGE_SIZE;
			*pte       = 0ULL;
		} else {
			int count, i;

			/* Large PTE found which maps this address */
			unmap_size = PTE_PAGE_SIZE(*pte);
			count      = PAGE_SIZE_PTE_COUNT(unmap_size);
			for (i = 0; i < count; i++)
				pte[i] = 0ULL;
		}

		bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
		unmapped += unmap_size;
	}

	BUG_ON(!is_power_of_2(unmapped));
1265

1266
	return unmapped;
1267 1268
}

1269 1270 1271 1272
/*
 * This function checks if a specific unity mapping entry is needed for
 * this specific IOMMU.
 */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static int iommu_for_unity_map(struct amd_iommu *iommu,
			       struct unity_map_entry *entry)
{
	u16 bdf, i;

	for (i = entry->devid_start; i <= entry->devid_end; ++i) {
		bdf = amd_iommu_alias_table[i];
		if (amd_iommu_rlookup_table[bdf] == iommu)
			return 1;
	}

	return 0;
}

1287 1288 1289 1290
/*
 * This function actually applies the mapping to the page table of the
 * dma_ops domain.
 */
1291 1292 1293 1294 1295 1296 1297 1298
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
			     struct unity_map_entry *e)
{
	u64 addr;
	int ret;

	for (addr = e->address_start; addr < e->address_end;
	     addr += PAGE_SIZE) {
1299
		ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1300
				     PAGE_SIZE);
1301 1302 1303 1304 1305 1306 1307
		if (ret)
			return ret;
		/*
		 * if unity mapping is in aperture range mark the page
		 * as allocated in the aperture
		 */
		if (addr < dma_dom->aperture_size)
1308
			__set_bit(addr >> PAGE_SHIFT,
1309
				  dma_dom->aperture[0]->bitmap);
1310 1311 1312 1313 1314
	}

	return 0;
}

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
/*
 * Init the unity mappings for a specific IOMMU in the system
 *
 * Basically iterates over all unity mapping entries and applies them to
 * the default domain DMA of that IOMMU if necessary.
 */
static int iommu_init_unity_mappings(struct amd_iommu *iommu)
{
	struct unity_map_entry *entry;
	int ret;

	list_for_each_entry(entry, &amd_iommu_unity_map, list) {
		if (!iommu_for_unity_map(iommu, entry))
			continue;
		ret = dma_ops_unity_map(iommu->default_dom, entry);
		if (ret)
			return ret;
	}

	return 0;
}

1337 1338 1339
/*
 * Inits the unity mappings required for a specific device
 */
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
					  u16 devid)
{
	struct unity_map_entry *e;
	int ret;

	list_for_each_entry(e, &amd_iommu_unity_map, list) {
		if (!(devid >= e->devid_start && devid <= e->devid_end))
			continue;
		ret = dma_ops_unity_map(dma_dom, e);
		if (ret)
			return ret;
	}

	return 0;
}

1357 1358 1359 1360 1361 1362 1363 1364 1365
/****************************************************************************
 *
 * The next functions belong to the address allocator for the dma_ops
 * interface functions. They work like the allocators in the other IOMMU
 * drivers. Its basically a bitmap which marks the allocated pages in
 * the aperture. Maybe it could be enhanced in the future to a more
 * efficient allocator.
 *
 ****************************************************************************/
1366

1367
/*
1368
 * The address allocator core functions.
1369 1370 1371
 *
 * called with domain->lock held
 */
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
/*
 * Used to reserve address ranges in the aperture (e.g. for exclusion
 * ranges.
 */
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
				      unsigned long start_page,
				      unsigned int pages)
{
	unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;

	if (start_page + pages > last_page)
		pages = last_page - start_page;

	for (i = start_page; i < start_page + pages; ++i) {
		int index = i / APERTURE_RANGE_PAGES;
		int page  = i % APERTURE_RANGE_PAGES;
		__set_bit(page, dom->aperture[index]->bitmap);
	}
}

1393 1394 1395 1396 1397
/*
 * This function is used to add a new aperture range to an existing
 * aperture in case of dma_ops domain allocation or address allocation
 * failure.
 */
1398
static int alloc_new_range(struct dma_ops_domain *dma_dom,
1399 1400 1401
			   bool populate, gfp_t gfp)
{
	int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1402
	struct amd_iommu *iommu;
1403
	unsigned long i, old_size;
1404

1405 1406 1407 1408
#ifdef CONFIG_IOMMU_STRESS
	populate = false;
#endif

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	if (index >= APERTURE_MAX_RANGES)
		return -ENOMEM;

	dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
	if (!dma_dom->aperture[index])
		return -ENOMEM;

	dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
	if (!dma_dom->aperture[index]->bitmap)
		goto out_free;

	dma_dom->aperture[index]->offset = dma_dom->aperture_size;

	if (populate) {
		unsigned long address = dma_dom->aperture_size;
		int i, num_ptes = APERTURE_RANGE_PAGES / 512;
		u64 *pte, *pte_page;

		for (i = 0; i < num_ptes; ++i) {
1428
			pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
					&pte_page, gfp);
			if (!pte)
				goto out_free;

			dma_dom->aperture[index]->pte_pages[i] = pte_page;

			address += APERTURE_RANGE_SIZE / 64;
		}
	}

1439
	old_size                = dma_dom->aperture_size;
1440 1441
	dma_dom->aperture_size += APERTURE_RANGE_SIZE;

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	/* Reserve address range used for MSI messages */
	if (old_size < MSI_ADDR_BASE_LO &&
	    dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
		unsigned long spage;
		int pages;

		pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
		spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;

		dma_ops_reserve_addresses(dma_dom, spage, pages);
	}

1454
	/* Initialize the exclusion range if necessary */
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	for_each_iommu(iommu) {
		if (iommu->exclusion_start &&
		    iommu->exclusion_start >= dma_dom->aperture[index]->offset
		    && iommu->exclusion_start < dma_dom->aperture_size) {
			unsigned long startpage;
			int pages = iommu_num_pages(iommu->exclusion_start,
						    iommu->exclusion_length,
						    PAGE_SIZE);
			startpage = iommu->exclusion_start >> PAGE_SHIFT;
			dma_ops_reserve_addresses(dma_dom, startpage, pages);
		}
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	}

	/*
	 * Check for areas already mapped as present in the new aperture
	 * range and mark those pages as reserved in the allocator. Such
	 * mappings may already exist as a result of requested unity
	 * mappings for devices.
	 */
	for (i = dma_dom->aperture[index]->offset;
	     i < dma_dom->aperture_size;
	     i += PAGE_SIZE) {
1477
		u64 *pte = fetch_pte(&dma_dom->domain, i);
1478 1479 1480
		if (!pte || !IOMMU_PTE_PRESENT(*pte))
			continue;

1481
		dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1482 1483
	}

1484 1485
	update_domain(&dma_dom->domain);

1486 1487 1488
	return 0;

out_free:
1489 1490
	update_domain(&dma_dom->domain);

1491 1492 1493 1494 1495 1496 1497 1498
	free_page((unsigned long)dma_dom->aperture[index]->bitmap);

	kfree(dma_dom->aperture[index]);
	dma_dom->aperture[index] = NULL;

	return -ENOMEM;
}

1499 1500 1501 1502 1503 1504 1505
static unsigned long dma_ops_area_alloc(struct device *dev,
					struct dma_ops_domain *dom,
					unsigned int pages,
					unsigned long align_mask,
					u64 dma_mask,
					unsigned long start)
{
1506
	unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1507 1508 1509 1510 1511 1512
	int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
	int i = start >> APERTURE_RANGE_SHIFT;
	unsigned long boundary_size;
	unsigned long address = -1;
	unsigned long limit;

1513 1514
	next_bit >>= PAGE_SHIFT;

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
	boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
			PAGE_SIZE) >> PAGE_SHIFT;

	for (;i < max_index; ++i) {
		unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;

		if (dom->aperture[i]->offset >= dma_mask)
			break;

		limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
					       dma_mask >> PAGE_SHIFT);

		address = iommu_area_alloc(dom->aperture[i]->bitmap,
					   limit, next_bit, pages, 0,
					    boundary_size, align_mask);
		if (address != -1) {
			address = dom->aperture[i]->offset +
				  (address << PAGE_SHIFT);
1533
			dom->next_address = address + (pages << PAGE_SHIFT);
1534 1535 1536 1537 1538 1539 1540 1541 1542
			break;
		}

		next_bit = 0;
	}

	return address;
}

1543 1544
static unsigned long dma_ops_alloc_addresses(struct device *dev,
					     struct dma_ops_domain *dom,
1545
					     unsigned int pages,
1546 1547
					     unsigned long align_mask,
					     u64 dma_mask)
1548 1549 1550
{
	unsigned long address;

1551 1552 1553 1554
#ifdef CONFIG_IOMMU_STRESS
	dom->next_address = 0;
	dom->need_flush = true;
#endif
1555

1556
	address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1557
				     dma_mask, dom->next_address);
1558

1559
	if (address == -1) {
1560
		dom->next_address = 0;
1561 1562
		address = dma_ops_area_alloc(dev, dom, pages, align_mask,
					     dma_mask, 0);
1563 1564
		dom->need_flush = true;
	}
1565

1566
	if (unlikely(address == -1))
1567
		address = DMA_ERROR_CODE;
1568 1569 1570 1571 1572 1573

	WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);

	return address;
}

1574 1575 1576 1577 1578
/*
 * The address free function.
 *
 * called with domain->lock held
 */
1579 1580 1581 1582
static void dma_ops_free_addresses(struct dma_ops_domain *dom,
				   unsigned long address,
				   unsigned int pages)
{
1583 1584
	unsigned i = address >> APERTURE_RANGE_SHIFT;
	struct aperture_range *range = dom->aperture[i];
1585

1586 1587
	BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);

1588 1589 1590 1591
#ifdef CONFIG_IOMMU_STRESS
	if (i < 4)
		return;
#endif
1592

1593
	if (address >= dom->next_address)
1594
		dom->need_flush = true;
1595 1596

	address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1597

A
Akinobu Mita 已提交
1598
	bitmap_clear(range->bitmap, address, pages);
1599

1600 1601
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
/****************************************************************************
 *
 * The next functions belong to the domain allocation. A domain is
 * allocated for every IOMMU as the default domain. If device isolation
 * is enabled, every device get its own domain. The most important thing
 * about domains is the page table mapping the DMA address space they
 * contain.
 *
 ****************************************************************************/

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
/*
 * This function adds a protection domain to the global protection domain list
 */
static void add_domain_to_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_add(&domain->list, &amd_iommu_pd_list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

/*
 * This function removes a protection domain to the global
 * protection domain list
 */
static void del_domain_from_list(struct protection_domain *domain)
{
	unsigned long flags;

	spin_lock_irqsave(&amd_iommu_pd_lock, flags);
	list_del(&domain->list);
	spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
}

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static u16 domain_id_alloc(void)
{
	unsigned long flags;
	int id;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
	BUG_ON(id == 0);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__set_bit(id, amd_iommu_pd_alloc_bitmap);
	else
		id = 0;
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

	return id;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static void domain_id_free(int id)
{
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
	if (id > 0 && id < MAX_DOMAIN_ID)
		__clear_bit(id, amd_iommu_pd_alloc_bitmap);
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

1664
static void free_pagetable(struct protection_domain *domain)
1665 1666 1667 1668
{
	int i, j;
	u64 *p1, *p2, *p3;

1669
	p1 = domain->pt_root;
1670 1671 1672 1673 1674 1675 1676 1677 1678

	if (!p1)
		return;

	for (i = 0; i < 512; ++i) {
		if (!IOMMU_PTE_PRESENT(p1[i]))
			continue;

		p2 = IOMMU_PTE_PAGE(p1[i]);
1679
		for (j = 0; j < 512; ++j) {
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
			if (!IOMMU_PTE_PRESENT(p2[j]))
				continue;
			p3 = IOMMU_PTE_PAGE(p2[j]);
			free_page((unsigned long)p3);
		}

		free_page((unsigned long)p2);
	}

	free_page((unsigned long)p1);
1690 1691

	domain->pt_root = NULL;
1692 1693
}

1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
static void free_gcr3_tbl_level1(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_page((unsigned long)ptr);
	}
}

static void free_gcr3_tbl_level2(u64 *tbl)
{
	u64 *ptr;
	int i;

	for (i = 0; i < 512; ++i) {
		if (!(tbl[i] & GCR3_VALID))
			continue;

		ptr = __va(tbl[i] & PAGE_MASK);

		free_gcr3_tbl_level1(ptr);
	}
}

1724 1725
static void free_gcr3_table(struct protection_domain *domain)
{
1726 1727 1728 1729 1730 1731 1732
	if (domain->glx == 2)
		free_gcr3_tbl_level2(domain->gcr3_tbl);
	else if (domain->glx == 1)
		free_gcr3_tbl_level1(domain->gcr3_tbl);
	else if (domain->glx != 0)
		BUG();

1733 1734 1735
	free_page((unsigned long)domain->gcr3_tbl);
}

1736 1737 1738 1739
/*
 * Free a domain, only used if something went wrong in the
 * allocation path and we need to free an already allocated page table
 */
1740 1741
static void dma_ops_domain_free(struct dma_ops_domain *dom)
{
1742 1743
	int i;

1744 1745 1746
	if (!dom)
		return;

1747 1748
	del_domain_from_list(&dom->domain);

1749
	free_pagetable(&dom->domain);
1750

1751 1752 1753 1754 1755 1756
	for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
		if (!dom->aperture[i])
			continue;
		free_page((unsigned long)dom->aperture[i]->bitmap);
		kfree(dom->aperture[i]);
	}
1757 1758 1759 1760

	kfree(dom);
}

1761 1762
/*
 * Allocates a new protection domain usable for the dma_ops functions.
1763
 * It also initializes the page table and the address allocator data
1764 1765
 * structures required for the dma_ops interface
 */
1766
static struct dma_ops_domain *dma_ops_domain_alloc(void)
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
{
	struct dma_ops_domain *dma_dom;

	dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
	if (!dma_dom)
		return NULL;

	spin_lock_init(&dma_dom->domain.lock);

	dma_dom->domain.id = domain_id_alloc();
	if (dma_dom->domain.id == 0)
		goto free_dma_dom;
1779
	INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1780
	dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1781
	dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1782
	dma_dom->domain.flags = PD_DMA_OPS_MASK;
1783 1784 1785 1786
	dma_dom->domain.priv = dma_dom;
	if (!dma_dom->domain.pt_root)
		goto free_dma_dom;

1787
	dma_dom->need_flush = false;
1788
	dma_dom->target_dev = 0xffff;
1789

1790 1791
	add_domain_to_list(&dma_dom->domain);

1792
	if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1793 1794
		goto free_dma_dom;

1795
	/*
1796 1797
	 * mark the first page as allocated so we never return 0 as
	 * a valid dma-address. So we can use 0 as error value
1798
	 */
1799
	dma_dom->aperture[0]->bitmap[0] = 1;
1800
	dma_dom->next_address = 0;
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810


	return dma_dom;

free_dma_dom:
	dma_ops_domain_free(dma_dom);

	return NULL;
}

1811 1812 1813 1814 1815 1816 1817 1818 1819
/*
 * little helper function to check whether a given protection domain is a
 * dma_ops domain
 */
static bool dma_ops_domain(struct protection_domain *domain)
{
	return domain->flags & PD_DMA_OPS_MASK;
}

1820
static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1821
{
1822
	u64 pte_root = 0;
1823
	u64 flags = 0;
1824

1825 1826 1827
	if (domain->mode != PAGE_MODE_NONE)
		pte_root = virt_to_phys(domain->pt_root);

1828 1829 1830
	pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
		    << DEV_ENTRY_MODE_SHIFT;
	pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1831

1832 1833
	flags = amd_iommu_dev_table[devid].data[1];

1834 1835 1836
	if (ats)
		flags |= DTE_FLAG_IOTLB;

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
	if (domain->flags & PD_IOMMUV2_MASK) {
		u64 gcr3 = __pa(domain->gcr3_tbl);
		u64 glx  = domain->glx;
		u64 tmp;

		pte_root |= DTE_FLAG_GV;
		pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;

		/* First mask out possible old values for GCR3 table */
		tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
		flags    &= ~tmp;

		tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
		flags    &= ~tmp;

		/* Encode GCR3 table into DTE */
		tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
		pte_root |= tmp;

		tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
		flags    |= tmp;

		tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
		flags    |= tmp;
	}

1863 1864 1865 1866 1867
	flags &= ~(0xffffUL);
	flags |= domain->id;

	amd_iommu_dev_table[devid].data[1]  = flags;
	amd_iommu_dev_table[devid].data[0]  = pte_root;
1868 1869 1870 1871 1872 1873 1874 1875 1876
}

static void clear_dte_entry(u16 devid)
{
	/* remove entry from the device table seen by the hardware */
	amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
	amd_iommu_dev_table[devid].data[1] = 0;

	amd_iommu_apply_erratum_63(devid);
1877 1878
}

1879 1880
static void do_attach(struct iommu_dev_data *dev_data,
		      struct protection_domain *domain)
1881 1882
{
	struct amd_iommu *iommu;
1883
	bool ats;
1884

1885 1886
	iommu = amd_iommu_rlookup_table[dev_data->devid];
	ats   = dev_data->ats.enabled;
1887 1888 1889 1890

	/* Update data structures */
	dev_data->domain = domain;
	list_add(&dev_data->list, &domain->dev_list);
1891
	set_dte_entry(dev_data->devid, domain, ats);
1892 1893 1894 1895 1896 1897

	/* Do reference counting */
	domain->dev_iommu[iommu->index] += 1;
	domain->dev_cnt                 += 1;

	/* Flush the DTE entry */
1898
	device_flush_dte(dev_data);
1899 1900
}

1901
static void do_detach(struct iommu_dev_data *dev_data)
1902 1903 1904
{
	struct amd_iommu *iommu;

1905
	iommu = amd_iommu_rlookup_table[dev_data->devid];
1906 1907

	/* decrease reference counters */
1908 1909 1910 1911 1912 1913
	dev_data->domain->dev_iommu[iommu->index] -= 1;
	dev_data->domain->dev_cnt                 -= 1;

	/* Update data structures */
	dev_data->domain = NULL;
	list_del(&dev_data->list);
1914
	clear_dte_entry(dev_data->devid);
1915

1916
	/* Flush the DTE entry */
1917
	device_flush_dte(dev_data);
1918 1919 1920 1921 1922 1923
}

/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
1924
static int __attach_device(struct iommu_dev_data *dev_data,
1925
			   struct protection_domain *domain)
1926
{
1927
	int ret;
1928

1929 1930 1931
	/* lock domain */
	spin_lock(&domain->lock);

1932 1933
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
1934

1935 1936 1937 1938 1939
		/* Some sanity checks */
		ret = -EBUSY;
		if (alias_data->domain != NULL &&
				alias_data->domain != domain)
			goto out_unlock;
1940

1941 1942 1943
		if (dev_data->domain != NULL &&
				dev_data->domain != domain)
			goto out_unlock;
1944

1945
		/* Do real assignment */
1946
		if (alias_data->domain == NULL)
1947
			do_attach(alias_data, domain);
1948 1949

		atomic_inc(&alias_data->bind);
1950
	}
1951

1952
	if (dev_data->domain == NULL)
1953
		do_attach(dev_data, domain);
1954

1955 1956
	atomic_inc(&dev_data->bind);

1957 1958 1959 1960
	ret = 0;

out_unlock:

1961 1962
	/* ready */
	spin_unlock(&domain->lock);
1963

1964
	return ret;
1965
}
1966

1967 1968 1969 1970 1971 1972 1973 1974

static void pdev_iommuv2_disable(struct pci_dev *pdev)
{
	pci_disable_ats(pdev);
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);
}

1975 1976 1977 1978 1979 1980
/* FIXME: Change generic reset-function to do the same */
static int pri_reset_while_enabled(struct pci_dev *pdev)
{
	u16 control;
	int pos;

1981
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
1982 1983 1984
	if (!pos)
		return -EINVAL;

1985 1986 1987
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
	control |= PCI_PRI_CTRL_RESET;
	pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
1988 1989 1990 1991

	return 0;
}

1992 1993
static int pdev_iommuv2_enable(struct pci_dev *pdev)
{
1994 1995 1996 1997 1998 1999 2000 2001
	bool reset_enable;
	int reqs, ret;

	/* FIXME: Hardcode number of outstanding requests for now */
	reqs = 32;
	if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
		reqs = 1;
	reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

	/* Only allow access to user-accessible pages */
	ret = pci_enable_pasid(pdev, 0);
	if (ret)
		goto out_err;

	/* First reset the PRI state of the device */
	ret = pci_reset_pri(pdev);
	if (ret)
		goto out_err;

2013 2014
	/* Enable PRI */
	ret = pci_enable_pri(pdev, reqs);
2015 2016 2017
	if (ret)
		goto out_err;

2018 2019 2020 2021 2022 2023
	if (reset_enable) {
		ret = pri_reset_while_enabled(pdev);
		if (ret)
			goto out_err;
	}

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
	ret = pci_enable_ats(pdev, PAGE_SHIFT);
	if (ret)
		goto out_err;

	return 0;

out_err:
	pci_disable_pri(pdev);
	pci_disable_pasid(pdev);

	return ret;
}

2037 2038 2039 2040 2041 2042 2043 2044
/* FIXME: Move this to PCI code */
#define PCI_PRI_TLP_OFF		(1 << 2)

bool pci_pri_tlp_required(struct pci_dev *pdev)
{
	u16 control;
	int pos;

2045
	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2046 2047 2048
	if (!pos)
		return false;

2049
	pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2050 2051 2052 2053

	return (control & PCI_PRI_TLP_OFF) ? true : false;
}

2054 2055 2056 2057
/*
 * If a device is not yet associated with a domain, this function does
 * assigns it visible for the hardware
 */
2058 2059
static int attach_device(struct device *dev,
			 struct protection_domain *domain)
2060
{
2061
	struct pci_dev *pdev = to_pci_dev(dev);
2062
	struct iommu_dev_data *dev_data;
2063
	unsigned long flags;
2064
	int ret;
2065

2066 2067
	dev_data = get_dev_data(dev);

2068 2069 2070 2071 2072 2073 2074 2075 2076
	if (domain->flags & PD_IOMMUV2_MASK) {
		if (!dev_data->iommu_v2 || !dev_data->passthrough)
			return -EINVAL;

		if (pdev_iommuv2_enable(pdev) != 0)
			return -EINVAL;

		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2077
		dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2078 2079
	} else if (amd_iommu_iotlb_sup &&
		   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2080 2081 2082
		dev_data->ats.enabled = true;
		dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
	}
2083

2084
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2085
	ret = __attach_device(dev_data, domain);
2086 2087
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);

2088 2089 2090 2091 2092
	/*
	 * We might boot into a crash-kernel here. The crashed kernel
	 * left the caches in the IOMMU dirty. So we have to flush
	 * here to evict all dirty stuff.
	 */
2093
	domain_flush_tlb_pde(domain);
2094 2095

	return ret;
2096 2097
}

2098 2099 2100
/*
 * Removes a device from a protection domain (unlocked)
 */
2101
static void __detach_device(struct iommu_dev_data *dev_data)
2102
{
2103
	struct protection_domain *domain;
2104
	unsigned long flags;
2105

2106
	BUG_ON(!dev_data->domain);
2107

2108 2109 2110
	domain = dev_data->domain;

	spin_lock_irqsave(&domain->lock, flags);
2111

2112 2113 2114
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;

2115
		if (atomic_dec_and_test(&alias_data->bind))
2116
			do_detach(alias_data);
2117 2118
	}

2119
	if (atomic_dec_and_test(&dev_data->bind))
2120
		do_detach(dev_data);
2121

2122
	spin_unlock_irqrestore(&domain->lock, flags);
2123 2124 2125

	/*
	 * If we run in passthrough mode the device must be assigned to the
2126 2127
	 * passthrough domain if it is detached from any other domain.
	 * Make sure we can deassign from the pt_domain itself.
2128
	 */
2129
	if (dev_data->passthrough &&
2130
	    (dev_data->domain == NULL && domain != pt_domain))
2131
		__attach_device(dev_data, pt_domain);
2132 2133 2134 2135 2136
}

/*
 * Removes a device from a protection domain (with devtable_lock held)
 */
2137
static void detach_device(struct device *dev)
2138
{
2139
	struct protection_domain *domain;
2140
	struct iommu_dev_data *dev_data;
2141 2142
	unsigned long flags;

2143
	dev_data = get_dev_data(dev);
2144
	domain   = dev_data->domain;
2145

2146 2147
	/* lock device table */
	write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2148
	__detach_device(dev_data);
2149
	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2150

2151 2152 2153
	if (domain->flags & PD_IOMMUV2_MASK)
		pdev_iommuv2_disable(to_pci_dev(dev));
	else if (dev_data->ats.enabled)
2154
		pci_disable_ats(to_pci_dev(dev));
2155 2156

	dev_data->ats.enabled = false;
2157
}
2158

2159 2160 2161 2162 2163 2164
/*
 * Find out the protection domain structure for a given PCI device. This
 * will give us the pointer to the page table root for example.
 */
static struct protection_domain *domain_for_device(struct device *dev)
{
2165
	struct iommu_dev_data *dev_data;
2166
	struct protection_domain *dom = NULL;
2167 2168
	unsigned long flags;

2169
	dev_data   = get_dev_data(dev);
2170

2171 2172
	if (dev_data->domain)
		return dev_data->domain;
2173

2174 2175
	if (dev_data->alias_data != NULL) {
		struct iommu_dev_data *alias_data = dev_data->alias_data;
2176 2177 2178 2179 2180 2181 2182 2183

		read_lock_irqsave(&amd_iommu_devtable_lock, flags);
		if (alias_data->domain != NULL) {
			__attach_device(dev_data, alias_data->domain);
			dom = alias_data->domain;
		}
		read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
	}
2184 2185 2186 2187

	return dom;
}

2188 2189 2190 2191
static int device_change_notifier(struct notifier_block *nb,
				  unsigned long action, void *data)
{
	struct dma_ops_domain *dma_domain;
2192 2193 2194
	struct protection_domain *domain;
	struct iommu_dev_data *dev_data;
	struct device *dev = data;
2195
	struct amd_iommu *iommu;
2196
	unsigned long flags;
2197
	u16 devid;
2198

2199 2200
	if (!check_device(dev))
		return 0;
2201

2202 2203 2204
	devid    = get_device_id(dev);
	iommu    = amd_iommu_rlookup_table[devid];
	dev_data = get_dev_data(dev);
2205 2206

	switch (action) {
2207
	case BUS_NOTIFY_UNBOUND_DRIVER:
2208 2209 2210

		domain = domain_for_device(dev);

2211 2212
		if (!domain)
			goto out;
2213
		if (dev_data->passthrough)
2214
			break;
2215
		detach_device(dev);
2216 2217
		break;
	case BUS_NOTIFY_ADD_DEVICE:
2218 2219 2220 2221 2222

		iommu_init_device(dev);

		domain = domain_for_device(dev);

2223 2224 2225 2226
		/* allocate a protection domain if a device is added */
		dma_domain = find_protection_domain(devid);
		if (dma_domain)
			goto out;
2227
		dma_domain = dma_ops_domain_alloc();
2228 2229 2230 2231 2232 2233 2234 2235
		if (!dma_domain)
			goto out;
		dma_domain->target_dev = devid;

		spin_lock_irqsave(&iommu_pd_list_lock, flags);
		list_add_tail(&dma_domain->list, &iommu_pd_list);
		spin_unlock_irqrestore(&iommu_pd_list_lock, flags);

2236
		break;
2237 2238 2239 2240
	case BUS_NOTIFY_DEL_DEVICE:

		iommu_uninit_device(dev);

2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
	default:
		goto out;
	}

	iommu_completion_wait(iommu);

out:
	return 0;
}

2251
static struct notifier_block device_nb = {
2252 2253
	.notifier_call = device_change_notifier,
};
2254

2255 2256 2257 2258 2259
void amd_iommu_init_notifier(void)
{
	bus_register_notifier(&pci_bus_type, &device_nb);
}

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
/*****************************************************************************
 *
 * The next functions belong to the dma_ops mapping/unmapping code.
 *
 *****************************************************************************/

/*
 * In the dma_ops path we only have the struct device. This function
 * finds the corresponding IOMMU, the protection domain and the
 * requestor id for a given device.
 * If the device is not yet associated with a domain this is also done
 * in this function.
 */
2273
static struct protection_domain *get_domain(struct device *dev)
2274
{
2275
	struct protection_domain *domain;
2276
	struct dma_ops_domain *dma_dom;
2277
	u16 devid = get_device_id(dev);
2278

2279
	if (!check_device(dev))
2280
		return ERR_PTR(-EINVAL);
2281

2282 2283 2284
	domain = domain_for_device(dev);
	if (domain != NULL && !dma_ops_domain(domain))
		return ERR_PTR(-EBUSY);
2285

2286 2287
	if (domain != NULL)
		return domain;
2288

2289
	/* Device not bount yet - bind it */
2290
	dma_dom = find_protection_domain(devid);
2291
	if (!dma_dom)
2292 2293
		dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
	attach_device(dev, &dma_dom->domain);
2294
	DUMP_printk("Using protection domain %d for device %s\n",
2295
		    dma_dom->domain.id, dev_name(dev));
2296

2297
	return &dma_dom->domain;
2298 2299
}

2300 2301
static void update_device_table(struct protection_domain *domain)
{
2302
	struct iommu_dev_data *dev_data;
2303

2304 2305
	list_for_each_entry(dev_data, &domain->dev_list, list)
		set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2306 2307 2308 2309 2310 2311 2312 2313
}

static void update_domain(struct protection_domain *domain)
{
	if (!domain->updated)
		return;

	update_device_table(domain);
2314 2315 2316

	domain_flush_devices(domain);
	domain_flush_tlb_pde(domain);
2317 2318 2319 2320

	domain->updated = false;
}

2321 2322 2323 2324 2325 2326
/*
 * This function fetches the PTE for a given address in the aperture
 */
static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
			    unsigned long address)
{
2327
	struct aperture_range *aperture;
2328 2329
	u64 *pte, *pte_page;

2330 2331 2332 2333 2334
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return NULL;

	pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2335
	if (!pte) {
2336
		pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2337
				GFP_ATOMIC);
2338 2339
		aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
	} else
2340
		pte += PM_LEVEL_INDEX(0, address);
2341

2342
	update_domain(&dom->domain);
2343 2344 2345 2346

	return pte;
}

2347 2348 2349 2350
/*
 * This is the generic map function. It maps one 4kb page at paddr to
 * the given address in the DMA address space for the domain.
 */
2351
static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
				     unsigned long address,
				     phys_addr_t paddr,
				     int direction)
{
	u64 *pte, __pte;

	WARN_ON(address > dom->aperture_size);

	paddr &= PAGE_MASK;

2362
	pte  = dma_ops_get_pte(dom, address);
2363
	if (!pte)
2364
		return DMA_ERROR_CODE;
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

	__pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;

	if (direction == DMA_TO_DEVICE)
		__pte |= IOMMU_PTE_IR;
	else if (direction == DMA_FROM_DEVICE)
		__pte |= IOMMU_PTE_IW;
	else if (direction == DMA_BIDIRECTIONAL)
		__pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;

	WARN_ON(*pte);

	*pte = __pte;

	return (dma_addr_t)address;
}

2382 2383 2384
/*
 * The generic unmapping function for on page in the DMA address space.
 */
2385
static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2386 2387
				 unsigned long address)
{
2388
	struct aperture_range *aperture;
2389 2390 2391 2392 2393
	u64 *pte;

	if (address >= dom->aperture_size)
		return;

2394 2395 2396 2397 2398 2399 2400
	aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
	if (!aperture)
		return;

	pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
	if (!pte)
		return;
2401

2402
	pte += PM_LEVEL_INDEX(0, address);
2403 2404 2405 2406 2407 2408

	WARN_ON(!*pte);

	*pte = 0ULL;
}

2409 2410
/*
 * This function contains common code for mapping of a physically
J
Joerg Roedel 已提交
2411 2412
 * contiguous memory region into DMA address space. It is used by all
 * mapping functions provided with this IOMMU driver.
2413 2414
 * Must be called with the domain lock held.
 */
2415 2416 2417 2418
static dma_addr_t __map_single(struct device *dev,
			       struct dma_ops_domain *dma_dom,
			       phys_addr_t paddr,
			       size_t size,
2419
			       int dir,
2420 2421
			       bool align,
			       u64 dma_mask)
2422 2423
{
	dma_addr_t offset = paddr & ~PAGE_MASK;
2424
	dma_addr_t address, start, ret;
2425
	unsigned int pages;
2426
	unsigned long align_mask = 0;
2427 2428
	int i;

2429
	pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2430 2431
	paddr &= PAGE_MASK;

2432 2433
	INC_STATS_COUNTER(total_map_requests);

2434 2435 2436
	if (pages > 1)
		INC_STATS_COUNTER(cross_page);

2437 2438 2439
	if (align)
		align_mask = (1UL << get_order(size)) - 1;

2440
retry:
2441 2442
	address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
					  dma_mask);
2443
	if (unlikely(address == DMA_ERROR_CODE)) {
2444 2445 2446 2447 2448 2449 2450
		/*
		 * setting next_address here will let the address
		 * allocator only scan the new allocated range in the
		 * first run. This is a small optimization.
		 */
		dma_dom->next_address = dma_dom->aperture_size;

2451
		if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2452 2453 2454
			goto out;

		/*
2455
		 * aperture was successfully enlarged by 128 MB, try
2456 2457 2458 2459
		 * allocation again
		 */
		goto retry;
	}
2460 2461 2462

	start = address;
	for (i = 0; i < pages; ++i) {
2463
		ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2464
		if (ret == DMA_ERROR_CODE)
2465 2466
			goto out_unmap;

2467 2468 2469 2470 2471
		paddr += PAGE_SIZE;
		start += PAGE_SIZE;
	}
	address += offset;

2472 2473
	ADD_STATS_COUNTER(alloced_io_mem, size);

2474
	if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2475
		domain_flush_tlb(&dma_dom->domain);
2476
		dma_dom->need_flush = false;
2477
	} else if (unlikely(amd_iommu_np_cache))
2478
		domain_flush_pages(&dma_dom->domain, address, size);
2479

2480 2481
out:
	return address;
2482 2483 2484 2485 2486

out_unmap:

	for (--i; i >= 0; --i) {
		start -= PAGE_SIZE;
2487
		dma_ops_domain_unmap(dma_dom, start);
2488 2489 2490 2491
	}

	dma_ops_free_addresses(dma_dom, address, pages);

2492
	return DMA_ERROR_CODE;
2493 2494
}

2495 2496 2497 2498
/*
 * Does the reverse of the __map_single function. Must be called with
 * the domain lock held too
 */
2499
static void __unmap_single(struct dma_ops_domain *dma_dom,
2500 2501 2502 2503
			   dma_addr_t dma_addr,
			   size_t size,
			   int dir)
{
2504
	dma_addr_t flush_addr;
2505 2506 2507
	dma_addr_t i, start;
	unsigned int pages;

2508
	if ((dma_addr == DMA_ERROR_CODE) ||
2509
	    (dma_addr + size > dma_dom->aperture_size))
2510 2511
		return;

2512
	flush_addr = dma_addr;
2513
	pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2514 2515 2516 2517
	dma_addr &= PAGE_MASK;
	start = dma_addr;

	for (i = 0; i < pages; ++i) {
2518
		dma_ops_domain_unmap(dma_dom, start);
2519 2520 2521
		start += PAGE_SIZE;
	}

2522 2523
	SUB_STATS_COUNTER(alloced_io_mem, size);

2524
	dma_ops_free_addresses(dma_dom, dma_addr, pages);
2525

2526
	if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2527
		domain_flush_pages(&dma_dom->domain, flush_addr, size);
2528 2529
		dma_dom->need_flush = false;
	}
2530 2531
}

2532 2533 2534
/*
 * The exported map_single function for dma_ops.
 */
2535 2536 2537 2538
static dma_addr_t map_page(struct device *dev, struct page *page,
			   unsigned long offset, size_t size,
			   enum dma_data_direction dir,
			   struct dma_attrs *attrs)
2539 2540 2541 2542
{
	unsigned long flags;
	struct protection_domain *domain;
	dma_addr_t addr;
2543
	u64 dma_mask;
2544
	phys_addr_t paddr = page_to_phys(page) + offset;
2545

2546 2547
	INC_STATS_COUNTER(cnt_map_single);

2548 2549
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2550
		return (dma_addr_t)paddr;
2551 2552
	else if (IS_ERR(domain))
		return DMA_ERROR_CODE;
2553

2554 2555
	dma_mask = *dev->dma_mask;

2556
	spin_lock_irqsave(&domain->lock, flags);
2557

2558
	addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2559
			    dma_mask);
2560
	if (addr == DMA_ERROR_CODE)
2561 2562
		goto out;

2563
	domain_flush_complete(domain);
2564 2565 2566 2567 2568 2569 2570

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return addr;
}

2571 2572 2573
/*
 * The exported unmap_single function for dma_ops.
 */
2574 2575
static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
		       enum dma_data_direction dir, struct dma_attrs *attrs)
2576 2577 2578 2579
{
	unsigned long flags;
	struct protection_domain *domain;

2580 2581
	INC_STATS_COUNTER(cnt_unmap_single);

2582 2583
	domain = get_domain(dev);
	if (IS_ERR(domain))
2584 2585
		return;

2586 2587
	spin_lock_irqsave(&domain->lock, flags);

2588
	__unmap_single(domain->priv, dma_addr, size, dir);
2589

2590
	domain_flush_complete(domain);
2591 2592 2593 2594

	spin_unlock_irqrestore(&domain->lock, flags);
}

2595 2596 2597 2598
/*
 * This is a special map_sg function which is used if we should map a
 * device which is not handled by an AMD IOMMU in the system.
 */
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
			   int nelems, int dir)
{
	struct scatterlist *s;
	int i;

	for_each_sg(sglist, s, nelems, i) {
		s->dma_address = (dma_addr_t)sg_phys(s);
		s->dma_length  = s->length;
	}

	return nelems;
}

2613 2614 2615 2616
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2617
static int map_sg(struct device *dev, struct scatterlist *sglist,
2618 2619
		  int nelems, enum dma_data_direction dir,
		  struct dma_attrs *attrs)
2620 2621 2622 2623 2624 2625 2626
{
	unsigned long flags;
	struct protection_domain *domain;
	int i;
	struct scatterlist *s;
	phys_addr_t paddr;
	int mapped_elems = 0;
2627
	u64 dma_mask;
2628

2629 2630
	INC_STATS_COUNTER(cnt_map_sg);

2631 2632
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL)
2633
		return map_sg_no_iommu(dev, sglist, nelems, dir);
2634 2635
	else if (IS_ERR(domain))
		return 0;
2636

2637
	dma_mask = *dev->dma_mask;
2638 2639 2640 2641 2642 2643

	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
		paddr = sg_phys(s);

2644
		s->dma_address = __map_single(dev, domain->priv,
2645 2646
					      paddr, s->length, dir, false,
					      dma_mask);
2647 2648 2649 2650 2651 2652 2653 2654

		if (s->dma_address) {
			s->dma_length = s->length;
			mapped_elems++;
		} else
			goto unmap;
	}

2655
	domain_flush_complete(domain);
2656 2657 2658 2659 2660 2661 2662 2663

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return mapped_elems;
unmap:
	for_each_sg(sglist, s, mapped_elems, i) {
		if (s->dma_address)
2664
			__unmap_single(domain->priv, s->dma_address,
2665 2666 2667 2668 2669 2670 2671 2672 2673
				       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

	mapped_elems = 0;

	goto out;
}

2674 2675 2676 2677
/*
 * The exported map_sg function for dma_ops (handles scatter-gather
 * lists).
 */
2678
static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2679 2680
		     int nelems, enum dma_data_direction dir,
		     struct dma_attrs *attrs)
2681 2682 2683 2684 2685 2686
{
	unsigned long flags;
	struct protection_domain *domain;
	struct scatterlist *s;
	int i;

2687 2688
	INC_STATS_COUNTER(cnt_unmap_sg);

2689 2690
	domain = get_domain(dev);
	if (IS_ERR(domain))
2691 2692
		return;

2693 2694 2695
	spin_lock_irqsave(&domain->lock, flags);

	for_each_sg(sglist, s, nelems, i) {
2696
		__unmap_single(domain->priv, s->dma_address,
2697 2698 2699 2700
			       s->dma_length, dir);
		s->dma_address = s->dma_length = 0;
	}

2701
	domain_flush_complete(domain);
2702 2703 2704 2705

	spin_unlock_irqrestore(&domain->lock, flags);
}

2706 2707 2708
/*
 * The exported alloc_coherent function for dma_ops.
 */
2709 2710 2711 2712 2713 2714 2715
static void *alloc_coherent(struct device *dev, size_t size,
			    dma_addr_t *dma_addr, gfp_t flag)
{
	unsigned long flags;
	void *virt_addr;
	struct protection_domain *domain;
	phys_addr_t paddr;
2716
	u64 dma_mask = dev->coherent_dma_mask;
2717

2718 2719
	INC_STATS_COUNTER(cnt_alloc_coherent);

2720 2721
	domain = get_domain(dev);
	if (PTR_ERR(domain) == -EINVAL) {
2722 2723 2724
		virt_addr = (void *)__get_free_pages(flag, get_order(size));
		*dma_addr = __pa(virt_addr);
		return virt_addr;
2725 2726
	} else if (IS_ERR(domain))
		return NULL;
2727

2728 2729 2730
	dma_mask  = dev->coherent_dma_mask;
	flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
	flag     |= __GFP_ZERO;
2731 2732 2733

	virt_addr = (void *)__get_free_pages(flag, get_order(size));
	if (!virt_addr)
2734
		return NULL;
2735 2736 2737

	paddr = virt_to_phys(virt_addr);

2738 2739 2740
	if (!dma_mask)
		dma_mask = *dev->dma_mask;

2741 2742
	spin_lock_irqsave(&domain->lock, flags);

2743
	*dma_addr = __map_single(dev, domain->priv, paddr,
2744
				 size, DMA_BIDIRECTIONAL, true, dma_mask);
2745

2746
	if (*dma_addr == DMA_ERROR_CODE) {
J
Jiri Slaby 已提交
2747
		spin_unlock_irqrestore(&domain->lock, flags);
2748
		goto out_free;
J
Jiri Slaby 已提交
2749
	}
2750

2751
	domain_flush_complete(domain);
2752 2753 2754 2755

	spin_unlock_irqrestore(&domain->lock, flags);

	return virt_addr;
2756 2757 2758 2759 2760 2761

out_free:

	free_pages((unsigned long)virt_addr, get_order(size));

	return NULL;
2762 2763
}

2764 2765 2766
/*
 * The exported free_coherent function for dma_ops.
 */
2767 2768 2769 2770 2771 2772
static void free_coherent(struct device *dev, size_t size,
			  void *virt_addr, dma_addr_t dma_addr)
{
	unsigned long flags;
	struct protection_domain *domain;

2773 2774
	INC_STATS_COUNTER(cnt_free_coherent);

2775 2776
	domain = get_domain(dev);
	if (IS_ERR(domain))
2777 2778
		goto free_mem;

2779 2780
	spin_lock_irqsave(&domain->lock, flags);

2781
	__unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2782

2783
	domain_flush_complete(domain);
2784 2785 2786 2787 2788 2789 2790

	spin_unlock_irqrestore(&domain->lock, flags);

free_mem:
	free_pages((unsigned long)virt_addr, get_order(size));
}

2791 2792 2793 2794 2795 2796
/*
 * This function is called by the DMA layer to find out if we can handle a
 * particular device. It is part of the dma_ops.
 */
static int amd_iommu_dma_supported(struct device *dev, u64 mask)
{
2797
	return check_device(dev);
2798 2799
}

2800
/*
2801 2802
 * The function for pre-allocating protection domains.
 *
2803 2804 2805 2806
 * If the driver core informs the DMA layer if a driver grabs a device
 * we don't need to preallocate the protection domains anymore.
 * For now we have to.
 */
2807
static void prealloc_protection_domains(void)
2808
{
2809
	struct iommu_dev_data *dev_data;
2810
	struct dma_ops_domain *dma_dom;
2811
	struct pci_dev *dev = NULL;
2812
	u16 devid;
2813

2814
	for_each_pci_dev(dev) {
2815 2816 2817

		/* Do we handle this device? */
		if (!check_device(&dev->dev))
2818
			continue;
2819

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
		dev_data = get_dev_data(&dev->dev);
		if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
			/* Make sure passthrough domain is allocated */
			alloc_passthrough_domain();
			dev_data->passthrough = true;
			attach_device(&dev->dev, pt_domain);
			pr_info("AMD-Vi: Using passthough domain for device %s\n",
				dev_name(&dev->dev));
		}

2830
		/* Is there already any domain for it? */
2831
		if (domain_for_device(&dev->dev))
2832
			continue;
2833 2834 2835

		devid = get_device_id(&dev->dev);

2836
		dma_dom = dma_ops_domain_alloc();
2837 2838 2839
		if (!dma_dom)
			continue;
		init_unity_mappings_for_device(dma_dom, devid);
2840 2841
		dma_dom->target_dev = devid;

2842
		attach_device(&dev->dev, &dma_dom->domain);
2843

2844
		list_add_tail(&dma_dom->list, &iommu_pd_list);
2845 2846 2847
	}
}

2848
static struct dma_map_ops amd_iommu_dma_ops = {
2849 2850
	.alloc_coherent = alloc_coherent,
	.free_coherent = free_coherent,
2851 2852
	.map_page = map_page,
	.unmap_page = unmap_page,
2853 2854
	.map_sg = map_sg,
	.unmap_sg = unmap_sg,
2855
	.dma_supported = amd_iommu_dma_supported,
2856 2857
};

2858 2859
static unsigned device_dma_ops_init(void)
{
2860
	struct iommu_dev_data *dev_data;
2861 2862 2863 2864 2865
	struct pci_dev *pdev = NULL;
	unsigned unhandled = 0;

	for_each_pci_dev(pdev) {
		if (!check_device(&pdev->dev)) {
2866 2867 2868

			iommu_ignore_device(&pdev->dev);

2869 2870 2871 2872
			unhandled += 1;
			continue;
		}

2873 2874 2875 2876 2877 2878
		dev_data = get_dev_data(&pdev->dev);

		if (!dev_data->passthrough)
			pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
		else
			pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2879 2880 2881 2882 2883
	}

	return unhandled;
}

2884 2885 2886
/*
 * The function which clues the AMD IOMMU driver into dma_ops.
 */
2887 2888 2889

void __init amd_iommu_init_api(void)
{
2890
	bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2891 2892
}

2893 2894 2895
int __init amd_iommu_init_dma_ops(void)
{
	struct amd_iommu *iommu;
2896
	int ret, unhandled;
2897

2898 2899 2900 2901 2902
	/*
	 * first allocate a default protection domain for every IOMMU we
	 * found in the system. Devices not assigned to any other
	 * protection domain will be assigned to the default one.
	 */
2903
	for_each_iommu(iommu) {
2904
		iommu->default_dom = dma_ops_domain_alloc();
2905 2906
		if (iommu->default_dom == NULL)
			return -ENOMEM;
2907
		iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2908 2909 2910 2911 2912
		ret = iommu_init_unity_mappings(iommu);
		if (ret)
			goto free_domains;
	}

2913
	/*
2914
	 * Pre-allocate the protection domains for each device.
2915
	 */
2916
	prealloc_protection_domains();
2917 2918

	iommu_detected = 1;
2919
	swiotlb = 0;
2920

2921
	/* Make the driver finally visible to the drivers */
2922 2923 2924 2925 2926
	unhandled = device_dma_ops_init();
	if (unhandled && max_pfn > MAX_DMA32_PFN) {
		/* There are unhandled devices - initialize swiotlb for them */
		swiotlb = 1;
	}
2927

2928 2929
	amd_iommu_stats_init();

2930 2931 2932 2933
	return 0;

free_domains:

2934
	for_each_iommu(iommu) {
2935 2936 2937 2938 2939 2940
		if (iommu->default_dom)
			dma_ops_domain_free(iommu->default_dom);
	}

	return ret;
}
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

/*****************************************************************************
 *
 * The following functions belong to the exported interface of AMD IOMMU
 *
 * This interface allows access to lower level functions of the IOMMU
 * like protection domain handling and assignement of devices to domains
 * which is not possible with the dma_ops interface.
 *
 *****************************************************************************/

static void cleanup_domain(struct protection_domain *domain)
{
2954
	struct iommu_dev_data *dev_data, *next;
2955 2956 2957 2958
	unsigned long flags;

	write_lock_irqsave(&amd_iommu_devtable_lock, flags);

2959
	list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
2960
		__detach_device(dev_data);
2961 2962
		atomic_set(&dev_data->bind, 0);
	}
2963 2964 2965 2966

	write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}

2967 2968 2969 2970 2971
static void protection_domain_free(struct protection_domain *domain)
{
	if (!domain)
		return;

2972 2973
	del_domain_from_list(domain);

2974 2975 2976 2977 2978 2979 2980
	if (domain->id)
		domain_id_free(domain->id);

	kfree(domain);
}

static struct protection_domain *protection_domain_alloc(void)
2981 2982 2983 2984 2985
{
	struct protection_domain *domain;

	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
	if (!domain)
2986
		return NULL;
2987 2988

	spin_lock_init(&domain->lock);
2989
	mutex_init(&domain->api_lock);
2990 2991
	domain->id = domain_id_alloc();
	if (!domain->id)
2992
		goto out_err;
2993
	INIT_LIST_HEAD(&domain->dev_list);
2994

2995 2996
	add_domain_to_list(domain);

2997 2998 2999 3000 3001 3002 3003 3004
	return domain;

out_err:
	kfree(domain);

	return NULL;
}

3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
static int __init alloc_passthrough_domain(void)
{
	if (pt_domain != NULL)
		return 0;

	/* allocate passthrough domain */
	pt_domain = protection_domain_alloc();
	if (!pt_domain)
		return -ENOMEM;

	pt_domain->mode = PAGE_MODE_NONE;

	return 0;
}
3019 3020 3021 3022 3023 3024
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
	struct protection_domain *domain;

	domain = protection_domain_alloc();
	if (!domain)
3025
		goto out_free;
3026 3027

	domain->mode    = PAGE_MODE_3_LEVEL;
3028 3029 3030 3031
	domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
	if (!domain->pt_root)
		goto out_free;

3032 3033
	domain->iommu_domain = dom;

3034 3035 3036 3037 3038
	dom->priv = domain;

	return 0;

out_free:
3039
	protection_domain_free(domain);
3040 3041 3042 3043

	return -ENOMEM;
}

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static void amd_iommu_domain_destroy(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;

	if (!domain)
		return;

	if (domain->dev_cnt > 0)
		cleanup_domain(domain);

	BUG_ON(domain->dev_cnt != 0);

3056 3057
	if (domain->mode != PAGE_MODE_NONE)
		free_pagetable(domain);
3058

3059 3060 3061
	if (domain->flags & PD_IOMMUV2_MASK)
		free_gcr3_table(domain);

3062
	protection_domain_free(domain);
3063 3064 3065 3066

	dom->priv = NULL;
}

3067 3068 3069
static void amd_iommu_detach_device(struct iommu_domain *dom,
				    struct device *dev)
{
3070
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3071 3072 3073
	struct amd_iommu *iommu;
	u16 devid;

3074
	if (!check_device(dev))
3075 3076
		return;

3077
	devid = get_device_id(dev);
3078

3079
	if (dev_data->domain != NULL)
3080
		detach_device(dev);
3081 3082 3083 3084 3085 3086 3087 3088

	iommu = amd_iommu_rlookup_table[devid];
	if (!iommu)
		return;

	iommu_completion_wait(iommu);
}

3089 3090 3091 3092
static int amd_iommu_attach_device(struct iommu_domain *dom,
				   struct device *dev)
{
	struct protection_domain *domain = dom->priv;
3093
	struct iommu_dev_data *dev_data;
3094
	struct amd_iommu *iommu;
3095
	int ret;
3096

3097
	if (!check_device(dev))
3098 3099
		return -EINVAL;

3100 3101
	dev_data = dev->archdata.iommu;

3102
	iommu = amd_iommu_rlookup_table[dev_data->devid];
3103 3104 3105
	if (!iommu)
		return -EINVAL;

3106
	if (dev_data->domain)
3107
		detach_device(dev);
3108

3109
	ret = attach_device(dev, domain);
3110 3111 3112

	iommu_completion_wait(iommu);

3113
	return ret;
3114 3115
}

3116
static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3117
			 phys_addr_t paddr, size_t page_size, int iommu_prot)
3118 3119 3120 3121 3122
{
	struct protection_domain *domain = dom->priv;
	int prot = 0;
	int ret;

3123 3124 3125
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3126 3127 3128 3129 3130
	if (iommu_prot & IOMMU_READ)
		prot |= IOMMU_PROT_IR;
	if (iommu_prot & IOMMU_WRITE)
		prot |= IOMMU_PROT_IW;

3131
	mutex_lock(&domain->api_lock);
3132
	ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3133 3134
	mutex_unlock(&domain->api_lock);

3135
	return ret;
3136 3137
}

3138 3139
static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
			   size_t page_size)
3140 3141
{
	struct protection_domain *domain = dom->priv;
3142
	size_t unmap_size;
3143

3144 3145 3146
	if (domain->mode == PAGE_MODE_NONE)
		return -EINVAL;

3147
	mutex_lock(&domain->api_lock);
3148
	unmap_size = iommu_unmap_page(domain, iova, page_size);
3149
	mutex_unlock(&domain->api_lock);
3150

3151
	domain_flush_tlb_pde(domain);
3152

3153
	return unmap_size;
3154 3155
}

3156 3157 3158 3159
static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
					  unsigned long iova)
{
	struct protection_domain *domain = dom->priv;
3160
	unsigned long offset_mask;
3161
	phys_addr_t paddr;
3162
	u64 *pte, __pte;
3163

3164 3165 3166
	if (domain->mode == PAGE_MODE_NONE)
		return iova;

3167
	pte = fetch_pte(domain, iova);
3168

3169
	if (!pte || !IOMMU_PTE_PRESENT(*pte))
3170 3171
		return 0;

3172 3173 3174 3175 3176 3177 3178
	if (PM_PTE_LEVEL(*pte) == 0)
		offset_mask = PAGE_SIZE - 1;
	else
		offset_mask = PTE_PAGE_SIZE(*pte) - 1;

	__pte = *pte & PM_ADDR_MASK;
	paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3179 3180 3181 3182

	return paddr;
}

S
Sheng Yang 已提交
3183 3184 3185
static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
				    unsigned long cap)
{
3186 3187 3188 3189 3190
	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		return 1;
	}

S
Sheng Yang 已提交
3191 3192 3193
	return 0;
}

3194 3195 3196
static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
{
	struct iommu_dev_data *dev_data = dev->archdata.iommu;
3197 3198
	struct pci_dev *pdev = to_pci_dev(dev);
	u16 devid;
3199 3200 3201 3202

	if (!dev_data)
		return -ENODEV;

3203 3204 3205 3206 3207 3208 3209
	if (pdev->is_virtfn || !iommu_group_mf)
		devid = dev_data->devid;
	else
		devid = calc_devid(pdev->bus->number,
				   PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));

	*groupid = amd_iommu_alias_table[devid];
3210 3211 3212 3213

	return 0;
}

3214 3215 3216 3217 3218
static struct iommu_ops amd_iommu_ops = {
	.domain_init = amd_iommu_domain_init,
	.domain_destroy = amd_iommu_domain_destroy,
	.attach_dev = amd_iommu_attach_device,
	.detach_dev = amd_iommu_detach_device,
3219 3220
	.map = amd_iommu_map,
	.unmap = amd_iommu_unmap,
3221
	.iova_to_phys = amd_iommu_iova_to_phys,
S
Sheng Yang 已提交
3222
	.domain_has_cap = amd_iommu_domain_has_cap,
3223
	.device_group = amd_iommu_device_group,
3224
	.pgsize_bitmap	= AMD_IOMMU_PGSIZES,
3225 3226
};

3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
/*****************************************************************************
 *
 * The next functions do a basic initialization of IOMMU for pass through
 * mode
 *
 * In passthrough mode the IOMMU is initialized and enabled but not used for
 * DMA-API translation.
 *
 *****************************************************************************/

int __init amd_iommu_init_passthrough(void)
{
3239
	struct iommu_dev_data *dev_data;
3240
	struct pci_dev *dev = NULL;
3241
	struct amd_iommu *iommu;
3242
	u16 devid;
3243
	int ret;
3244

3245 3246 3247
	ret = alloc_passthrough_domain();
	if (ret)
		return ret;
3248

3249
	for_each_pci_dev(dev) {
3250
		if (!check_device(&dev->dev))
3251 3252
			continue;

3253 3254 3255
		dev_data = get_dev_data(&dev->dev);
		dev_data->passthrough = true;

3256 3257
		devid = get_device_id(&dev->dev);

3258
		iommu = amd_iommu_rlookup_table[devid];
3259 3260 3261
		if (!iommu)
			continue;

3262
		attach_device(&dev->dev, pt_domain);
3263 3264
	}

J
Joerg Roedel 已提交
3265 3266
	amd_iommu_stats_init();

3267 3268 3269 3270
	pr_info("AMD-Vi: Initialized for Passthrough Mode\n");

	return 0;
}
3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283

/* IOMMUv2 specific functions */
int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_register(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);

int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
{
	return atomic_notifier_chain_unregister(&ppr_notifier, nb);
}
EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304

void amd_iommu_domain_direct_map(struct iommu_domain *dom)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;

	spin_lock_irqsave(&domain->lock, flags);

	/* Update data structure */
	domain->mode    = PAGE_MODE_NONE;
	domain->updated = true;

	/* Make changes visible to IOMMUs */
	update_domain(domain);

	/* Page-table is not visible to IOMMU anymore, so free it */
	free_pagetable(domain);

	spin_unlock_irqrestore(&domain->lock, flags);
}
EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351

int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int levels, ret;

	if (pasids <= 0 || pasids > (PASID_MASK + 1))
		return -EINVAL;

	/* Number of GCR3 table levels required */
	for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
		levels += 1;

	if (levels > amd_iommu_max_glx_val)
		return -EINVAL;

	spin_lock_irqsave(&domain->lock, flags);

	/*
	 * Save us all sanity checks whether devices already in the
	 * domain support IOMMUv2. Just force that the domain has no
	 * devices attached when it is switched into IOMMUv2 mode.
	 */
	ret = -EBUSY;
	if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
		goto out;

	ret = -ENOMEM;
	domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
	if (domain->gcr3_tbl == NULL)
		goto out;

	domain->glx      = levels;
	domain->flags   |= PD_IOMMUV2_MASK;
	domain->updated  = true;

	update_domain(domain);

	ret = 0;

out:
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411

static int __flush_pasid(struct protection_domain *domain, int pasid,
			 u64 address, bool size)
{
	struct iommu_dev_data *dev_data;
	struct iommu_cmd cmd;
	int i, ret;

	if (!(domain->flags & PD_IOMMUV2_MASK))
		return -EINVAL;

	build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);

	/*
	 * IOMMU TLB needs to be flushed before Device TLB to
	 * prevent device TLB refill from IOMMU TLB
	 */
	for (i = 0; i < amd_iommus_present; ++i) {
		if (domain->dev_iommu[i] == 0)
			continue;

		ret = iommu_queue_command(amd_iommus[i], &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until IOMMU TLB flushes are complete */
	domain_flush_complete(domain);

	/* Now flush device TLBs */
	list_for_each_entry(dev_data, &domain->dev_list, list) {
		struct amd_iommu *iommu;
		int qdep;

		BUG_ON(!dev_data->ats.enabled);

		qdep  = dev_data->ats.qdep;
		iommu = amd_iommu_rlookup_table[dev_data->devid];

		build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
				      qdep, address, size);

		ret = iommu_queue_command(iommu, &cmd);
		if (ret != 0)
			goto out;
	}

	/* Wait until all device TLBs are flushed */
	domain_flush_complete(domain);

	ret = 0;

out:

	return ret;
}

static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
				  u64 address)
{
3412 3413
	INC_STATS_COUNTER(invalidate_iotlb);

3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	return __flush_pasid(domain, pasid, address, false);
}

int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
			 u64 address)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_page(domain, pasid, address);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_page);

static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
{
3434 3435
	INC_STATS_COUNTER(invalidate_iotlb_all);

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
			     true);
}

int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __amd_iommu_flush_tlb(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_flush_tlb);

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
{
	int index;
	u64 *pte;

	while (true) {

		index = (pasid >> (9 * level)) & 0x1ff;
		pte   = &root[index];

		if (level == 0)
			break;

		if (!(*pte & GCR3_VALID)) {
			if (!alloc)
				return NULL;

			root = (void *)get_zeroed_page(GFP_ATOMIC);
			if (root == NULL)
				return NULL;

			*pte = __pa(root) | GCR3_VALID;
		}

		root = __va(*pte & PAGE_MASK);

		level -= 1;
	}

	return pte;
}

static int __set_gcr3(struct protection_domain *domain, int pasid,
		      unsigned long cr3)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
	if (pte == NULL)
		return -ENOMEM;

	*pte = (cr3 & PAGE_MASK) | GCR3_VALID;

	return __amd_iommu_flush_tlb(domain, pasid);
}

static int __clear_gcr3(struct protection_domain *domain, int pasid)
{
	u64 *pte;

	if (domain->mode != PAGE_MODE_NONE)
		return -EINVAL;

	pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
	if (pte == NULL)
		return 0;

	*pte = 0;

	return __amd_iommu_flush_tlb(domain, pasid);
}

int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
			      unsigned long cr3)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __set_gcr3(domain, pasid, cr3);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);

int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
{
	struct protection_domain *domain = dom->priv;
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&domain->lock, flags);
	ret = __clear_gcr3(domain, pasid);
	spin_unlock_irqrestore(&domain->lock, flags);

	return ret;
}
EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3547 3548 3549 3550 3551 3552 3553 3554

int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
			   int status, int tag)
{
	struct iommu_dev_data *dev_data;
	struct amd_iommu *iommu;
	struct iommu_cmd cmd;

3555 3556
	INC_STATS_COUNTER(complete_ppr);

3557 3558 3559 3560 3561 3562 3563 3564 3565
	dev_data = get_dev_data(&pdev->dev);
	iommu    = amd_iommu_rlookup_table[dev_data->devid];

	build_complete_ppr(&cmd, dev_data->devid, pasid, status,
			   tag, dev_data->pri_tlp);

	return iommu_queue_command(iommu, &cmd);
}
EXPORT_SYMBOL(amd_iommu_complete_ppr);
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
{
	struct protection_domain *domain;

	domain = get_domain(&pdev->dev);
	if (IS_ERR(domain))
		return NULL;

	/* Only return IOMMUv2 domains */
	if (!(domain->flags & PD_IOMMUV2_MASK))
		return NULL;

	return domain->iommu_domain;
}
EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593

void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
{
	struct iommu_dev_data *dev_data;

	if (!amd_iommu_v2_supported())
		return;

	dev_data = get_dev_data(&pdev->dev);
	dev_data->errata |= (1 << erratum);
}
EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636

int amd_iommu_device_info(struct pci_dev *pdev,
                          struct amd_iommu_device_info *info)
{
	int max_pasids;
	int pos;

	if (pdev == NULL || info == NULL)
		return -EINVAL;

	if (!amd_iommu_v2_supported())
		return -EINVAL;

	memset(info, 0, sizeof(*info));

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
	if (pos)
		info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
	if (pos) {
		int features;

		max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
		max_pasids = min(max_pasids, (1 << 20));

		info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
		info->max_pasids = min(pci_max_pasids(pdev), max_pasids);

		features = pci_pasid_features(pdev);
		if (features & PCI_PASID_CAP_EXEC)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
		if (features & PCI_PASID_CAP_PRIV)
			info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
	}

	return 0;
}
EXPORT_SYMBOL(amd_iommu_device_info);