dax.c 31.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * fs/dax.c - Direct Access filesystem code
 * Copyright (c) 2013-2014 Intel Corporation
 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 */

#include <linux/atomic.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
20
#include <linux/dax.h>
21 22
#include <linux/fs.h>
#include <linux/genhd.h>
23 24 25
#include <linux/highmem.h>
#include <linux/memcontrol.h>
#include <linux/mm.h>
26
#include <linux/mutex.h>
R
Ross Zwisler 已提交
27
#include <linux/pagevec.h>
28
#include <linux/pmem.h>
29
#include <linux/sched.h>
30
#include <linux/uio.h>
31
#include <linux/vmstat.h>
D
Dan Williams 已提交
32
#include <linux/pfn_t.h>
33
#include <linux/sizes.h>
34

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
{
	struct request_queue *q = bdev->bd_queue;
	long rc = -EIO;

	dax->addr = (void __pmem *) ERR_PTR(-EIO);
	if (blk_queue_enter(q, true) != 0)
		return rc;

	rc = bdev_direct_access(bdev, dax);
	if (rc < 0) {
		dax->addr = (void __pmem *) ERR_PTR(rc);
		blk_queue_exit(q);
		return rc;
	}
	return rc;
}

static void dax_unmap_atomic(struct block_device *bdev,
		const struct blk_dax_ctl *dax)
{
	if (IS_ERR(dax->addr))
		return;
	blk_queue_exit(bdev->bd_queue);
}

61 62 63 64 65
/*
 * dax_clear_blocks() is called from within transaction context from XFS,
 * and hence this means the stack from this point must follow GFP_NOFS
 * semantics for all operations.
 */
66
int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
67 68
{
	struct block_device *bdev = inode->i_sb->s_bdev;
69 70 71 72
	struct blk_dax_ctl dax = {
		.sector = block << (inode->i_blkbits - 9),
		.size = _size,
	};
73 74 75

	might_sleep();
	do {
76
		long count, sz;
77

78
		count = dax_map_atomic(bdev, &dax);
79 80
		if (count < 0)
			return count;
81
		sz = min_t(long, count, SZ_128K);
82 83 84 85
		clear_pmem(dax.addr, sz);
		dax.size -= sz;
		dax.sector += sz / 512;
		dax_unmap_atomic(bdev, &dax);
86
		cond_resched();
87
	} while (dax.size);
88

89
	wmb_pmem();
90 91 92 93
	return 0;
}
EXPORT_SYMBOL_GPL(dax_clear_blocks);

94
/* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
95 96
static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
		loff_t pos, loff_t end)
97 98 99 100
{
	loff_t final = end - pos + first; /* The final byte of the buffer */

	if (first > 0)
101
		clear_pmem(addr, first);
102
	if (final < size)
103
		clear_pmem(addr + final, size - final);
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
}

static bool buffer_written(struct buffer_head *bh)
{
	return buffer_mapped(bh) && !buffer_unwritten(bh);
}

/*
 * When ext4 encounters a hole, it returns without modifying the buffer_head
 * which means that we can't trust b_size.  To cope with this, we set b_state
 * to 0 before calling get_block and, if any bit is set, we know we can trust
 * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
 * and would save us time calling get_block repeatedly.
 */
static bool buffer_size_valid(struct buffer_head *bh)
{
	return bh->b_state != 0;
}

123 124 125 126 127 128 129 130 131

static sector_t to_sector(const struct buffer_head *bh,
		const struct inode *inode)
{
	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);

	return sector;
}

O
Omar Sandoval 已提交
132 133 134
static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
		      loff_t start, loff_t end, get_block_t get_block,
		      struct buffer_head *bh)
135
{
136 137 138 139 140 141 142 143 144 145
	loff_t pos = start, max = start, bh_max = start;
	bool hole = false, need_wmb = false;
	struct block_device *bdev = NULL;
	int rw = iov_iter_rw(iter), rc;
	long map_len = 0;
	struct blk_dax_ctl dax = {
		.addr = (void __pmem *) ERR_PTR(-EIO),
	};

	if (rw == READ)
146 147 148
		end = min(end, i_size_read(inode));

	while (pos < end) {
149
		size_t len;
150 151
		if (pos == max) {
			unsigned blkbits = inode->i_blkbits;
152 153
			long page = pos >> PAGE_SHIFT;
			sector_t block = page << (PAGE_SHIFT - blkbits);
154 155 156 157 158 159
			unsigned first = pos - (block << blkbits);
			long size;

			if (pos == bh_max) {
				bh->b_size = PAGE_ALIGN(end - pos);
				bh->b_state = 0;
160 161
				rc = get_block(inode, block, bh, rw == WRITE);
				if (rc)
162 163 164 165
					break;
				if (!buffer_size_valid(bh))
					bh->b_size = 1 << blkbits;
				bh_max = pos - first + bh->b_size;
166
				bdev = bh->b_bdev;
167 168 169 170 171 172 173
			} else {
				unsigned done = bh->b_size -
						(bh_max - (pos - first));
				bh->b_blocknr += done >> blkbits;
				bh->b_size -= done;
			}

174
			hole = rw == READ && !buffer_written(bh);
175 176 177
			if (hole) {
				size = bh->b_size - first;
			} else {
178 179 180 181 182 183
				dax_unmap_atomic(bdev, &dax);
				dax.sector = to_sector(bh, inode);
				dax.size = bh->b_size;
				map_len = dax_map_atomic(bdev, &dax);
				if (map_len < 0) {
					rc = map_len;
184
					break;
185
				}
186
				if (buffer_unwritten(bh) || buffer_new(bh)) {
187 188
					dax_new_buf(dax.addr, map_len, first,
							pos, end);
189 190
					need_wmb = true;
				}
191 192
				dax.addr += first;
				size = map_len - first;
193 194 195 196
			}
			max = min(pos + size, end);
		}

197
		if (iov_iter_rw(iter) == WRITE) {
198
			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
199 200
			need_wmb = true;
		} else if (!hole)
201
			len = copy_to_iter((void __force *) dax.addr, max - pos,
202
					iter);
203 204 205
		else
			len = iov_iter_zero(max - pos, iter);

206
		if (!len) {
207
			rc = -EFAULT;
208
			break;
209
		}
210 211

		pos += len;
212 213
		if (!IS_ERR(dax.addr))
			dax.addr += len;
214 215
	}

216 217
	if (need_wmb)
		wmb_pmem();
218
	dax_unmap_atomic(bdev, &dax);
219

220
	return (pos == start) ? rc : pos - start;
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
}

/**
 * dax_do_io - Perform I/O to a DAX file
 * @iocb: The control block for this I/O
 * @inode: The file which the I/O is directed at
 * @iter: The addresses to do I/O from or to
 * @pos: The file offset where the I/O starts
 * @get_block: The filesystem method used to translate file offsets to blocks
 * @end_io: A filesystem callback for I/O completion
 * @flags: See below
 *
 * This function uses the same locking scheme as do_blockdev_direct_IO:
 * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
 * caller for writes.  For reads, we take and release the i_mutex ourselves.
 * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
 * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
 * is in progress.
 */
O
Omar Sandoval 已提交
240 241 242
ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
		  dio_iodone_t end_io, int flags)
243 244 245 246 247 248 249
{
	struct buffer_head bh;
	ssize_t retval = -EINVAL;
	loff_t end = pos + iov_iter_count(iter);

	memset(&bh, 0, sizeof(bh));

O
Omar Sandoval 已提交
250
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
251 252 253 254 255 256 257 258 259 260
		struct address_space *mapping = inode->i_mapping;
		mutex_lock(&inode->i_mutex);
		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
		if (retval) {
			mutex_unlock(&inode->i_mutex);
			goto out;
		}
	}

	/* Protects against truncate */
261 262
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_begin(inode);
263

O
Omar Sandoval 已提交
264
	retval = dax_io(inode, iter, pos, end, get_block, &bh);
265

O
Omar Sandoval 已提交
266
	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
267 268 269 270 271
		mutex_unlock(&inode->i_mutex);

	if ((retval > 0) && end_io)
		end_io(iocb, pos, retval, bh.b_private);

272 273
	if (!(flags & DIO_SKIP_DIO_COUNT))
		inode_dio_end(inode);
274 275 276 277
 out:
	return retval;
}
EXPORT_SYMBOL_GPL(dax_do_io);
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308

/*
 * The user has performed a load from a hole in the file.  Allocating
 * a new page in the file would cause excessive storage usage for
 * workloads with sparse files.  We allocate a page cache page instead.
 * We'll kick it out of the page cache if it's ever written to,
 * otherwise it will simply fall out of the page cache under memory
 * pressure without ever having been dirtied.
 */
static int dax_load_hole(struct address_space *mapping, struct page *page,
							struct vm_fault *vmf)
{
	unsigned long size;
	struct inode *inode = mapping->host;
	if (!page)
		page = find_or_create_page(mapping, vmf->pgoff,
						GFP_KERNEL | __GFP_ZERO);
	if (!page)
		return VM_FAULT_OOM;
	/* Recheck i_size under page lock to avoid truncate race */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size) {
		unlock_page(page);
		page_cache_release(page);
		return VM_FAULT_SIGBUS;
	}

	vmf->page = page;
	return VM_FAULT_LOCKED;
}

309 310
static int copy_user_bh(struct page *to, struct inode *inode,
		struct buffer_head *bh, unsigned long vaddr)
311
{
312 313 314 315 316
	struct blk_dax_ctl dax = {
		.sector = to_sector(bh, inode),
		.size = bh->b_size,
	};
	struct block_device *bdev = bh->b_bdev;
317 318
	void *vto;

319 320
	if (dax_map_atomic(bdev, &dax) < 0)
		return PTR_ERR(dax.addr);
321
	vto = kmap_atomic(to);
322
	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
323
	kunmap_atomic(vto);
324
	dax_unmap_atomic(bdev, &dax);
325 326 327
	return 0;
}

R
Ross Zwisler 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
#define NO_SECTOR -1
#define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))

static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
		sector_t sector, bool pmd_entry, bool dirty)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	pgoff_t pmd_index = DAX_PMD_INDEX(index);
	int type, error = 0;
	void *entry;

	WARN_ON_ONCE(pmd_entry && !dirty);
	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);

	spin_lock_irq(&mapping->tree_lock);

	entry = radix_tree_lookup(page_tree, pmd_index);
	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
		index = pmd_index;
		goto dirty;
	}

	entry = radix_tree_lookup(page_tree, index);
	if (entry) {
		type = RADIX_DAX_TYPE(entry);
		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
					type != RADIX_DAX_PMD)) {
			error = -EIO;
			goto unlock;
		}

		if (!pmd_entry || type == RADIX_DAX_PMD)
			goto dirty;

		/*
		 * We only insert dirty PMD entries into the radix tree.  This
		 * means we don't need to worry about removing a dirty PTE
		 * entry and inserting a clean PMD entry, thus reducing the
		 * range we would flush with a follow-up fsync/msync call.
		 */
		radix_tree_delete(&mapping->page_tree, index);
		mapping->nrexceptional--;
	}

	if (sector == NO_SECTOR) {
		/*
		 * This can happen during correct operation if our pfn_mkwrite
		 * fault raced against a hole punch operation.  If this
		 * happens the pte that was hole punched will have been
		 * unmapped and the radix tree entry will have been removed by
		 * the time we are called, but the call will still happen.  We
		 * will return all the way up to wp_pfn_shared(), where the
		 * pte_same() check will fail, eventually causing page fault
		 * to be retried by the CPU.
		 */
		goto unlock;
	}

	error = radix_tree_insert(page_tree, index,
			RADIX_DAX_ENTRY(sector, pmd_entry));
	if (error)
		goto unlock;

	mapping->nrexceptional++;
 dirty:
	if (dirty)
		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
 unlock:
	spin_unlock_irq(&mapping->tree_lock);
	return error;
}

static int dax_writeback_one(struct block_device *bdev,
		struct address_space *mapping, pgoff_t index, void *entry)
{
	struct radix_tree_root *page_tree = &mapping->page_tree;
	int type = RADIX_DAX_TYPE(entry);
	struct radix_tree_node *node;
	struct blk_dax_ctl dax;
	void **slot;
	int ret = 0;

	spin_lock_irq(&mapping->tree_lock);
	/*
	 * Regular page slots are stabilized by the page lock even
	 * without the tree itself locked.  These unlocked entries
	 * need verification under the tree lock.
	 */
	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
		goto unlock;
	if (*slot != entry)
		goto unlock;

	/* another fsync thread may have already written back this entry */
	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
		goto unlock;

	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
		ret = -EIO;
		goto unlock;
	}

	dax.sector = RADIX_DAX_SECTOR(entry);
	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
	spin_unlock_irq(&mapping->tree_lock);

	/*
	 * We cannot hold tree_lock while calling dax_map_atomic() because it
	 * eventually calls cond_resched().
	 */
	ret = dax_map_atomic(bdev, &dax);
	if (ret < 0)
		return ret;

	if (WARN_ON_ONCE(ret < dax.size)) {
		ret = -EIO;
		goto unmap;
	}

	wb_cache_pmem(dax.addr, dax.size);

	spin_lock_irq(&mapping->tree_lock);
	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
	spin_unlock_irq(&mapping->tree_lock);
 unmap:
	dax_unmap_atomic(bdev, &dax);
	return ret;

 unlock:
	spin_unlock_irq(&mapping->tree_lock);
	return ret;
}

/*
 * Flush the mapping to the persistent domain within the byte range of [start,
 * end]. This is required by data integrity operations to ensure file data is
 * on persistent storage prior to completion of the operation.
 */
int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
		loff_t end)
{
	struct inode *inode = mapping->host;
	struct block_device *bdev = inode->i_sb->s_bdev;
	pgoff_t start_index, end_index, pmd_index;
	pgoff_t indices[PAGEVEC_SIZE];
	struct pagevec pvec;
	bool done = false;
	int i, ret = 0;
	void *entry;

	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
		return -EIO;

	start_index = start >> PAGE_CACHE_SHIFT;
	end_index = end >> PAGE_CACHE_SHIFT;
	pmd_index = DAX_PMD_INDEX(start_index);

	rcu_read_lock();
	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
	rcu_read_unlock();

	/* see if the start of our range is covered by a PMD entry */
	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
		start_index = pmd_index;

	tag_pages_for_writeback(mapping, start_index, end_index);

	pagevec_init(&pvec, 0);
	while (!done) {
		pvec.nr = find_get_entries_tag(mapping, start_index,
				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
				pvec.pages, indices);

		if (pvec.nr == 0)
			break;

		for (i = 0; i < pvec.nr; i++) {
			if (indices[i] > end_index) {
				done = true;
				break;
			}

			ret = dax_writeback_one(bdev, mapping, indices[i],
					pvec.pages[i]);
			if (ret < 0)
				return ret;
		}
	}
	wmb_pmem();
	return 0;
}
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);

521 522 523 524
static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
			struct vm_area_struct *vma, struct vm_fault *vmf)
{
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
525 526 527 528 529 530
	struct address_space *mapping = inode->i_mapping;
	struct block_device *bdev = bh->b_bdev;
	struct blk_dax_ctl dax = {
		.sector = to_sector(bh, inode),
		.size = bh->b_size,
	};
531 532 533
	pgoff_t size;
	int error;

R
Ross Zwisler 已提交
534 535
	i_mmap_lock_read(mapping);

536 537 538 539 540 541 542 543 544 545 546 547 548
	/*
	 * Check truncate didn't happen while we were allocating a block.
	 * If it did, this block may or may not be still allocated to the
	 * file.  We can't tell the filesystem to free it because we can't
	 * take i_mutex here.  In the worst case, the file still has blocks
	 * allocated past the end of the file.
	 */
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (unlikely(vmf->pgoff >= size)) {
		error = -EIO;
		goto out;
	}

549 550
	if (dax_map_atomic(bdev, &dax) < 0) {
		error = PTR_ERR(dax.addr);
551 552 553
		goto out;
	}

554
	if (buffer_unwritten(bh) || buffer_new(bh)) {
555
		clear_pmem(dax.addr, PAGE_SIZE);
556 557
		wmb_pmem();
	}
558
	dax_unmap_atomic(bdev, &dax);
559

R
Ross Zwisler 已提交
560 561 562 563 564
	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
			vmf->flags & FAULT_FLAG_WRITE);
	if (error)
		goto out;

565
	error = vm_insert_mixed(vma, vaddr, dax.pfn);
566 567

 out:
R
Ross Zwisler 已提交
568 569
	i_mmap_unlock_read(mapping);

570 571 572
	return error;
}

573 574 575 576 577
/**
 * __dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
578 579 580 581 582 583
 * @complete_unwritten: The filesystem method used to convert unwritten blocks
 *	to written so the data written to them is exposed. This is required for
 *	required by write faults for filesystems that will return unwritten
 *	extent mappings from @get_block, but it is optional for reads as
 *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
 *	not support unwritten extents, the it should pass NULL.
584 585 586 587 588 589
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files. __dax_fault() assumes the caller has done all
 * the necessary locking for the page fault to proceed successfully.
 */
int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
590
			get_block_t get_block, dax_iodone_t complete_unwritten)
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct page *page;
	struct buffer_head bh;
	unsigned long vaddr = (unsigned long)vmf->virtual_address;
	unsigned blkbits = inode->i_blkbits;
	sector_t block;
	pgoff_t size;
	int error;
	int major = 0;

	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (vmf->pgoff >= size)
		return VM_FAULT_SIGBUS;

	memset(&bh, 0, sizeof(bh));
	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
	bh.b_size = PAGE_SIZE;

 repeat:
	page = find_get_page(mapping, vmf->pgoff);
	if (page) {
		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
			page_cache_release(page);
			return VM_FAULT_RETRY;
		}
		if (unlikely(page->mapping != mapping)) {
			unlock_page(page);
			page_cache_release(page);
			goto repeat;
		}
		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
		if (unlikely(vmf->pgoff >= size)) {
			/*
			 * We have a struct page covering a hole in the file
			 * from a read fault and we've raced with a truncate
			 */
			error = -EIO;
R
Ross Zwisler 已提交
631
			goto unlock_page;
632 633 634 635 636 637 638
		}
	}

	error = get_block(inode, block, &bh, 0);
	if (!error && (bh.b_size < PAGE_SIZE))
		error = -EIO;		/* fs corruption? */
	if (error)
R
Ross Zwisler 已提交
639
		goto unlock_page;
640 641 642 643 644 645 646 647 648 649

	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
		if (vmf->flags & FAULT_FLAG_WRITE) {
			error = get_block(inode, block, &bh, 1);
			count_vm_event(PGMAJFAULT);
			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
			major = VM_FAULT_MAJOR;
			if (!error && (bh.b_size < PAGE_SIZE))
				error = -EIO;
			if (error)
R
Ross Zwisler 已提交
650
				goto unlock_page;
651 652 653 654 655 656 657 658
		} else {
			return dax_load_hole(mapping, page, vmf);
		}
	}

	if (vmf->cow_page) {
		struct page *new_page = vmf->cow_page;
		if (buffer_written(&bh))
659
			error = copy_user_bh(new_page, inode, &bh, vaddr);
660 661 662
		else
			clear_user_highpage(new_page, vaddr);
		if (error)
R
Ross Zwisler 已提交
663
			goto unlock_page;
664 665
		vmf->page = page;
		if (!page) {
R
Ross Zwisler 已提交
666
			i_mmap_lock_read(mapping);
667 668 669 670
			/* Check we didn't race with truncate */
			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
								PAGE_SHIFT;
			if (vmf->pgoff >= size) {
R
Ross Zwisler 已提交
671
				i_mmap_unlock_read(mapping);
672
				error = -EIO;
R
Ross Zwisler 已提交
673
				goto out;
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
			}
		}
		return VM_FAULT_LOCKED;
	}

	/* Check we didn't race with a read fault installing a new page */
	if (!page && major)
		page = find_lock_page(mapping, vmf->pgoff);

	if (page) {
		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
							PAGE_CACHE_SIZE, 0);
		delete_from_page_cache(page);
		unlock_page(page);
		page_cache_release(page);
R
Ross Zwisler 已提交
689
		page = NULL;
690 691
	}

692 693 694 695 696 697 698 699 700 701
	/*
	 * If we successfully insert the new mapping over an unwritten extent,
	 * we need to ensure we convert the unwritten extent. If there is an
	 * error inserting the mapping, the filesystem needs to leave it as
	 * unwritten to prevent exposure of the stale underlying data to
	 * userspace, but we still need to call the completion function so
	 * the private resources on the mapping buffer can be released. We
	 * indicate what the callback should do via the uptodate variable, same
	 * as for normal BH based IO completions.
	 */
702
	error = dax_insert_mapping(inode, &bh, vma, vmf);
703 704 705 706 707 708
	if (buffer_unwritten(&bh)) {
		if (complete_unwritten)
			complete_unwritten(&bh, !error);
		else
			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
	}
709 710 711 712 713 714 715 716 717

 out:
	if (error == -ENOMEM)
		return VM_FAULT_OOM | major;
	/* -EBUSY is fine, somebody else faulted on the same PTE */
	if ((error < 0) && (error != -EBUSY))
		return VM_FAULT_SIGBUS | major;
	return VM_FAULT_NOPAGE | major;

R
Ross Zwisler 已提交
718
 unlock_page:
719 720 721 722 723 724
	if (page) {
		unlock_page(page);
		page_cache_release(page);
	}
	goto out;
}
725
EXPORT_SYMBOL(__dax_fault);
726 727 728 729 730 731 732 733 734 735 736

/**
 * dax_fault - handle a page fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * fault handler for DAX files.
 */
int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
737
	      get_block_t get_block, dax_iodone_t complete_unwritten)
738 739 740 741 742 743 744 745
{
	int result;
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	if (vmf->flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(sb);
		file_update_time(vma->vm_file);
	}
746
	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
747 748 749 750 751 752
	if (vmf->flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(sb);

	return result;
}
EXPORT_SYMBOL_GPL(dax_fault);
753

754 755 756 757 758 759 760
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
 * more often than one might expect in the below function.
 */
#define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
static void __dax_dbg(struct buffer_head *bh, unsigned long address,
		const char *reason, const char *fn)
{
	if (bh) {
		char bname[BDEVNAME_SIZE];
		bdevname(bh->b_bdev, bname);
		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
			"length %zd fallback: %s\n", fn, current->comm,
			address, bname, bh->b_state, (u64)bh->b_blocknr,
			bh->b_size, reason);
	} else {
		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
			current->comm, address, reason);
	}
}

#define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")

779 780 781 782 783 784 785 786 787 788 789
int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
		pmd_t *pmd, unsigned int flags, get_block_t get_block,
		dax_iodone_t complete_unwritten)
{
	struct file *file = vma->vm_file;
	struct address_space *mapping = file->f_mapping;
	struct inode *inode = mapping->host;
	struct buffer_head bh;
	unsigned blkbits = inode->i_blkbits;
	unsigned long pmd_addr = address & PMD_MASK;
	bool write = flags & FAULT_FLAG_WRITE;
790
	struct block_device *bdev;
791
	pgoff_t size, pgoff;
792
	sector_t block;
R
Ross Zwisler 已提交
793 794
	int error, result = 0;
	bool alloc = false;
795

D
Dan Williams 已提交
796
	/* dax pmd mappings require pfn_t_devmap() */
D
Dan Williams 已提交
797 798 799
	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
		return VM_FAULT_FALLBACK;

800
	/* Fall back to PTEs if we're going to COW */
801 802
	if (write && !(vma->vm_flags & VM_SHARED)) {
		split_huge_pmd(vma, pmd, address);
803
		dax_pmd_dbg(NULL, address, "cow write");
804
		return VM_FAULT_FALLBACK;
805
	}
806
	/* If the PMD would extend outside the VMA */
807 808
	if (pmd_addr < vma->vm_start) {
		dax_pmd_dbg(NULL, address, "vma start unaligned");
809
		return VM_FAULT_FALLBACK;
810 811 812
	}
	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
		dax_pmd_dbg(NULL, address, "vma end unaligned");
813
		return VM_FAULT_FALLBACK;
814
	}
815

M
Matthew Wilcox 已提交
816
	pgoff = linear_page_index(vma, pmd_addr);
817 818 819 820
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (pgoff >= size)
		return VM_FAULT_SIGBUS;
	/* If the PMD would cover blocks out of the file */
821 822 823
	if ((pgoff | PG_PMD_COLOUR) >= size) {
		dax_pmd_dbg(NULL, address,
				"offset + huge page size > file size");
824
		return VM_FAULT_FALLBACK;
825
	}
826 827

	memset(&bh, 0, sizeof(bh));
828
	bh.b_bdev = inode->i_sb->s_bdev;
829 830 831
	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);

	bh.b_size = PMD_SIZE;
R
Ross Zwisler 已提交
832 833

	if (get_block(inode, block, &bh, 0) != 0)
834
		return VM_FAULT_SIGBUS;
R
Ross Zwisler 已提交
835 836 837 838 839 840 841

	if (!buffer_mapped(&bh) && write) {
		if (get_block(inode, block, &bh, 1) != 0)
			return VM_FAULT_SIGBUS;
		alloc = true;
	}

842
	bdev = bh.b_bdev;
843 844 845 846 847 848

	/*
	 * If the filesystem isn't willing to tell us the length of a hole,
	 * just fall back to PTEs.  Calling get_block 512 times in a loop
	 * would be silly.
	 */
849 850
	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
		dax_pmd_dbg(&bh, address, "allocated block too small");
R
Ross Zwisler 已提交
851 852 853 854 855 856 857 858 859 860 861 862
		return VM_FAULT_FALLBACK;
	}

	/*
	 * If we allocated new storage, make sure no process has any
	 * zero pages covering this hole
	 */
	if (alloc) {
		loff_t lstart = pgoff << PAGE_SHIFT;
		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */

		truncate_pagecache_range(inode, lstart, lend);
863
	}
864

865
	i_mmap_lock_read(mapping);
866

867 868 869 870 871 872
	/*
	 * If a truncate happened while we were allocating blocks, we may
	 * leave blocks allocated to the file that are beyond EOF.  We can't
	 * take i_mutex here, so just leave them hanging; they'll be freed
	 * when the file is deleted.
	 */
873 874 875 876 877
	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
	if (pgoff >= size) {
		result = VM_FAULT_SIGBUS;
		goto out;
	}
878
	if ((pgoff | PG_PMD_COLOUR) >= size) {
879 880
		dax_pmd_dbg(&bh, address,
				"offset + huge page size > file size");
881
		goto fallback;
882
	}
883 884 885

	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
		spinlock_t *ptl;
886
		pmd_t entry;
887
		struct page *zero_page = get_huge_zero_page();
888

889 890
		if (unlikely(!zero_page)) {
			dax_pmd_dbg(&bh, address, "no zero page");
891
			goto fallback;
892
		}
893

894 895 896
		ptl = pmd_lock(vma->vm_mm, pmd);
		if (!pmd_none(*pmd)) {
			spin_unlock(ptl);
897
			dax_pmd_dbg(&bh, address, "pmd already present");
898 899 900
			goto fallback;
		}

901 902 903 904 905
		dev_dbg(part_to_dev(bdev->bd_part),
				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
				__func__, current->comm, address,
				(unsigned long long) to_sector(&bh, inode));

906 907 908
		entry = mk_pmd(zero_page, vma->vm_page_prot);
		entry = pmd_mkhuge(entry);
		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
909
		result = VM_FAULT_NOPAGE;
910
		spin_unlock(ptl);
911
	} else {
912 913 914 915 916 917
		struct blk_dax_ctl dax = {
			.sector = to_sector(&bh, inode),
			.size = PMD_SIZE,
		};
		long length = dax_map_atomic(bdev, &dax);

918 919 920 921
		if (length < 0) {
			result = VM_FAULT_SIGBUS;
			goto out;
		}
922 923 924 925 926 927 928
		if (length < PMD_SIZE) {
			dax_pmd_dbg(&bh, address, "dax-length too small");
			dax_unmap_atomic(bdev, &dax);
			goto fallback;
		}
		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
			dax_pmd_dbg(&bh, address, "pfn unaligned");
929
			dax_unmap_atomic(bdev, &dax);
930
			goto fallback;
931
		}
932

D
Dan Williams 已提交
933
		if (!pfn_t_devmap(dax.pfn)) {
934
			dax_unmap_atomic(bdev, &dax);
935
			dax_pmd_dbg(&bh, address, "pfn not in memmap");
D
Dan Williams 已提交
936
			goto fallback;
937
		}
D
Dan Williams 已提交
938

R
Ross Zwisler 已提交
939
		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
940
			clear_pmem(dax.addr, PMD_SIZE);
R
Ross Zwisler 已提交
941 942 943 944 945
			wmb_pmem();
			count_vm_event(PGMAJFAULT);
			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
			result |= VM_FAULT_MAJOR;
		}
946
		dax_unmap_atomic(bdev, &dax);
R
Ross Zwisler 已提交
947

R
Ross Zwisler 已提交
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
		/*
		 * For PTE faults we insert a radix tree entry for reads, and
		 * leave it clean.  Then on the first write we dirty the radix
		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
		 * call into get_block() to translate the pgoff to a sector in
		 * order to be able to create a new radix tree entry.
		 *
		 * The PMD path doesn't have an equivalent to
		 * dax_pfn_mkwrite(), though, so for a read followed by a
		 * write we traverse all the way through __dax_pmd_fault()
		 * twice.  This means we can just skip inserting a radix tree
		 * entry completely on the initial read and just wait until
		 * the write to insert a dirty entry.
		 */
		if (write) {
			error = dax_radix_entry(mapping, pgoff, dax.sector,
					true, true);
			if (error) {
				dax_pmd_dbg(&bh, address,
						"PMD radix insertion failed");
				goto fallback;
			}
		}

973 974 975 976 977
		dev_dbg(part_to_dev(bdev->bd_part),
				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
				__func__, current->comm, address,
				pfn_t_to_pfn(dax.pfn),
				(unsigned long long) dax.sector);
D
Dan Williams 已提交
978
		result |= vmf_insert_pfn_pmd(vma, address, pmd,
979
				dax.pfn, write);
980 981 982
	}

 out:
R
Ross Zwisler 已提交
983 984
	i_mmap_unlock_read(mapping);

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
	if (buffer_unwritten(&bh))
		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));

	return result;

 fallback:
	count_vm_event(THP_FAULT_FALLBACK);
	result = VM_FAULT_FALLBACK;
	goto out;
}
EXPORT_SYMBOL_GPL(__dax_pmd_fault);

/**
 * dax_pmd_fault - handle a PMD fault on a DAX file
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * When a page fault occurs, filesystems may call this helper in their
 * pmd_fault handler for DAX files.
 */
int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
			pmd_t *pmd, unsigned int flags, get_block_t get_block,
			dax_iodone_t complete_unwritten)
{
	int result;
	struct super_block *sb = file_inode(vma->vm_file)->i_sb;

	if (flags & FAULT_FLAG_WRITE) {
		sb_start_pagefault(sb);
		file_update_time(vma->vm_file);
	}
	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
				complete_unwritten);
	if (flags & FAULT_FLAG_WRITE)
		sb_end_pagefault(sb);

	return result;
}
EXPORT_SYMBOL_GPL(dax_pmd_fault);
1025
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1026

1027 1028 1029 1030 1031 1032 1033
/**
 * dax_pfn_mkwrite - handle first write to DAX page
 * @vma: The virtual memory area where the fault occurred
 * @vmf: The description of the fault
 */
int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
R
Ross Zwisler 已提交
1034
	struct file *file = vma->vm_file;
1035

R
Ross Zwisler 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044
	/*
	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
	 * RADIX_DAX_PTE entry already exists in the radix tree from a
	 * previous call to __dax_fault().  We just want to look up that PTE
	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
	 * saves us from having to make a call to get_block() here to look
	 * up the sector.
	 */
	dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1045 1046 1047 1048
	return VM_FAULT_NOPAGE;
}
EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);

1049
/**
M
Matthew Wilcox 已提交
1050
 * dax_zero_page_range - zero a range within a page of a DAX file
1051 1052
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
M
Matthew Wilcox 已提交
1053
 * @length: The number of bytes to zero
1054 1055
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
M
Matthew Wilcox 已提交
1056 1057 1058 1059
 * This function can be called by a filesystem when it is zeroing part of a
 * page in a DAX file.  This is intended for hole-punch operations.  If
 * you are truncating a file, the helper function dax_truncate_page() may be
 * more convenient.
1060 1061 1062 1063 1064
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
M
Matthew Wilcox 已提交
1065
 * since the file might be mmapped.
1066
 */
M
Matthew Wilcox 已提交
1067 1068
int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
							get_block_t get_block)
1069 1070 1071 1072 1073 1074 1075 1076 1077
{
	struct buffer_head bh;
	pgoff_t index = from >> PAGE_CACHE_SHIFT;
	unsigned offset = from & (PAGE_CACHE_SIZE-1);
	int err;

	/* Block boundary? Nothing to do */
	if (!length)
		return 0;
M
Matthew Wilcox 已提交
1078
	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1079 1080 1081 1082 1083 1084 1085

	memset(&bh, 0, sizeof(bh));
	bh.b_size = PAGE_CACHE_SIZE;
	err = get_block(inode, index, &bh, 0);
	if (err < 0)
		return err;
	if (buffer_written(&bh)) {
1086 1087 1088 1089 1090 1091 1092 1093 1094
		struct block_device *bdev = bh.b_bdev;
		struct blk_dax_ctl dax = {
			.sector = to_sector(&bh, inode),
			.size = PAGE_CACHE_SIZE,
		};

		if (dax_map_atomic(bdev, &dax) < 0)
			return PTR_ERR(dax.addr);
		clear_pmem(dax.addr + offset, length);
1095
		wmb_pmem();
1096
		dax_unmap_atomic(bdev, &dax);
1097 1098 1099 1100
	}

	return 0;
}
M
Matthew Wilcox 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
EXPORT_SYMBOL_GPL(dax_zero_page_range);

/**
 * dax_truncate_page - handle a partial page being truncated in a DAX file
 * @inode: The file being truncated
 * @from: The file offset that is being truncated to
 * @get_block: The filesystem method used to translate file offsets to blocks
 *
 * Similar to block_truncate_page(), this function can be called by a
 * filesystem when it is truncating a DAX file to handle the partial page.
 *
 * We work in terms of PAGE_CACHE_SIZE here for commonality with
 * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
 * took care of disposing of the unnecessary blocks.  Even if the filesystem
 * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
 * since the file might be mmapped.
 */
int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
{
	unsigned length = PAGE_CACHE_ALIGN(from) - from;
	return dax_zero_page_range(inode, from, length, get_block);
}
1123
EXPORT_SYMBOL_GPL(dax_truncate_page);