sched.c 200.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 *  kernel/sched.c
 *
 *  Kernel scheduler and related syscalls
 *
 *  Copyright (C) 1991-2002  Linus Torvalds
 *
 *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and
 *		make semaphores SMP safe
 *  1998-11-19	Implemented schedule_timeout() and related stuff
 *		by Andrea Arcangeli
 *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar:
 *		hybrid priority-list and round-robin design with
 *		an array-switch method of distributing timeslices
 *		and per-CPU runqueues.  Cleanups and useful suggestions
 *		by Davide Libenzi, preemptible kernel bits by Robert Love.
 *  2003-09-03	Interactivity tuning by Con Kolivas.
 *  2004-04-02	Scheduler domains code by Nick Piggin
I
Ingo Molnar 已提交
19 20 21 22 23 24
 *  2007-04-15  Work begun on replacing all interactivity tuning with a
 *              fair scheduling design by Con Kolivas.
 *  2007-05-05  Load balancing (smp-nice) and other improvements
 *              by Peter Williams
 *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith
 *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri
25 26
 *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins,
 *              Thomas Gleixner, Mike Kravetz
L
Linus Torvalds 已提交
27 28 29 30 31 32
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/nmi.h>
#include <linux/init.h>
33
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
34 35 36 37
#include <linux/highmem.h>
#include <linux/smp_lock.h>
#include <asm/mmu_context.h>
#include <linux/interrupt.h>
38
#include <linux/capability.h>
L
Linus Torvalds 已提交
39 40
#include <linux/completion.h>
#include <linux/kernel_stat.h>
41
#include <linux/debug_locks.h>
L
Linus Torvalds 已提交
42 43 44
#include <linux/security.h>
#include <linux/notifier.h>
#include <linux/profile.h>
45
#include <linux/freezer.h>
46
#include <linux/vmalloc.h>
L
Linus Torvalds 已提交
47 48
#include <linux/blkdev.h>
#include <linux/delay.h>
49
#include <linux/pid_namespace.h>
L
Linus Torvalds 已提交
50 51 52 53 54 55 56 57 58
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/timer.h>
#include <linux/rcupdate.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/percpu.h>
#include <linux/kthread.h>
#include <linux/seq_file.h>
59
#include <linux/sysctl.h>
L
Linus Torvalds 已提交
60 61
#include <linux/syscalls.h>
#include <linux/times.h>
62
#include <linux/tsacct_kern.h>
63
#include <linux/kprobes.h>
64
#include <linux/delayacct.h>
65
#include <linux/reciprocal_div.h>
66
#include <linux/unistd.h>
J
Jens Axboe 已提交
67
#include <linux/pagemap.h>
P
Peter Zijlstra 已提交
68
#include <linux/hrtimer.h>
L
Linus Torvalds 已提交
69

70
#include <asm/tlb.h>
71
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
72

73 74 75 76 77 78 79
/*
 * Scheduler clock - returns current time in nanosec units.
 * This is default implementation.
 * Architectures and sub-architectures can override this.
 */
unsigned long long __attribute__((weak)) sched_clock(void)
{
80
	return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 82
}

L
Linus Torvalds 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Convert user-nice values [ -20 ... 0 ... 19 ]
 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
 * and back.
 */
#define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20)
#define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20)
#define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio)

/*
 * 'User priority' is the nice value converted to something we
 * can work with better when scaling various scheduler parameters,
 * it's a [ 0 ... 39 ] range.
 */
#define USER_PRIO(p)		((p)-MAX_RT_PRIO)
#define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio)
#define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO))

/*
102
 * Helpers for converting nanosecond timing to jiffy resolution
L
Linus Torvalds 已提交
103
 */
104
#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
L
Linus Torvalds 已提交
105

I
Ingo Molnar 已提交
106 107 108
#define NICE_0_LOAD		SCHED_LOAD_SCALE
#define NICE_0_SHIFT		SCHED_LOAD_SHIFT

L
Linus Torvalds 已提交
109 110 111
/*
 * These are the 'tuning knobs' of the scheduler:
 *
D
Dmitry Adamushko 已提交
112
 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
L
Linus Torvalds 已提交
113 114 115
 * Timeslices get refilled after they expire.
 */
#define DEF_TIMESLICE		(100 * HZ / 1000)
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#ifdef CONFIG_SMP
/*
 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
 * Since cpu_power is a 'constant', we can use a reciprocal divide.
 */
static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
{
	return reciprocal_divide(load, sg->reciprocal_cpu_power);
}

/*
 * Each time a sched group cpu_power is changed,
 * we must compute its reciprocal value
 */
static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
{
	sg->__cpu_power += val;
	sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
}
#endif

138 139 140 141 142 143 144 145 146 147 148 149
static inline int rt_policy(int policy)
{
	if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
		return 1;
	return 0;
}

static inline int task_has_rt_policy(struct task_struct *p)
{
	return rt_policy(p->policy);
}

L
Linus Torvalds 已提交
150
/*
I
Ingo Molnar 已提交
151
 * This is the priority-queue data structure of the RT scheduling class:
L
Linus Torvalds 已提交
152
 */
I
Ingo Molnar 已提交
153 154 155 156 157
struct rt_prio_array {
	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
	struct list_head queue[MAX_RT_PRIO];
};

158
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
159

160 161
#include <linux/cgroup.h>

S
Srivatsa Vaddagiri 已提交
162 163
struct cfs_rq;

P
Peter Zijlstra 已提交
164 165
static LIST_HEAD(task_groups);

S
Srivatsa Vaddagiri 已提交
166
/* task group related information */
167
struct task_group {
168
#ifdef CONFIG_CGROUP_SCHED
169 170
	struct cgroup_subsys_state css;
#endif
171 172

#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
173 174 175 176
	/* schedulable entities of this group on each cpu */
	struct sched_entity **se;
	/* runqueue "owned" by this group on each cpu */
	struct cfs_rq **cfs_rq;
177 178 179 180 181 182 183 184 185 186 187 188 189

	/*
	 * shares assigned to a task group governs how much of cpu bandwidth
	 * is allocated to the group. The more shares a group has, the more is
	 * the cpu bandwidth allocated to it.
	 *
	 * For ex, lets say that there are three task groups, A, B and C which
	 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
	 * cpu bandwidth allocated by the scheduler to task groups A, B and C
	 * should be:
	 *
	 *	Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
	 *	Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
190
	 *	Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
191 192 193 194 195 196 197 198 199
	 *
	 * The weight assigned to a task group's schedulable entities on every
	 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
	 * group's shares. For ex: lets say that task group A has been
	 * assigned shares of 1000 and there are two CPUs in a system. Then,
	 *
	 *  tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
	 *
	 * Note: It's not necessary that each of a task's group schedulable
200 201 202
	 *	 entity have the same weight on all CPUs. If the group
	 *	 has 2 of its tasks on CPU0 and 1 task on CPU1, then a
	 *	 better distribution of weight could be:
203 204 205 206 207 208 209 210 211
	 *
	 *	tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
	 *	tg_A->se[1]->load.weight = 1/2 * 2000 =  667
	 *
	 * rebalance_shares() is responsible for distributing the shares of a
	 * task groups like this among the group's schedulable entities across
	 * cpus.
	 *
	 */
S
Srivatsa Vaddagiri 已提交
212
	unsigned long shares;
213 214 215 216 217 218 219 220
#endif

#ifdef CONFIG_RT_GROUP_SCHED
	struct sched_rt_entity **rt_se;
	struct rt_rq **rt_rq;

	u64 rt_runtime;
#endif
221

222
	struct rcu_head rcu;
P
Peter Zijlstra 已提交
223
	struct list_head list;
S
Srivatsa Vaddagiri 已提交
224 225
};

226
#ifdef CONFIG_FAIR_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
227 228 229 230 231
/* Default task group's sched entity on each cpu */
static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
/* Default task group's cfs_rq on each cpu */
static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;

232 233
static struct sched_entity *init_sched_entity_p[NR_CPUS];
static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
234 235 236 237 238
#endif

#ifdef CONFIG_RT_GROUP_SCHED
static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
S
Srivatsa Vaddagiri 已提交
239

P
Peter Zijlstra 已提交
240 241
static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
static struct rt_rq *init_rt_rq_p[NR_CPUS];
242
#endif
P
Peter Zijlstra 已提交
243

244
/* task_group_lock serializes add/remove of task groups and also changes to
245 246
 * a task group's cpu shares.
 */
247
static DEFINE_SPINLOCK(task_group_lock);
248

249 250 251
/* doms_cur_mutex serializes access to doms_cur[] array */
static DEFINE_MUTEX(doms_cur_mutex);

252
#ifdef CONFIG_FAIR_GROUP_SCHED
253 254 255 256 257 258 259 260
#ifdef CONFIG_SMP
/* kernel thread that runs rebalance_shares() periodically */
static struct task_struct *lb_monitor_task;
static int load_balance_monitor(void *unused);
#endif

static void set_se_shares(struct sched_entity *se, unsigned long shares);

261 262 263 264 265 266 267 268 269 270 271
#ifdef CONFIG_USER_SCHED
# define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD)
#else
# define INIT_TASK_GROUP_LOAD	NICE_0_LOAD
#endif

#define MIN_GROUP_SHARES	2

static int init_task_group_load = INIT_TASK_GROUP_LOAD;
#endif

S
Srivatsa Vaddagiri 已提交
272
/* Default task group.
I
Ingo Molnar 已提交
273
 *	Every task in system belong to this group at bootup.
S
Srivatsa Vaddagiri 已提交
274
 */
275
struct task_group init_task_group = {
276
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
277
	.se	= init_sched_entity_p,
I
Ingo Molnar 已提交
278
	.cfs_rq = init_cfs_rq_p,
279
#endif
P
Peter Zijlstra 已提交
280

281
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
282 283
	.rt_se	= init_sched_rt_entity_p,
	.rt_rq	= init_rt_rq_p,
284
#endif
285
};
S
Srivatsa Vaddagiri 已提交
286 287

/* return group to which a task belongs */
288
static inline struct task_group *task_group(struct task_struct *p)
S
Srivatsa Vaddagiri 已提交
289
{
290
	struct task_group *tg;
291

292
#ifdef CONFIG_USER_SCHED
293
	tg = p->user->tg;
294
#elif defined(CONFIG_CGROUP_SCHED)
295 296
	tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
				struct task_group, css);
297
#else
I
Ingo Molnar 已提交
298
	tg = &init_task_group;
299
#endif
300
	return tg;
S
Srivatsa Vaddagiri 已提交
301 302 303
}

/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
P
Peter Zijlstra 已提交
304
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
S
Srivatsa Vaddagiri 已提交
305
{
306
#ifdef CONFIG_FAIR_GROUP_SCHED
307 308
	p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
	p->se.parent = task_group(p)->se[cpu];
309
#endif
P
Peter Zijlstra 已提交
310

311
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
312 313
	p->rt.rt_rq  = task_group(p)->rt_rq[cpu];
	p->rt.parent = task_group(p)->rt_se[cpu];
314
#endif
S
Srivatsa Vaddagiri 已提交
315 316
}

317 318 319 320 321 322 323 324 325 326
static inline void lock_doms_cur(void)
{
	mutex_lock(&doms_cur_mutex);
}

static inline void unlock_doms_cur(void)
{
	mutex_unlock(&doms_cur_mutex);
}

S
Srivatsa Vaddagiri 已提交
327 328
#else

P
Peter Zijlstra 已提交
329
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
330 331
static inline void lock_doms_cur(void) { }
static inline void unlock_doms_cur(void) { }
S
Srivatsa Vaddagiri 已提交
332

333
#endif	/* CONFIG_GROUP_SCHED */
S
Srivatsa Vaddagiri 已提交
334

I
Ingo Molnar 已提交
335 336 337 338 339 340
/* CFS-related fields in a runqueue */
struct cfs_rq {
	struct load_weight load;
	unsigned long nr_running;

	u64 exec_clock;
I
Ingo Molnar 已提交
341
	u64 min_vruntime;
I
Ingo Molnar 已提交
342 343 344 345 346 347 348 349

	struct rb_root tasks_timeline;
	struct rb_node *rb_leftmost;
	struct rb_node *rb_load_balance_curr;
	/* 'curr' points to currently running entity on this cfs_rq.
	 * It is set to NULL otherwise (i.e when none are currently running).
	 */
	struct sched_entity *curr;
P
Peter Zijlstra 已提交
350 351 352

	unsigned long nr_spread_over;

353
#ifdef CONFIG_FAIR_GROUP_SCHED
I
Ingo Molnar 已提交
354 355
	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */

I
Ingo Molnar 已提交
356 357
	/*
	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
I
Ingo Molnar 已提交
358 359 360 361 362 363
	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
	 * (like users, containers etc.)
	 *
	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
	 * list is used during load balance.
	 */
I
Ingo Molnar 已提交
364 365
	struct list_head leaf_cfs_rq_list;
	struct task_group *tg;	/* group that "owns" this runqueue */
I
Ingo Molnar 已提交
366 367
#endif
};
L
Linus Torvalds 已提交
368

I
Ingo Molnar 已提交
369 370 371
/* Real-Time classes' related field in a runqueue: */
struct rt_rq {
	struct rt_prio_array active;
372
	unsigned long rt_nr_running;
373
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
374 375
	int highest_prio; /* highest queued rt task prio */
#endif
P
Peter Zijlstra 已提交
376
#ifdef CONFIG_SMP
377
	unsigned long rt_nr_migratory;
G
Gregory Haskins 已提交
378
	int overloaded;
P
Peter Zijlstra 已提交
379
#endif
P
Peter Zijlstra 已提交
380
	int rt_throttled;
P
Peter Zijlstra 已提交
381
	u64 rt_time;
P
Peter Zijlstra 已提交
382

383
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
384 385
	unsigned long rt_nr_boosted;

P
Peter Zijlstra 已提交
386 387 388 389 390
	struct rq *rq;
	struct list_head leaf_rt_rq_list;
	struct task_group *tg;
	struct sched_rt_entity *rt_se;
#endif
I
Ingo Molnar 已提交
391 392
};

G
Gregory Haskins 已提交
393 394 395 396
#ifdef CONFIG_SMP

/*
 * We add the notion of a root-domain which will be used to define per-domain
I
Ingo Molnar 已提交
397 398
 * variables. Each exclusive cpuset essentially defines an island domain by
 * fully partitioning the member cpus from any other cpuset. Whenever a new
G
Gregory Haskins 已提交
399 400 401 402 403 404 405 406
 * exclusive cpuset is created, we also create and attach a new root-domain
 * object.
 *
 */
struct root_domain {
	atomic_t refcount;
	cpumask_t span;
	cpumask_t online;
407

I
Ingo Molnar 已提交
408
	/*
409 410 411 412
	 * The "RT overload" flag: it gets set if a CPU has more than
	 * one runnable RT task.
	 */
	cpumask_t rto_mask;
I
Ingo Molnar 已提交
413
	atomic_t rto_count;
G
Gregory Haskins 已提交
414 415
};

416 417 418 419
/*
 * By default the system creates a single root-domain with all cpus as
 * members (mimicking the global state we have today).
 */
G
Gregory Haskins 已提交
420 421 422 423
static struct root_domain def_root_domain;

#endif

L
Linus Torvalds 已提交
424 425 426 427 428 429 430
/*
 * This is the main, per-CPU runqueue data structure.
 *
 * Locking rule: those places that want to lock multiple runqueues
 * (such as the load balancing or the thread migration code), lock
 * acquire operations must be ordered by ascending &runqueue.
 */
431
struct rq {
432 433
	/* runqueue lock: */
	spinlock_t lock;
L
Linus Torvalds 已提交
434 435 436 437 438 439

	/*
	 * nr_running and cpu_load should be in the same cacheline because
	 * remote CPUs use both these fields when doing load calculation.
	 */
	unsigned long nr_running;
I
Ingo Molnar 已提交
440 441
	#define CPU_LOAD_IDX_MAX 5
	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
442
	unsigned char idle_at_tick;
443 444 445
#ifdef CONFIG_NO_HZ
	unsigned char in_nohz_recently;
#endif
446 447
	/* capture load from *all* tasks on this cpu: */
	struct load_weight load;
I
Ingo Molnar 已提交
448 449 450 451
	unsigned long nr_load_updates;
	u64 nr_switches;

	struct cfs_rq cfs;
P
Peter Zijlstra 已提交
452 453
	struct rt_rq rt;
	u64 rt_period_expire;
P
Peter Zijlstra 已提交
454
	int rt_throttled;
P
Peter Zijlstra 已提交
455

I
Ingo Molnar 已提交
456
#ifdef CONFIG_FAIR_GROUP_SCHED
457 458
	/* list of leaf cfs_rq on this cpu: */
	struct list_head leaf_cfs_rq_list;
459 460
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
461
	struct list_head leaf_rt_rq_list;
L
Linus Torvalds 已提交
462 463 464 465 466 467 468 469 470 471
#endif

	/*
	 * This is part of a global counter where only the total sum
	 * over all CPUs matters. A task can increase this counter on
	 * one CPU and if it got migrated afterwards it may decrease
	 * it on another CPU. Always updated under the runqueue lock:
	 */
	unsigned long nr_uninterruptible;

472
	struct task_struct *curr, *idle;
473
	unsigned long next_balance;
L
Linus Torvalds 已提交
474
	struct mm_struct *prev_mm;
I
Ingo Molnar 已提交
475 476 477 478

	u64 clock, prev_clock_raw;
	s64 clock_max_delta;

479
	unsigned int clock_warps, clock_overflows, clock_underflows;
480 481
	u64 idle_clock;
	unsigned int clock_deep_idle_events;
482
	u64 tick_timestamp;
I
Ingo Molnar 已提交
483

L
Linus Torvalds 已提交
484 485 486
	atomic_t nr_iowait;

#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
487
	struct root_domain *rd;
L
Linus Torvalds 已提交
488 489 490 491 492
	struct sched_domain *sd;

	/* For active balancing */
	int active_balance;
	int push_cpu;
493 494
	/* cpu of this runqueue: */
	int cpu;
L
Linus Torvalds 已提交
495

496
	struct task_struct *migration_thread;
L
Linus Torvalds 已提交
497 498 499
	struct list_head migration_queue;
#endif

P
Peter Zijlstra 已提交
500 501 502 503 504 505
#ifdef CONFIG_SCHED_HRTICK
	unsigned long hrtick_flags;
	ktime_t hrtick_expire;
	struct hrtimer hrtick_timer;
#endif

L
Linus Torvalds 已提交
506 507 508 509 510
#ifdef CONFIG_SCHEDSTATS
	/* latency stats */
	struct sched_info rq_sched_info;

	/* sys_sched_yield() stats */
511 512 513 514
	unsigned int yld_exp_empty;
	unsigned int yld_act_empty;
	unsigned int yld_both_empty;
	unsigned int yld_count;
L
Linus Torvalds 已提交
515 516

	/* schedule() stats */
517 518 519
	unsigned int sched_switch;
	unsigned int sched_count;
	unsigned int sched_goidle;
L
Linus Torvalds 已提交
520 521

	/* try_to_wake_up() stats */
522 523
	unsigned int ttwu_count;
	unsigned int ttwu_local;
I
Ingo Molnar 已提交
524 525

	/* BKL stats */
526
	unsigned int bkl_count;
L
Linus Torvalds 已提交
527
#endif
528
	struct lock_class_key rq_lock_key;
L
Linus Torvalds 已提交
529 530
};

531
static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
L
Linus Torvalds 已提交
532

I
Ingo Molnar 已提交
533 534 535 536 537
static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
{
	rq->curr->sched_class->check_preempt_curr(rq, p);
}

538 539 540 541 542 543 544 545 546
static inline int cpu_of(struct rq *rq)
{
#ifdef CONFIG_SMP
	return rq->cpu;
#else
	return 0;
#endif
}

I
Ingo Molnar 已提交
547
/*
I
Ingo Molnar 已提交
548 549
 * Update the per-runqueue clock, as finegrained as the platform can give
 * us, but without assuming monotonicity, etc.:
I
Ingo Molnar 已提交
550
 */
I
Ingo Molnar 已提交
551
static void __update_rq_clock(struct rq *rq)
I
Ingo Molnar 已提交
552 553 554 555 556 557
{
	u64 prev_raw = rq->prev_clock_raw;
	u64 now = sched_clock();
	s64 delta = now - prev_raw;
	u64 clock = rq->clock;

I
Ingo Molnar 已提交
558 559 560
#ifdef CONFIG_SCHED_DEBUG
	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
#endif
I
Ingo Molnar 已提交
561 562 563 564 565 566 567 568 569 570
	/*
	 * Protect against sched_clock() occasionally going backwards:
	 */
	if (unlikely(delta < 0)) {
		clock++;
		rq->clock_warps++;
	} else {
		/*
		 * Catch too large forward jumps too:
		 */
571 572 573 574 575
		if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
			if (clock < rq->tick_timestamp + TICK_NSEC)
				clock = rq->tick_timestamp + TICK_NSEC;
			else
				clock++;
I
Ingo Molnar 已提交
576 577 578 579 580 581 582 583 584 585
			rq->clock_overflows++;
		} else {
			if (unlikely(delta > rq->clock_max_delta))
				rq->clock_max_delta = delta;
			clock += delta;
		}
	}

	rq->prev_clock_raw = now;
	rq->clock = clock;
I
Ingo Molnar 已提交
586
}
I
Ingo Molnar 已提交
587

I
Ingo Molnar 已提交
588 589 590 591
static void update_rq_clock(struct rq *rq)
{
	if (likely(smp_processor_id() == cpu_of(rq)))
		__update_rq_clock(rq);
I
Ingo Molnar 已提交
592 593
}

N
Nick Piggin 已提交
594 595
/*
 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
596
 * See detach_destroy_domains: synchronize_sched for details.
N
Nick Piggin 已提交
597 598 599 600
 *
 * The domain tree of any CPU may only be accessed from within
 * preempt-disabled sections.
 */
601 602
#define for_each_domain(cpu, __sd) \
	for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
L
Linus Torvalds 已提交
603 604 605 606 607 608

#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
#define this_rq()		(&__get_cpu_var(runqueues))
#define task_rq(p)		cpu_rq(task_cpu(p))
#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)

P
Peter Zijlstra 已提交
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
unsigned long rt_needs_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	u64 delta;

	if (!rq->rt_throttled)
		return 0;

	if (rq->clock > rq->rt_period_expire)
		return 1;

	delta = rq->rt_period_expire - rq->clock;
	do_div(delta, NSEC_PER_SEC / HZ);

	return (unsigned long)delta;
}

I
Ingo Molnar 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638
/*
 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
 */
#ifdef CONFIG_SCHED_DEBUG
# define const_debug __read_mostly
#else
# define const_debug static const
#endif

/*
 * Debugging: various feature bits
 */
enum {
639
	SCHED_FEAT_NEW_FAIR_SLEEPERS	= 1,
I
Ingo Molnar 已提交
640 641
	SCHED_FEAT_WAKEUP_PREEMPT	= 2,
	SCHED_FEAT_START_DEBIT		= 4,
I
Ingo Molnar 已提交
642 643
	SCHED_FEAT_TREE_AVG		= 8,
	SCHED_FEAT_APPROX_AVG		= 16,
P
Peter Zijlstra 已提交
644 645
	SCHED_FEAT_HRTICK		= 32,
	SCHED_FEAT_DOUBLE_TICK		= 64,
I
Ingo Molnar 已提交
646 647 648
};

const_debug unsigned int sysctl_sched_features =
I
Ingo Molnar 已提交
649
		SCHED_FEAT_NEW_FAIR_SLEEPERS	* 1 |
I
Ingo Molnar 已提交
650
		SCHED_FEAT_WAKEUP_PREEMPT	* 1 |
I
Ingo Molnar 已提交
651 652
		SCHED_FEAT_START_DEBIT		* 1 |
		SCHED_FEAT_TREE_AVG		* 0 |
P
Peter Zijlstra 已提交
653 654 655
		SCHED_FEAT_APPROX_AVG		* 0 |
		SCHED_FEAT_HRTICK		* 1 |
		SCHED_FEAT_DOUBLE_TICK		* 0;
I
Ingo Molnar 已提交
656 657 658

#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)

659 660 661 662 663 664
/*
 * Number of tasks to iterate in a single balance run.
 * Limited because this is done with IRQs disabled.
 */
const_debug unsigned int sysctl_sched_nr_migrate = 32;

P
Peter Zijlstra 已提交
665
/*
P
Peter Zijlstra 已提交
666
 * period over which we measure -rt task cpu usage in us.
P
Peter Zijlstra 已提交
667 668
 * default: 1s
 */
P
Peter Zijlstra 已提交
669
unsigned int sysctl_sched_rt_period = 1000000;
P
Peter Zijlstra 已提交
670

P
Peter Zijlstra 已提交
671 672 673 674 675
/*
 * part of the period that we allow rt tasks to run in us.
 * default: 0.95s
 */
int sysctl_sched_rt_runtime = 950000;
P
Peter Zijlstra 已提交
676 677

/*
P
Peter Zijlstra 已提交
678
 * single value that denotes runtime == period, ie unlimited time.
P
Peter Zijlstra 已提交
679
 */
P
Peter Zijlstra 已提交
680
#define RUNTIME_INF	((u64)~0ULL)
P
Peter Zijlstra 已提交
681

682 683 684 685 686 687 688 689
/*
 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
 * clock constructed from sched_clock():
 */
unsigned long long cpu_clock(int cpu)
{
	unsigned long long now;
	unsigned long flags;
I
Ingo Molnar 已提交
690
	struct rq *rq;
691

692
	local_irq_save(flags);
I
Ingo Molnar 已提交
693
	rq = cpu_rq(cpu);
694 695 696 697 698 699
	/*
	 * Only call sched_clock() if the scheduler has already been
	 * initialized (some code might call cpu_clock() very early):
	 */
	if (rq->idle)
		update_rq_clock(rq);
I
Ingo Molnar 已提交
700
	now = rq->clock;
701
	local_irq_restore(flags);
702 703 704

	return now;
}
P
Paul E. McKenney 已提交
705
EXPORT_SYMBOL_GPL(cpu_clock);
706

L
Linus Torvalds 已提交
707
#ifndef prepare_arch_switch
708 709 710 711 712 713
# define prepare_arch_switch(next)	do { } while (0)
#endif
#ifndef finish_arch_switch
# define finish_arch_switch(prev)	do { } while (0)
#endif

714 715 716 717 718
static inline int task_current(struct rq *rq, struct task_struct *p)
{
	return rq->curr == p;
}

719
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
720
static inline int task_running(struct rq *rq, struct task_struct *p)
721
{
722
	return task_current(rq, p);
723 724
}

725
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
726 727 728
{
}

729
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
730
{
731 732 733 734
#ifdef CONFIG_DEBUG_SPINLOCK
	/* this is a valid case when another task releases the spinlock */
	rq->lock.owner = current;
#endif
735 736 737 738 739 740 741
	/*
	 * If we are tracking spinlock dependencies then we have to
	 * fix up the runqueue lock - which gets 'carried over' from
	 * prev into current:
	 */
	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);

742 743 744 745
	spin_unlock_irq(&rq->lock);
}

#else /* __ARCH_WANT_UNLOCKED_CTXSW */
746
static inline int task_running(struct rq *rq, struct task_struct *p)
747 748 749 750
{
#ifdef CONFIG_SMP
	return p->oncpu;
#else
751
	return task_current(rq, p);
752 753 754
#endif
}

755
static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
{
#ifdef CONFIG_SMP
	/*
	 * We can optimise this out completely for !SMP, because the
	 * SMP rebalancing from interrupt is the only thing that cares
	 * here.
	 */
	next->oncpu = 1;
#endif
#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	spin_unlock_irq(&rq->lock);
#else
	spin_unlock(&rq->lock);
#endif
}

772
static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
773 774 775 776 777 778 779 780 781 782 783 784
{
#ifdef CONFIG_SMP
	/*
	 * After ->oncpu is cleared, the task can be moved to a different CPU.
	 * We must ensure this doesn't happen until the switch is completely
	 * finished.
	 */
	smp_wmb();
	prev->oncpu = 0;
#endif
#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
	local_irq_enable();
L
Linus Torvalds 已提交
785
#endif
786 787
}
#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
L
Linus Torvalds 已提交
788

789 790 791 792
/*
 * __task_rq_lock - lock the runqueue a given task resides on.
 * Must be called interrupts disabled.
 */
793
static inline struct rq *__task_rq_lock(struct task_struct *p)
794 795
	__acquires(rq->lock)
{
796 797 798 799 800
	for (;;) {
		struct rq *rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
801 802 803 804
		spin_unlock(&rq->lock);
	}
}

L
Linus Torvalds 已提交
805 806
/*
 * task_rq_lock - lock the runqueue a given task resides on and disable
I
Ingo Molnar 已提交
807
 * interrupts. Note the ordering: we can safely lookup the task_rq without
L
Linus Torvalds 已提交
808 809
 * explicitly disabling preemption.
 */
810
static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
L
Linus Torvalds 已提交
811 812
	__acquires(rq->lock)
{
813
	struct rq *rq;
L
Linus Torvalds 已提交
814

815 816 817 818 819 820
	for (;;) {
		local_irq_save(*flags);
		rq = task_rq(p);
		spin_lock(&rq->lock);
		if (likely(rq == task_rq(p)))
			return rq;
L
Linus Torvalds 已提交
821 822 823 824
		spin_unlock_irqrestore(&rq->lock, *flags);
	}
}

A
Alexey Dobriyan 已提交
825
static void __task_rq_unlock(struct rq *rq)
826 827 828 829 830
	__releases(rq->lock)
{
	spin_unlock(&rq->lock);
}

831
static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
L
Linus Torvalds 已提交
832 833 834 835 836 837
	__releases(rq->lock)
{
	spin_unlock_irqrestore(&rq->lock, *flags);
}

/*
838
 * this_rq_lock - lock this runqueue and disable interrupts.
L
Linus Torvalds 已提交
839
 */
A
Alexey Dobriyan 已提交
840
static struct rq *this_rq_lock(void)
L
Linus Torvalds 已提交
841 842
	__acquires(rq->lock)
{
843
	struct rq *rq;
L
Linus Torvalds 已提交
844 845 846 847 848 849 850 851

	local_irq_disable();
	rq = this_rq();
	spin_lock(&rq->lock);

	return rq;
}

852
/*
853
 * We are going deep-idle (irqs are disabled):
854
 */
855
void sched_clock_idle_sleep_event(void)
856
{
857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872
	struct rq *rq = cpu_rq(smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	spin_unlock(&rq->lock);
	rq->clock_deep_idle_events++;
}
EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);

/*
 * We just idled delta nanoseconds (called with irqs disabled):
 */
void sched_clock_idle_wakeup_event(u64 delta_ns)
{
	struct rq *rq = cpu_rq(smp_processor_id());
	u64 now = sched_clock();
873

874 875 876 877 878 879 880 881 882 883 884
	rq->idle_clock += delta_ns;
	/*
	 * Override the previous timestamp and ignore all
	 * sched_clock() deltas that occured while we idled,
	 * and use the PM-provided delta_ns to advance the
	 * rq clock:
	 */
	spin_lock(&rq->lock);
	rq->prev_clock_raw = now;
	rq->clock += delta_ns;
	spin_unlock(&rq->lock);
885
	touch_softlockup_watchdog();
886
}
887
EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
888

P
Peter Zijlstra 已提交
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
static void __resched_task(struct task_struct *p, int tif_bit);

static inline void resched_task(struct task_struct *p)
{
	__resched_task(p, TIF_NEED_RESCHED);
}

#ifdef CONFIG_SCHED_HRTICK
/*
 * Use HR-timers to deliver accurate preemption points.
 *
 * Its all a bit involved since we cannot program an hrt while holding the
 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
 * reschedule event.
 *
 * When we get rescheduled we reprogram the hrtick_timer outside of the
 * rq->lock.
 */
static inline void resched_hrt(struct task_struct *p)
{
	__resched_task(p, TIF_HRTICK_RESCHED);
}

static inline void resched_rq(struct rq *rq)
{
	unsigned long flags;

	spin_lock_irqsave(&rq->lock, flags);
	resched_task(rq->curr);
	spin_unlock_irqrestore(&rq->lock, flags);
}

enum {
	HRTICK_SET,		/* re-programm hrtick_timer */
	HRTICK_RESET,		/* not a new slice */
};

/*
 * Use hrtick when:
 *  - enabled by features
 *  - hrtimer is actually high res
 */
static inline int hrtick_enabled(struct rq *rq)
{
	if (!sched_feat(HRTICK))
		return 0;
	return hrtimer_is_hres_active(&rq->hrtick_timer);
}

/*
 * Called to set the hrtick timer state.
 *
 * called with rq->lock held and irqs disabled
 */
static void hrtick_start(struct rq *rq, u64 delay, int reset)
{
	assert_spin_locked(&rq->lock);

	/*
	 * preempt at: now + delay
	 */
	rq->hrtick_expire =
		ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
	/*
	 * indicate we need to program the timer
	 */
	__set_bit(HRTICK_SET, &rq->hrtick_flags);
	if (reset)
		__set_bit(HRTICK_RESET, &rq->hrtick_flags);

	/*
	 * New slices are called from the schedule path and don't need a
	 * forced reschedule.
	 */
	if (reset)
		resched_hrt(rq->curr);
}

static void hrtick_clear(struct rq *rq)
{
	if (hrtimer_active(&rq->hrtick_timer))
		hrtimer_cancel(&rq->hrtick_timer);
}

/*
 * Update the timer from the possible pending state.
 */
static void hrtick_set(struct rq *rq)
{
	ktime_t time;
	int set, reset;
	unsigned long flags;

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock_irqsave(&rq->lock, flags);
	set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
	reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
	time = rq->hrtick_expire;
	clear_thread_flag(TIF_HRTICK_RESCHED);
	spin_unlock_irqrestore(&rq->lock, flags);

	if (set) {
		hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
		if (reset && !hrtimer_active(&rq->hrtick_timer))
			resched_rq(rq);
	} else
		hrtick_clear(rq);
}

/*
 * High-resolution timer tick.
 * Runs from hardirq context with interrupts disabled.
 */
static enum hrtimer_restart hrtick(struct hrtimer *timer)
{
	struct rq *rq = container_of(timer, struct rq, hrtick_timer);

	WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());

	spin_lock(&rq->lock);
	__update_rq_clock(rq);
	rq->curr->sched_class->task_tick(rq, rq->curr, 1);
	spin_unlock(&rq->lock);

	return HRTIMER_NORESTART;
}

static inline void init_rq_hrtick(struct rq *rq)
{
	rq->hrtick_flags = 0;
	hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	rq->hrtick_timer.function = hrtick;
	rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
}

void hrtick_resched(void)
{
	struct rq *rq;
	unsigned long flags;

	if (!test_thread_flag(TIF_HRTICK_RESCHED))
		return;

	local_irq_save(flags);
	rq = cpu_rq(smp_processor_id());
	hrtick_set(rq);
	local_irq_restore(flags);
}
#else
static inline void hrtick_clear(struct rq *rq)
{
}

static inline void hrtick_set(struct rq *rq)
{
}

static inline void init_rq_hrtick(struct rq *rq)
{
}

void hrtick_resched(void)
{
}
#endif

I
Ingo Molnar 已提交
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
/*
 * resched_task - mark a task 'to be rescheduled now'.
 *
 * On UP this means the setting of the need_resched flag, on SMP it
 * might also involve a cross-CPU call to trigger the scheduler on
 * the target CPU.
 */
#ifdef CONFIG_SMP

#ifndef tsk_is_polling
#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
#endif

P
Peter Zijlstra 已提交
1069
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1070 1071 1072 1073 1074
{
	int cpu;

	assert_spin_locked(&task_rq(p)->lock);

P
Peter Zijlstra 已提交
1075
	if (unlikely(test_tsk_thread_flag(p, tif_bit)))
I
Ingo Molnar 已提交
1076 1077
		return;

P
Peter Zijlstra 已提交
1078
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100

	cpu = task_cpu(p);
	if (cpu == smp_processor_id())
		return;

	/* NEED_RESCHED must be visible before we test polling */
	smp_mb();
	if (!tsk_is_polling(p))
		smp_send_reschedule(cpu);
}

static void resched_cpu(int cpu)
{
	struct rq *rq = cpu_rq(cpu);
	unsigned long flags;

	if (!spin_trylock_irqsave(&rq->lock, flags))
		return;
	resched_task(cpu_curr(cpu));
	spin_unlock_irqrestore(&rq->lock, flags);
}
#else
P
Peter Zijlstra 已提交
1101
static void __resched_task(struct task_struct *p, int tif_bit)
I
Ingo Molnar 已提交
1102 1103
{
	assert_spin_locked(&task_rq(p)->lock);
P
Peter Zijlstra 已提交
1104
	set_tsk_thread_flag(p, tif_bit);
I
Ingo Molnar 已提交
1105 1106 1107
}
#endif

1108 1109 1110 1111 1112 1113 1114 1115
#if BITS_PER_LONG == 32
# define WMULT_CONST	(~0UL)
#else
# define WMULT_CONST	(1UL << 32)
#endif

#define WMULT_SHIFT	32

I
Ingo Molnar 已提交
1116 1117 1118
/*
 * Shift right and round:
 */
I
Ingo Molnar 已提交
1119
#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
I
Ingo Molnar 已提交
1120

1121
static unsigned long
1122 1123 1124 1125 1126 1127
calc_delta_mine(unsigned long delta_exec, unsigned long weight,
		struct load_weight *lw)
{
	u64 tmp;

	if (unlikely(!lw->inv_weight))
I
Ingo Molnar 已提交
1128
		lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
1129 1130 1131 1132 1133

	tmp = (u64)delta_exec * weight;
	/*
	 * Check whether we'd overflow the 64-bit multiplication:
	 */
I
Ingo Molnar 已提交
1134
	if (unlikely(tmp > WMULT_CONST))
I
Ingo Molnar 已提交
1135
		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
I
Ingo Molnar 已提交
1136 1137
			WMULT_SHIFT/2);
	else
I
Ingo Molnar 已提交
1138
		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1139

1140
	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1141 1142 1143 1144 1145 1146 1147 1148
}

static inline unsigned long
calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
{
	return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
}

1149
static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1150 1151 1152 1153
{
	lw->weight += inc;
}

1154
static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1155 1156 1157 1158
{
	lw->weight -= dec;
}

1159 1160 1161 1162
/*
 * To aid in avoiding the subversion of "niceness" due to uneven distribution
 * of tasks with abnormal "nice" values across CPUs the contribution that
 * each task makes to its run queue's load is weighted according to its
I
Ingo Molnar 已提交
1163
 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 1165 1166 1167
 * scaled version of the new time slice allocation that they receive on time
 * slice expiry etc.
 */

I
Ingo Molnar 已提交
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
#define WEIGHT_IDLEPRIO		2
#define WMULT_IDLEPRIO		(1 << 31)

/*
 * Nice levels are multiplicative, with a gentle 10% change for every
 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
 * nice 1, it will get ~10% less CPU time than another CPU-bound task
 * that remained on nice 0.
 *
 * The "10% effect" is relative and cumulative: from _any_ nice level,
 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 1180 1181
 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
 * If a task goes up by ~10% and another task goes down by ~10% then
 * the relative distance between them is ~25%.)
I
Ingo Molnar 已提交
1182 1183
 */
static const int prio_to_weight[40] = {
1184 1185 1186 1187 1188 1189 1190 1191
 /* -20 */     88761,     71755,     56483,     46273,     36291,
 /* -15 */     29154,     23254,     18705,     14949,     11916,
 /* -10 */      9548,      7620,      6100,      4904,      3906,
 /*  -5 */      3121,      2501,      1991,      1586,      1277,
 /*   0 */      1024,       820,       655,       526,       423,
 /*   5 */       335,       272,       215,       172,       137,
 /*  10 */       110,        87,        70,        56,        45,
 /*  15 */        36,        29,        23,        18,        15,
I
Ingo Molnar 已提交
1192 1193
};

1194 1195 1196 1197 1198 1199 1200
/*
 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
 *
 * In cases where the weight does not change often, we can use the
 * precalculated inverse to speed up arithmetics by turning divisions
 * into multiplications:
 */
I
Ingo Molnar 已提交
1201
static const u32 prio_to_wmult[40] = {
1202 1203 1204 1205 1206 1207 1208 1209
 /* -20 */     48388,     59856,     76040,     92818,    118348,
 /* -15 */    147320,    184698,    229616,    287308,    360437,
 /* -10 */    449829,    563644,    704093,    875809,   1099582,
 /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326,
 /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587,
 /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126,
 /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717,
 /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
I
Ingo Molnar 已提交
1210
};
1211

I
Ingo Molnar 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);

/*
 * runqueue iterator, to support SMP load-balancing between different
 * scheduling classes, without having to expose their internal data
 * structures to the load-balancing proper:
 */
struct rq_iterator {
	void *arg;
	struct task_struct *(*start)(void *);
	struct task_struct *(*next)(void *);
};

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
#ifdef CONFIG_SMP
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator);

static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator);
#endif
I
Ingo Molnar 已提交
1237

1238 1239 1240 1241 1242 1243
#ifdef CONFIG_CGROUP_CPUACCT
static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
#else
static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
#endif

1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static inline void inc_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_add(&rq->load, load);
}

static inline void dec_cpu_load(struct rq *rq, unsigned long load)
{
	update_load_sub(&rq->load, load);
}

1254 1255 1256 1257 1258 1259 1260
#ifdef CONFIG_SMP
static unsigned long source_load(int cpu, int type);
static unsigned long target_load(int cpu, int type);
static unsigned long cpu_avg_load_per_task(int cpu);
static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
#endif /* CONFIG_SMP */

I
Ingo Molnar 已提交
1261 1262
#include "sched_stats.h"
#include "sched_idletask.c"
1263 1264
#include "sched_fair.c"
#include "sched_rt.c"
I
Ingo Molnar 已提交
1265 1266 1267 1268 1269 1270
#ifdef CONFIG_SCHED_DEBUG
# include "sched_debug.c"
#endif

#define sched_class_highest (&rt_sched_class)

G
Gerald Stralko 已提交
1271
static void inc_nr_running(struct rq *rq)
1272 1273 1274 1275
{
	rq->nr_running++;
}

G
Gerald Stralko 已提交
1276
static void dec_nr_running(struct rq *rq)
1277 1278 1279 1280
{
	rq->nr_running--;
}

1281 1282 1283
static void set_load_weight(struct task_struct *p)
{
	if (task_has_rt_policy(p)) {
I
Ingo Molnar 已提交
1284 1285 1286 1287
		p->se.load.weight = prio_to_weight[0] * 2;
		p->se.load.inv_weight = prio_to_wmult[0] >> 1;
		return;
	}
1288

I
Ingo Molnar 已提交
1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 */
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		return;
	}
1297

I
Ingo Molnar 已提交
1298 1299
	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1300 1301
}

1302
static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1303
{
I
Ingo Molnar 已提交
1304
	sched_info_queued(p);
1305
	p->sched_class->enqueue_task(rq, p, wakeup);
I
Ingo Molnar 已提交
1306
	p->se.on_rq = 1;
1307 1308
}

1309
static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1310
{
1311
	p->sched_class->dequeue_task(rq, p, sleep);
I
Ingo Molnar 已提交
1312
	p->se.on_rq = 0;
1313 1314
}

1315
/*
I
Ingo Molnar 已提交
1316
 * __normal_prio - return the priority that is based on the static prio
1317 1318 1319
 */
static inline int __normal_prio(struct task_struct *p)
{
I
Ingo Molnar 已提交
1320
	return p->static_prio;
1321 1322
}

1323 1324 1325 1326 1327 1328 1329
/*
 * Calculate the expected normal priority: i.e. priority
 * without taking RT-inheritance into account. Might be
 * boosted by interactivity modifiers. Changes upon fork,
 * setprio syscalls, and whenever the interactivity
 * estimator recalculates.
 */
1330
static inline int normal_prio(struct task_struct *p)
1331 1332 1333
{
	int prio;

1334
	if (task_has_rt_policy(p))
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		prio = MAX_RT_PRIO-1 - p->rt_priority;
	else
		prio = __normal_prio(p);
	return prio;
}

/*
 * Calculate the current priority, i.e. the priority
 * taken into account by the scheduler. This value might
 * be boosted by RT tasks, or might be boosted by
 * interactivity modifiers. Will be RT if the task got
 * RT-boosted. If not then it returns p->normal_prio.
 */
1348
static int effective_prio(struct task_struct *p)
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
{
	p->normal_prio = normal_prio(p);
	/*
	 * If we are RT tasks or we were boosted to RT priority,
	 * keep the priority unchanged. Otherwise, update priority
	 * to the normal priority:
	 */
	if (!rt_prio(p->prio))
		return p->normal_prio;
	return p->prio;
}

L
Linus Torvalds 已提交
1361
/*
I
Ingo Molnar 已提交
1362
 * activate_task - move a task to the runqueue.
L
Linus Torvalds 已提交
1363
 */
I
Ingo Molnar 已提交
1364
static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
L
Linus Torvalds 已提交
1365
{
1366
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1367
		rq->nr_uninterruptible--;
L
Linus Torvalds 已提交
1368

1369
	enqueue_task(rq, p, wakeup);
G
Gerald Stralko 已提交
1370
	inc_nr_running(rq);
L
Linus Torvalds 已提交
1371 1372 1373 1374 1375
}

/*
 * deactivate_task - remove a task from the runqueue.
 */
1376
static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
L
Linus Torvalds 已提交
1377
{
1378
	if (task_contributes_to_load(p))
I
Ingo Molnar 已提交
1379 1380
		rq->nr_uninterruptible++;

1381
	dequeue_task(rq, p, sleep);
G
Gerald Stralko 已提交
1382
	dec_nr_running(rq);
L
Linus Torvalds 已提交
1383 1384 1385 1386 1387 1388
}

/**
 * task_curr - is this task currently executing on a CPU?
 * @p: the task in question.
 */
1389
inline int task_curr(const struct task_struct *p)
L
Linus Torvalds 已提交
1390 1391 1392 1393
{
	return cpu_curr(task_cpu(p)) == p;
}

1394 1395 1396
/* Used instead of source_load when we know the type == 0 */
unsigned long weighted_cpuload(const int cpu)
{
1397
	return cpu_rq(cpu)->load.weight;
I
Ingo Molnar 已提交
1398 1399 1400 1401
}

static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
{
P
Peter Zijlstra 已提交
1402
	set_task_rq(p, cpu);
I
Ingo Molnar 已提交
1403
#ifdef CONFIG_SMP
1404 1405 1406 1407 1408 1409
	/*
	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
	 * successfuly executed on another CPU. We must ensure that updates of
	 * per-task data have been completed by this moment.
	 */
	smp_wmb();
I
Ingo Molnar 已提交
1410 1411
	task_thread_info(p)->cpu = cpu;
#endif
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static inline void check_class_changed(struct rq *rq, struct task_struct *p,
				       const struct sched_class *prev_class,
				       int oldprio, int running)
{
	if (prev_class != p->sched_class) {
		if (prev_class->switched_from)
			prev_class->switched_from(rq, p, running);
		p->sched_class->switched_to(rq, p, running);
	} else
		p->sched_class->prio_changed(rq, p, oldprio, running);
}

L
Linus Torvalds 已提交
1426
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
1427

1428 1429 1430
/*
 * Is this task likely cache-hot:
 */
1431
static int
1432 1433 1434 1435 1436 1437 1438
task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
{
	s64 delta;

	if (p->sched_class != &fair_sched_class)
		return 0;

1439 1440 1441 1442 1443
	if (sysctl_sched_migration_cost == -1)
		return 1;
	if (sysctl_sched_migration_cost == 0)
		return 0;

1444 1445 1446 1447 1448 1449
	delta = now - p->se.exec_start;

	return delta < (s64)sysctl_sched_migration_cost;
}


I
Ingo Molnar 已提交
1450
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
I
Ingo Molnar 已提交
1451
{
I
Ingo Molnar 已提交
1452 1453
	int old_cpu = task_cpu(p);
	struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1454 1455
	struct cfs_rq *old_cfsrq = task_cfs_rq(p),
		      *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1456
	u64 clock_offset;
I
Ingo Molnar 已提交
1457 1458

	clock_offset = old_rq->clock - new_rq->clock;
I
Ingo Molnar 已提交
1459 1460 1461 1462

#ifdef CONFIG_SCHEDSTATS
	if (p->se.wait_start)
		p->se.wait_start -= clock_offset;
I
Ingo Molnar 已提交
1463 1464 1465 1466
	if (p->se.sleep_start)
		p->se.sleep_start -= clock_offset;
	if (p->se.block_start)
		p->se.block_start -= clock_offset;
1467 1468 1469 1470 1471
	if (old_cpu != new_cpu) {
		schedstat_inc(p, se.nr_migrations);
		if (task_hot(p, old_rq->clock, NULL))
			schedstat_inc(p, se.nr_forced2_migrations);
	}
I
Ingo Molnar 已提交
1472
#endif
1473 1474
	p->se.vruntime -= old_cfsrq->min_vruntime -
					 new_cfsrq->min_vruntime;
I
Ingo Molnar 已提交
1475 1476

	__set_task_cpu(p, new_cpu);
I
Ingo Molnar 已提交
1477 1478
}

1479
struct migration_req {
L
Linus Torvalds 已提交
1480 1481
	struct list_head list;

1482
	struct task_struct *task;
L
Linus Torvalds 已提交
1483 1484 1485
	int dest_cpu;

	struct completion done;
1486
};
L
Linus Torvalds 已提交
1487 1488 1489 1490 1491

/*
 * The task's runqueue lock must be held.
 * Returns true if you have to wait for migration thread.
 */
1492
static int
1493
migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
L
Linus Torvalds 已提交
1494
{
1495
	struct rq *rq = task_rq(p);
L
Linus Torvalds 已提交
1496 1497 1498 1499 1500

	/*
	 * If the task is not on a runqueue (and not running), then
	 * it is sufficient to simply update the task's cpu field.
	 */
I
Ingo Molnar 已提交
1501
	if (!p->se.on_rq && !task_running(rq, p)) {
L
Linus Torvalds 已提交
1502 1503 1504 1505 1506 1507 1508 1509
		set_task_cpu(p, dest_cpu);
		return 0;
	}

	init_completion(&req->done);
	req->task = p;
	req->dest_cpu = dest_cpu;
	list_add(&req->list, &rq->migration_queue);
1510

L
Linus Torvalds 已提交
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
	return 1;
}

/*
 * wait_task_inactive - wait for a thread to unschedule.
 *
 * The caller must ensure that the task *will* unschedule sometime soon,
 * else this function might spin for a *long* time. This function can't
 * be called with interrupts off, or it may introduce deadlock with
 * smp_call_function() if an IPI is sent by the same process we are
 * waiting to become inactive.
 */
1523
void wait_task_inactive(struct task_struct *p)
L
Linus Torvalds 已提交
1524 1525
{
	unsigned long flags;
I
Ingo Molnar 已提交
1526
	int running, on_rq;
1527
	struct rq *rq;
L
Linus Torvalds 已提交
1528

1529 1530 1531 1532 1533 1534 1535 1536
	for (;;) {
		/*
		 * We do the initial early heuristics without holding
		 * any task-queue locks at all. We'll only try to get
		 * the runqueue lock when things look like they will
		 * work out!
		 */
		rq = task_rq(p);
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
		/*
		 * If the task is actively running on another CPU
		 * still, just relax and busy-wait without holding
		 * any locks.
		 *
		 * NOTE! Since we don't hold any locks, it's not
		 * even sure that "rq" stays as the right runqueue!
		 * But we don't care, since "task_running()" will
		 * return false if the runqueue has changed and p
		 * is actually now running somewhere else!
		 */
		while (task_running(rq, p))
			cpu_relax();
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560
		/*
		 * Ok, time to look more closely! We need the rq
		 * lock now, to be *sure*. If we're wrong, we'll
		 * just go back and repeat.
		 */
		rq = task_rq_lock(p, &flags);
		running = task_running(rq, p);
		on_rq = p->se.on_rq;
		task_rq_unlock(rq, &flags);
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
		/*
		 * Was it really running after all now that we
		 * checked with the proper locks actually held?
		 *
		 * Oops. Go back and try again..
		 */
		if (unlikely(running)) {
			cpu_relax();
			continue;
		}
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		/*
		 * It's not enough that it's not actively running,
		 * it must be off the runqueue _entirely_, and not
		 * preempted!
		 *
		 * So if it wa still runnable (but just not actively
		 * running right now), it's preempted, and we should
		 * yield - it could be a while.
		 */
		if (unlikely(on_rq)) {
			schedule_timeout_uninterruptible(1);
			continue;
		}
1586

1587 1588 1589 1590 1591 1592 1593
		/*
		 * Ahh, all good. It wasn't running, and it wasn't
		 * runnable, which means that it will never become
		 * running in the future either. We're all done!
		 */
		break;
	}
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
}

/***
 * kick_process - kick a running thread to enter/exit the kernel
 * @p: the to-be-kicked thread
 *
 * Cause a process which is running on another CPU to enter
 * kernel-mode, without any delay. (to get signals handled.)
 *
 * NOTE: this function doesnt have to take the runqueue lock,
 * because all it wants to ensure is that the remote task enters
 * the kernel. If the IPI races and the task has been migrated
 * to another CPU then no harm is done and the purpose has been
 * achieved as well.
 */
1609
void kick_process(struct task_struct *p)
L
Linus Torvalds 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
{
	int cpu;

	preempt_disable();
	cpu = task_cpu(p);
	if ((cpu != smp_processor_id()) && task_curr(p))
		smp_send_reschedule(cpu);
	preempt_enable();
}

/*
1621 1622
 * Return a low guess at the load of a migration-source cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1623 1624 1625 1626
 *
 * We want to under-estimate the load of migration sources, to
 * balance conservatively.
 */
A
Alexey Dobriyan 已提交
1627
static unsigned long source_load(int cpu, int type)
L
Linus Torvalds 已提交
1628
{
1629
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1630
	unsigned long total = weighted_cpuload(cpu);
1631

1632
	if (type == 0)
I
Ingo Molnar 已提交
1633
		return total;
1634

I
Ingo Molnar 已提交
1635
	return min(rq->cpu_load[type-1], total);
L
Linus Torvalds 已提交
1636 1637 1638
}

/*
1639 1640
 * Return a high guess at the load of a migration-target cpu weighted
 * according to the scheduling class and "nice" value.
L
Linus Torvalds 已提交
1641
 */
A
Alexey Dobriyan 已提交
1642
static unsigned long target_load(int cpu, int type)
L
Linus Torvalds 已提交
1643
{
1644
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1645
	unsigned long total = weighted_cpuload(cpu);
1646

N
Nick Piggin 已提交
1647
	if (type == 0)
I
Ingo Molnar 已提交
1648
		return total;
1649

I
Ingo Molnar 已提交
1650
	return max(rq->cpu_load[type-1], total);
1651 1652 1653 1654 1655
}

/*
 * Return the average load per task on the cpu's run queue
 */
1656
static unsigned long cpu_avg_load_per_task(int cpu)
1657
{
1658
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
1659
	unsigned long total = weighted_cpuload(cpu);
1660 1661
	unsigned long n = rq->nr_running;

I
Ingo Molnar 已提交
1662
	return n ? total / n : SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
1663 1664
}

N
Nick Piggin 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
/*
 * find_idlest_group finds and returns the least busy CPU group within the
 * domain.
 */
static struct sched_group *
find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
{
	struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
	unsigned long min_load = ULONG_MAX, this_load = 0;
	int load_idx = sd->forkexec_idx;
	int imbalance = 100 + (sd->imbalance_pct-100)/2;

	do {
		unsigned long load, avg_load;
		int local_group;
		int i;

1682 1683
		/* Skip over this group if it has no CPUs allowed */
		if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1684
			continue;
1685

N
Nick Piggin 已提交
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
		local_group = cpu_isset(this_cpu, group->cpumask);

		/* Tally up the load of all CPUs in the group */
		avg_load = 0;

		for_each_cpu_mask(i, group->cpumask) {
			/* Bias balancing toward cpus of our domain */
			if (local_group)
				load = source_load(i, load_idx);
			else
				load = target_load(i, load_idx);

			avg_load += load;
		}

		/* Adjust by relative CPU power of the group */
1702 1703
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
N
Nick Piggin 已提交
1704 1705 1706 1707 1708 1709 1710 1711

		if (local_group) {
			this_load = avg_load;
			this = group;
		} else if (avg_load < min_load) {
			min_load = avg_load;
			idlest = group;
		}
1712
	} while (group = group->next, group != sd->groups);
N
Nick Piggin 已提交
1713 1714 1715 1716 1717 1718 1719

	if (!idlest || 100*this_load < imbalance*min_load)
		return NULL;
	return idlest;
}

/*
1720
 * find_idlest_cpu - find the idlest cpu among the cpus in group.
N
Nick Piggin 已提交
1721
 */
I
Ingo Molnar 已提交
1722 1723
static int
find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
N
Nick Piggin 已提交
1724
{
1725
	cpumask_t tmp;
N
Nick Piggin 已提交
1726 1727 1728 1729
	unsigned long load, min_load = ULONG_MAX;
	int idlest = -1;
	int i;

1730 1731 1732 1733
	/* Traverse only the allowed CPUs */
	cpus_and(tmp, group->cpumask, p->cpus_allowed);

	for_each_cpu_mask(i, tmp) {
1734
		load = weighted_cpuload(i);
N
Nick Piggin 已提交
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744

		if (load < min_load || (load == min_load && i == this_cpu)) {
			min_load = load;
			idlest = i;
		}
	}

	return idlest;
}

N
Nick Piggin 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
/*
 * sched_balance_self: balance the current task (running on cpu) in domains
 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
 * SD_BALANCE_EXEC.
 *
 * Balance, ie. select the least loaded group.
 *
 * Returns the target CPU number, or the same CPU if no balancing is needed.
 *
 * preempt must be disabled.
 */
static int sched_balance_self(int cpu, int flag)
{
	struct task_struct *t = current;
	struct sched_domain *tmp, *sd = NULL;
N
Nick Piggin 已提交
1760

1761
	for_each_domain(cpu, tmp) {
I
Ingo Molnar 已提交
1762 1763 1764
		/*
		 * If power savings logic is enabled for a domain, stop there.
		 */
1765 1766
		if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			break;
N
Nick Piggin 已提交
1767 1768
		if (tmp->flags & flag)
			sd = tmp;
1769
	}
N
Nick Piggin 已提交
1770 1771 1772 1773

	while (sd) {
		cpumask_t span;
		struct sched_group *group;
1774 1775 1776 1777 1778 1779
		int new_cpu, weight;

		if (!(sd->flags & flag)) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1780 1781 1782

		span = sd->span;
		group = find_idlest_group(sd, t, cpu);
1783 1784 1785 1786
		if (!group) {
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1787

1788
		new_cpu = find_idlest_cpu(group, t, cpu);
1789 1790 1791 1792 1793
		if (new_cpu == -1 || new_cpu == cpu) {
			/* Now try balancing at a lower domain level of cpu */
			sd = sd->child;
			continue;
		}
N
Nick Piggin 已提交
1794

1795
		/* Now try balancing at a lower domain level of new_cpu */
N
Nick Piggin 已提交
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
		cpu = new_cpu;
		sd = NULL;
		weight = cpus_weight(span);
		for_each_domain(cpu, tmp) {
			if (weight <= cpus_weight(tmp->span))
				break;
			if (tmp->flags & flag)
				sd = tmp;
		}
		/* while loop will break here if sd == NULL */
	}

	return cpu;
}

#endif /* CONFIG_SMP */
L
Linus Torvalds 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826

/***
 * try_to_wake_up - wake up a thread
 * @p: the to-be-woken-up thread
 * @state: the mask of task states that can be woken
 * @sync: do a synchronous wakeup?
 *
 * Put it on the run-queue if it's not already there. The "current"
 * thread is always on the run-queue (except when the actual
 * re-schedule is in progress), and as such you're allowed to do
 * the simpler "current->state = TASK_RUNNING" to mark yourself
 * runnable without the overhead of this.
 *
 * returns failure only if the task is already active.
 */
1827
static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
L
Linus Torvalds 已提交
1828
{
1829
	int cpu, orig_cpu, this_cpu, success = 0;
L
Linus Torvalds 已提交
1830 1831
	unsigned long flags;
	long old_state;
1832
	struct rq *rq;
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838

	rq = task_rq_lock(p, &flags);
	old_state = p->state;
	if (!(old_state & state))
		goto out;

I
Ingo Molnar 已提交
1839
	if (p->se.on_rq)
L
Linus Torvalds 已提交
1840 1841 1842
		goto out_running;

	cpu = task_cpu(p);
1843
	orig_cpu = cpu;
L
Linus Torvalds 已提交
1844 1845 1846 1847 1848 1849
	this_cpu = smp_processor_id();

#ifdef CONFIG_SMP
	if (unlikely(task_running(rq, p)))
		goto out_activate;

1850 1851 1852
	cpu = p->sched_class->select_task_rq(p, sync);
	if (cpu != orig_cpu) {
		set_task_cpu(p, cpu);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858
		task_rq_unlock(rq, &flags);
		/* might preempt at this point */
		rq = task_rq_lock(p, &flags);
		old_state = p->state;
		if (!(old_state & state))
			goto out;
I
Ingo Molnar 已提交
1859
		if (p->se.on_rq)
L
Linus Torvalds 已提交
1860 1861 1862 1863 1864 1865
			goto out_running;

		this_cpu = smp_processor_id();
		cpu = task_cpu(p);
	}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
#ifdef CONFIG_SCHEDSTATS
	schedstat_inc(rq, ttwu_count);
	if (cpu == this_cpu)
		schedstat_inc(rq, ttwu_local);
	else {
		struct sched_domain *sd;
		for_each_domain(this_cpu, sd) {
			if (cpu_isset(cpu, sd->span)) {
				schedstat_inc(sd, ttwu_wake_remote);
				break;
			}
		}
	}
#endif

L
Linus Torvalds 已提交
1881 1882
out_activate:
#endif /* CONFIG_SMP */
1883 1884 1885 1886 1887 1888 1889 1890 1891
	schedstat_inc(p, se.nr_wakeups);
	if (sync)
		schedstat_inc(p, se.nr_wakeups_sync);
	if (orig_cpu != cpu)
		schedstat_inc(p, se.nr_wakeups_migrate);
	if (cpu == this_cpu)
		schedstat_inc(p, se.nr_wakeups_local);
	else
		schedstat_inc(p, se.nr_wakeups_remote);
I
Ingo Molnar 已提交
1892
	update_rq_clock(rq);
I
Ingo Molnar 已提交
1893
	activate_task(rq, p, 1);
I
Ingo Molnar 已提交
1894
	check_preempt_curr(rq, p);
L
Linus Torvalds 已提交
1895 1896 1897 1898
	success = 1;

out_running:
	p->state = TASK_RUNNING;
1899 1900 1901 1902
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
L
Linus Torvalds 已提交
1903 1904 1905 1906 1907 1908
out:
	task_rq_unlock(rq, &flags);

	return success;
}

1909
int wake_up_process(struct task_struct *p)
L
Linus Torvalds 已提交
1910
{
1911
	return try_to_wake_up(p, TASK_ALL, 0);
L
Linus Torvalds 已提交
1912 1913 1914
}
EXPORT_SYMBOL(wake_up_process);

1915
int wake_up_state(struct task_struct *p, unsigned int state)
L
Linus Torvalds 已提交
1916 1917 1918 1919 1920 1921 1922
{
	return try_to_wake_up(p, state, 0);
}

/*
 * Perform scheduler related setup for a newly forked process p.
 * p is forked by current.
I
Ingo Molnar 已提交
1923 1924 1925 1926 1927 1928 1929
 *
 * __sched_fork() is basic setup used by init_idle() too:
 */
static void __sched_fork(struct task_struct *p)
{
	p->se.exec_start		= 0;
	p->se.sum_exec_runtime		= 0;
1930
	p->se.prev_sum_exec_runtime	= 0;
I
Ingo Molnar 已提交
1931 1932 1933

#ifdef CONFIG_SCHEDSTATS
	p->se.wait_start		= 0;
I
Ingo Molnar 已提交
1934 1935 1936 1937 1938 1939
	p->se.sum_sleep_runtime		= 0;
	p->se.sleep_start		= 0;
	p->se.block_start		= 0;
	p->se.sleep_max			= 0;
	p->se.block_max			= 0;
	p->se.exec_max			= 0;
I
Ingo Molnar 已提交
1940
	p->se.slice_max			= 0;
I
Ingo Molnar 已提交
1941
	p->se.wait_max			= 0;
I
Ingo Molnar 已提交
1942
#endif
N
Nick Piggin 已提交
1943

P
Peter Zijlstra 已提交
1944
	INIT_LIST_HEAD(&p->rt.run_list);
I
Ingo Molnar 已提交
1945
	p->se.on_rq = 0;
N
Nick Piggin 已提交
1946

1947 1948 1949 1950
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&p->preempt_notifiers);
#endif

L
Linus Torvalds 已提交
1951 1952 1953 1954 1955 1956 1957
	/*
	 * We mark the process as running here, but have not actually
	 * inserted it onto the runqueue yet. This guarantees that
	 * nobody will actually run it, and a signal or other external
	 * event cannot wake it up and insert it on the runqueue either.
	 */
	p->state = TASK_RUNNING;
I
Ingo Molnar 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
}

/*
 * fork()/clone()-time setup:
 */
void sched_fork(struct task_struct *p, int clone_flags)
{
	int cpu = get_cpu();

	__sched_fork(p);

#ifdef CONFIG_SMP
	cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
#endif
I
Ingo Molnar 已提交
1972
	set_task_cpu(p, cpu);
1973 1974 1975 1976 1977

	/*
	 * Make sure we do not leak PI boosting priority to the child:
	 */
	p->prio = current->normal_prio;
H
Hiroshi Shimamoto 已提交
1978 1979
	if (!rt_prio(p->prio))
		p->sched_class = &fair_sched_class;
1980

1981
#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
I
Ingo Molnar 已提交
1982
	if (likely(sched_info_on()))
1983
		memset(&p->sched_info, 0, sizeof(p->sched_info));
L
Linus Torvalds 已提交
1984
#endif
1985
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1986 1987
	p->oncpu = 0;
#endif
L
Linus Torvalds 已提交
1988
#ifdef CONFIG_PREEMPT
1989
	/* Want to start with kernel preemption disabled. */
A
Al Viro 已提交
1990
	task_thread_info(p)->preempt_count = 1;
L
Linus Torvalds 已提交
1991
#endif
N
Nick Piggin 已提交
1992
	put_cpu();
L
Linus Torvalds 已提交
1993 1994 1995 1996 1997 1998 1999 2000 2001
}

/*
 * wake_up_new_task - wake up a newly created task for the first time.
 *
 * This function will do some initial scheduler statistics housekeeping
 * that must be done for every newly created context, then puts the task
 * on the runqueue and wakes it.
 */
2002
void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
L
Linus Torvalds 已提交
2003 2004
{
	unsigned long flags;
I
Ingo Molnar 已提交
2005
	struct rq *rq;
L
Linus Torvalds 已提交
2006 2007

	rq = task_rq_lock(p, &flags);
N
Nick Piggin 已提交
2008
	BUG_ON(p->state != TASK_RUNNING);
I
Ingo Molnar 已提交
2009
	update_rq_clock(rq);
L
Linus Torvalds 已提交
2010 2011 2012

	p->prio = effective_prio(p);

2013
	if (!p->sched_class->task_new || !current->se.on_rq) {
I
Ingo Molnar 已提交
2014
		activate_task(rq, p, 0);
L
Linus Torvalds 已提交
2015 2016
	} else {
		/*
I
Ingo Molnar 已提交
2017 2018
		 * Let the scheduling class do new task startup
		 * management (if any):
L
Linus Torvalds 已提交
2019
		 */
2020
		p->sched_class->task_new(rq, p);
G
Gerald Stralko 已提交
2021
		inc_nr_running(rq);
L
Linus Torvalds 已提交
2022
	}
I
Ingo Molnar 已提交
2023
	check_preempt_curr(rq, p);
2024 2025 2026 2027
#ifdef CONFIG_SMP
	if (p->sched_class->task_wake_up)
		p->sched_class->task_wake_up(rq, p);
#endif
I
Ingo Molnar 已提交
2028
	task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
2029 2030
}

2031 2032 2033
#ifdef CONFIG_PREEMPT_NOTIFIERS

/**
R
Randy Dunlap 已提交
2034 2035
 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
 * @notifier: notifier struct to register
2036 2037 2038 2039 2040 2041 2042 2043 2044
 */
void preempt_notifier_register(struct preempt_notifier *notifier)
{
	hlist_add_head(&notifier->link, &current->preempt_notifiers);
}
EXPORT_SYMBOL_GPL(preempt_notifier_register);

/**
 * preempt_notifier_unregister - no longer interested in preemption notifications
R
Randy Dunlap 已提交
2045
 * @notifier: notifier struct to unregister
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
 *
 * This is safe to call from within a preemption notifier.
 */
void preempt_notifier_unregister(struct preempt_notifier *notifier)
{
	hlist_del(&notifier->link);
}
EXPORT_SYMBOL_GPL(preempt_notifier_unregister);

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_in(notifier, raw_smp_processor_id());
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
	struct preempt_notifier *notifier;
	struct hlist_node *node;

	hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
		notifier->ops->sched_out(notifier, next);
}

#else

static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
{
}

static void
fire_sched_out_preempt_notifiers(struct task_struct *curr,
				 struct task_struct *next)
{
}

#endif

2089 2090 2091
/**
 * prepare_task_switch - prepare to switch tasks
 * @rq: the runqueue preparing to switch
R
Randy Dunlap 已提交
2092
 * @prev: the current task that is being switched out
2093 2094 2095 2096 2097 2098 2099 2100 2101
 * @next: the task we are going to switch to.
 *
 * This is called with the rq lock held and interrupts off. It must
 * be paired with a subsequent finish_task_switch after the context
 * switch.
 *
 * prepare_task_switch sets up locking and calls architecture specific
 * hooks.
 */
2102 2103 2104
static inline void
prepare_task_switch(struct rq *rq, struct task_struct *prev,
		    struct task_struct *next)
2105
{
2106
	fire_sched_out_preempt_notifiers(prev, next);
2107 2108 2109 2110
	prepare_lock_switch(rq, next);
	prepare_arch_switch(next);
}

L
Linus Torvalds 已提交
2111 2112
/**
 * finish_task_switch - clean up after a task-switch
2113
 * @rq: runqueue associated with task-switch
L
Linus Torvalds 已提交
2114 2115
 * @prev: the thread we just switched away from.
 *
2116 2117 2118 2119
 * finish_task_switch must be called after the context switch, paired
 * with a prepare_task_switch call before the context switch.
 * finish_task_switch will reconcile locking set up by prepare_task_switch,
 * and do any other architecture-specific cleanup actions.
L
Linus Torvalds 已提交
2120 2121
 *
 * Note that we may have delayed dropping an mm in context_switch(). If
I
Ingo Molnar 已提交
2122
 * so, we finish that here outside of the runqueue lock. (Doing it
L
Linus Torvalds 已提交
2123 2124 2125
 * with the lock held can cause deadlocks; see schedule() for
 * details.)
 */
A
Alexey Dobriyan 已提交
2126
static void finish_task_switch(struct rq *rq, struct task_struct *prev)
L
Linus Torvalds 已提交
2127 2128 2129
	__releases(rq->lock)
{
	struct mm_struct *mm = rq->prev_mm;
O
Oleg Nesterov 已提交
2130
	long prev_state;
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135

	rq->prev_mm = NULL;

	/*
	 * A task struct has one reference for the use as "current".
2136
	 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
O
Oleg Nesterov 已提交
2137 2138
	 * schedule one last time. The schedule call will never return, and
	 * the scheduled task must drop that reference.
2139
	 * The test for TASK_DEAD must occur while the runqueue locks are
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144
	 * still held, otherwise prev could be scheduled on another cpu, die
	 * there before we look at prev->state, and then the reference would
	 * be dropped twice.
	 *		Manfred Spraul <manfred@colorfullife.com>
	 */
O
Oleg Nesterov 已提交
2145
	prev_state = prev->state;
2146 2147
	finish_arch_switch(prev);
	finish_lock_switch(rq, prev);
2148 2149 2150 2151
#ifdef CONFIG_SMP
	if (current->sched_class->post_schedule)
		current->sched_class->post_schedule(rq);
#endif
S
Steven Rostedt 已提交
2152

2153
	fire_sched_in_preempt_notifiers(current);
L
Linus Torvalds 已提交
2154 2155
	if (mm)
		mmdrop(mm);
2156
	if (unlikely(prev_state == TASK_DEAD)) {
2157 2158 2159
		/*
		 * Remove function-return probe instances associated with this
		 * task and put them back on the free list.
I
Ingo Molnar 已提交
2160
		 */
2161
		kprobe_flush_task(prev);
L
Linus Torvalds 已提交
2162
		put_task_struct(prev);
2163
	}
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168 2169
}

/**
 * schedule_tail - first thing a freshly forked thread must call.
 * @prev: the thread we just switched away from.
 */
2170
asmlinkage void schedule_tail(struct task_struct *prev)
L
Linus Torvalds 已提交
2171 2172
	__releases(rq->lock)
{
2173 2174
	struct rq *rq = this_rq();

2175 2176 2177 2178 2179
	finish_task_switch(rq, prev);
#ifdef __ARCH_WANT_UNLOCKED_CTXSW
	/* In this case, finish_task_switch does not reenable preemption */
	preempt_enable();
#endif
L
Linus Torvalds 已提交
2180
	if (current->set_child_tid)
2181
		put_user(task_pid_vnr(current), current->set_child_tid);
L
Linus Torvalds 已提交
2182 2183 2184 2185 2186 2187
}

/*
 * context_switch - switch to the new MM and the new
 * thread's register state.
 */
I
Ingo Molnar 已提交
2188
static inline void
2189
context_switch(struct rq *rq, struct task_struct *prev,
2190
	       struct task_struct *next)
L
Linus Torvalds 已提交
2191
{
I
Ingo Molnar 已提交
2192
	struct mm_struct *mm, *oldmm;
L
Linus Torvalds 已提交
2193

2194
	prepare_task_switch(rq, prev, next);
I
Ingo Molnar 已提交
2195 2196
	mm = next->mm;
	oldmm = prev->active_mm;
2197 2198 2199 2200 2201 2202 2203
	/*
	 * For paravirt, this is coupled with an exit in switch_to to
	 * combine the page table reload and the switch backend into
	 * one hypercall.
	 */
	arch_enter_lazy_cpu_mode();

I
Ingo Molnar 已提交
2204
	if (unlikely(!mm)) {
L
Linus Torvalds 已提交
2205 2206 2207 2208 2209 2210
		next->active_mm = oldmm;
		atomic_inc(&oldmm->mm_count);
		enter_lazy_tlb(oldmm, next);
	} else
		switch_mm(oldmm, mm, next);

I
Ingo Molnar 已提交
2211
	if (unlikely(!prev->mm)) {
L
Linus Torvalds 已提交
2212 2213 2214
		prev->active_mm = NULL;
		rq->prev_mm = oldmm;
	}
2215 2216 2217 2218 2219 2220 2221
	/*
	 * Since the runqueue lock will be released by the next
	 * task (which is an invalid locking op but in the case
	 * of the scheduler it's an obvious special-case), so we
	 * do an early lockdep release here:
	 */
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
2222
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2223
#endif
L
Linus Torvalds 已提交
2224 2225 2226 2227

	/* Here we just switch the register state and the stack. */
	switch_to(prev, next, prev);

I
Ingo Molnar 已提交
2228 2229 2230 2231 2232 2233 2234
	barrier();
	/*
	 * this_rq must be evaluated again because prev may have moved
	 * CPUs since it called schedule(), thus the 'rq' on its stack
	 * frame will be invalid.
	 */
	finish_task_switch(this_rq(), prev);
L
Linus Torvalds 已提交
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
}

/*
 * nr_running, nr_uninterruptible and nr_context_switches:
 *
 * externally visible scheduler statistics: current number of runnable
 * threads, current number of uninterruptible-sleeping threads, total
 * number of context switches performed since bootup.
 */
unsigned long nr_running(void)
{
	unsigned long i, sum = 0;

	for_each_online_cpu(i)
		sum += cpu_rq(i)->nr_running;

	return sum;
}

unsigned long nr_uninterruptible(void)
{
	unsigned long i, sum = 0;

2258
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		sum += cpu_rq(i)->nr_uninterruptible;

	/*
	 * Since we read the counters lockless, it might be slightly
	 * inaccurate. Do not allow it to go below zero though:
	 */
	if (unlikely((long)sum < 0))
		sum = 0;

	return sum;
}

unsigned long long nr_context_switches(void)
{
2273 2274
	int i;
	unsigned long long sum = 0;
L
Linus Torvalds 已提交
2275

2276
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281 2282 2283 2284 2285
		sum += cpu_rq(i)->nr_switches;

	return sum;
}

unsigned long nr_iowait(void)
{
	unsigned long i, sum = 0;

2286
	for_each_possible_cpu(i)
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291
		sum += atomic_read(&cpu_rq(i)->nr_iowait);

	return sum;
}

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
unsigned long nr_active(void)
{
	unsigned long i, running = 0, uninterruptible = 0;

	for_each_online_cpu(i) {
		running += cpu_rq(i)->nr_running;
		uninterruptible += cpu_rq(i)->nr_uninterruptible;
	}

	if (unlikely((long)uninterruptible < 0))
		uninterruptible = 0;

	return running + uninterruptible;
}

2307
/*
I
Ingo Molnar 已提交
2308 2309
 * Update rq->cpu_load[] statistics. This function is usually called every
 * scheduler tick (TICK_NSEC).
2310
 */
I
Ingo Molnar 已提交
2311
static void update_cpu_load(struct rq *this_rq)
2312
{
2313
	unsigned long this_load = this_rq->load.weight;
I
Ingo Molnar 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
	int i, scale;

	this_rq->nr_load_updates++;

	/* Update our load: */
	for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
		unsigned long old_load, new_load;

		/* scale is effectively 1 << i now, and >> i divides by scale */

		old_load = this_rq->cpu_load[i];
		new_load = this_load;
I
Ingo Molnar 已提交
2326 2327 2328 2329 2330 2331 2332
		/*
		 * Round up the averaging division if load is increasing. This
		 * prevents us from getting stuck on 9 if the load is 10, for
		 * example.
		 */
		if (new_load > old_load)
			new_load += scale-1;
I
Ingo Molnar 已提交
2333 2334
		this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
	}
2335 2336
}

I
Ingo Molnar 已提交
2337 2338
#ifdef CONFIG_SMP

L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344
/*
 * double_rq_lock - safely lock two runqueues
 *
 * Note this does not disable interrupts like task_rq_lock,
 * you need to do so manually before calling.
 */
2345
static void double_rq_lock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2346 2347 2348
	__acquires(rq1->lock)
	__acquires(rq2->lock)
{
2349
	BUG_ON(!irqs_disabled());
L
Linus Torvalds 已提交
2350 2351 2352 2353
	if (rq1 == rq2) {
		spin_lock(&rq1->lock);
		__acquire(rq2->lock);	/* Fake it out ;) */
	} else {
2354
		if (rq1 < rq2) {
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361
			spin_lock(&rq1->lock);
			spin_lock(&rq2->lock);
		} else {
			spin_lock(&rq2->lock);
			spin_lock(&rq1->lock);
		}
	}
2362 2363
	update_rq_clock(rq1);
	update_rq_clock(rq2);
L
Linus Torvalds 已提交
2364 2365 2366 2367 2368 2369 2370 2371
}

/*
 * double_rq_unlock - safely unlock two runqueues
 *
 * Note this does not restore interrupts like task_rq_unlock,
 * you need to do so manually after calling.
 */
2372
static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
L
Linus Torvalds 已提交
2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385
	__releases(rq1->lock)
	__releases(rq2->lock)
{
	spin_unlock(&rq1->lock);
	if (rq1 != rq2)
		spin_unlock(&rq2->lock);
	else
		__release(rq2->lock);
}

/*
 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
 */
S
Steven Rostedt 已提交
2386
static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
L
Linus Torvalds 已提交
2387 2388 2389 2390
	__releases(this_rq->lock)
	__acquires(busiest->lock)
	__acquires(this_rq->lock)
{
S
Steven Rostedt 已提交
2391 2392
	int ret = 0;

2393 2394 2395 2396 2397
	if (unlikely(!irqs_disabled())) {
		/* printk() doesn't work good under rq->lock */
		spin_unlock(&this_rq->lock);
		BUG_ON(1);
	}
L
Linus Torvalds 已提交
2398
	if (unlikely(!spin_trylock(&busiest->lock))) {
2399
		if (busiest < this_rq) {
L
Linus Torvalds 已提交
2400 2401 2402
			spin_unlock(&this_rq->lock);
			spin_lock(&busiest->lock);
			spin_lock(&this_rq->lock);
S
Steven Rostedt 已提交
2403
			ret = 1;
L
Linus Torvalds 已提交
2404 2405 2406
		} else
			spin_lock(&busiest->lock);
	}
S
Steven Rostedt 已提交
2407
	return ret;
L
Linus Torvalds 已提交
2408 2409 2410 2411 2412
}

/*
 * If dest_cpu is allowed for this process, migrate the task to it.
 * This is accomplished by forcing the cpu_allowed mask to only
I
Ingo Molnar 已提交
2413
 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
L
Linus Torvalds 已提交
2414 2415
 * the cpu_allowed mask is restored.
 */
2416
static void sched_migrate_task(struct task_struct *p, int dest_cpu)
L
Linus Torvalds 已提交
2417
{
2418
	struct migration_req req;
L
Linus Torvalds 已提交
2419
	unsigned long flags;
2420
	struct rq *rq;
L
Linus Torvalds 已提交
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430

	rq = task_rq_lock(p, &flags);
	if (!cpu_isset(dest_cpu, p->cpus_allowed)
	    || unlikely(cpu_is_offline(dest_cpu)))
		goto out;

	/* force the process onto the specified CPU */
	if (migrate_task(p, dest_cpu, &req)) {
		/* Need to wait for migration thread (might exit: take ref). */
		struct task_struct *mt = rq->migration_thread;
2431

L
Linus Torvalds 已提交
2432 2433 2434 2435 2436
		get_task_struct(mt);
		task_rq_unlock(rq, &flags);
		wake_up_process(mt);
		put_task_struct(mt);
		wait_for_completion(&req.done);
2437

L
Linus Torvalds 已提交
2438 2439 2440 2441 2442 2443 2444
		return;
	}
out:
	task_rq_unlock(rq, &flags);
}

/*
N
Nick Piggin 已提交
2445 2446
 * sched_exec - execve() is a valuable balancing opportunity, because at
 * this point the task has the smallest effective memory and cache footprint.
L
Linus Torvalds 已提交
2447 2448 2449 2450
 */
void sched_exec(void)
{
	int new_cpu, this_cpu = get_cpu();
N
Nick Piggin 已提交
2451
	new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
L
Linus Torvalds 已提交
2452
	put_cpu();
N
Nick Piggin 已提交
2453 2454
	if (new_cpu != this_cpu)
		sched_migrate_task(current, new_cpu);
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460
}

/*
 * pull_task - move a task from a remote runqueue to the local runqueue.
 * Both runqueues must be locked.
 */
I
Ingo Molnar 已提交
2461 2462
static void pull_task(struct rq *src_rq, struct task_struct *p,
		      struct rq *this_rq, int this_cpu)
L
Linus Torvalds 已提交
2463
{
2464
	deactivate_task(src_rq, p, 0);
L
Linus Torvalds 已提交
2465
	set_task_cpu(p, this_cpu);
I
Ingo Molnar 已提交
2466
	activate_task(this_rq, p, 0);
L
Linus Torvalds 已提交
2467 2468 2469 2470
	/*
	 * Note that idle threads have a prio of MAX_PRIO, for this test
	 * to be always true for them.
	 */
I
Ingo Molnar 已提交
2471
	check_preempt_curr(this_rq, p);
L
Linus Torvalds 已提交
2472 2473 2474 2475 2476
}

/*
 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
 */
2477
static
2478
int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
I
Ingo Molnar 已提交
2479
		     struct sched_domain *sd, enum cpu_idle_type idle,
I
Ingo Molnar 已提交
2480
		     int *all_pinned)
L
Linus Torvalds 已提交
2481 2482 2483 2484 2485 2486 2487
{
	/*
	 * We do not migrate tasks that are:
	 * 1) running (obviously), or
	 * 2) cannot be migrated to this CPU due to cpus_allowed, or
	 * 3) are cache-hot on their current CPU.
	 */
2488 2489
	if (!cpu_isset(this_cpu, p->cpus_allowed)) {
		schedstat_inc(p, se.nr_failed_migrations_affine);
L
Linus Torvalds 已提交
2490
		return 0;
2491
	}
2492 2493
	*all_pinned = 0;

2494 2495
	if (task_running(rq, p)) {
		schedstat_inc(p, se.nr_failed_migrations_running);
2496
		return 0;
2497
	}
L
Linus Torvalds 已提交
2498

2499 2500 2501 2502 2503 2504
	/*
	 * Aggressive migration if:
	 * 1) task is cache cold, or
	 * 2) too many balance attempts have failed.
	 */

2505 2506
	if (!task_hot(p, rq->clock, sd) ||
			sd->nr_balance_failed > sd->cache_nice_tries) {
2507
#ifdef CONFIG_SCHEDSTATS
2508
		if (task_hot(p, rq->clock, sd)) {
2509
			schedstat_inc(sd, lb_hot_gained[idle]);
2510 2511
			schedstat_inc(p, se.nr_forced_migrations);
		}
2512 2513 2514 2515
#endif
		return 1;
	}

2516 2517
	if (task_hot(p, rq->clock, sd)) {
		schedstat_inc(p, se.nr_failed_migrations_hot);
2518
		return 0;
2519
	}
L
Linus Torvalds 已提交
2520 2521 2522
	return 1;
}

2523 2524 2525 2526 2527
static unsigned long
balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
	      unsigned long max_load_move, struct sched_domain *sd,
	      enum cpu_idle_type idle, int *all_pinned,
	      int *this_best_prio, struct rq_iterator *iterator)
L
Linus Torvalds 已提交
2528
{
2529
	int loops = 0, pulled = 0, pinned = 0, skip_for_load;
I
Ingo Molnar 已提交
2530 2531
	struct task_struct *p;
	long rem_load_move = max_load_move;
L
Linus Torvalds 已提交
2532

2533
	if (max_load_move == 0)
L
Linus Torvalds 已提交
2534 2535
		goto out;

2536 2537
	pinned = 1;

L
Linus Torvalds 已提交
2538
	/*
I
Ingo Molnar 已提交
2539
	 * Start the load-balancing iterator:
L
Linus Torvalds 已提交
2540
	 */
I
Ingo Molnar 已提交
2541 2542
	p = iterator->start(iterator->arg);
next:
2543
	if (!p || loops++ > sysctl_sched_nr_migrate)
L
Linus Torvalds 已提交
2544
		goto out;
2545
	/*
2546
	 * To help distribute high priority tasks across CPUs we don't
2547 2548 2549
	 * skip a task if it will be the highest priority task (i.e. smallest
	 * prio value) on its new queue regardless of its load weight
	 */
I
Ingo Molnar 已提交
2550 2551
	skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
							 SCHED_LOAD_SCALE_FUZZ;
2552
	if ((skip_for_load && p->prio >= *this_best_prio) ||
I
Ingo Molnar 已提交
2553 2554 2555
	    !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2556 2557
	}

I
Ingo Molnar 已提交
2558
	pull_task(busiest, p, this_rq, this_cpu);
L
Linus Torvalds 已提交
2559
	pulled++;
I
Ingo Molnar 已提交
2560
	rem_load_move -= p->se.load.weight;
L
Linus Torvalds 已提交
2561

2562
	/*
2563
	 * We only want to steal up to the prescribed amount of weighted load.
2564
	 */
2565
	if (rem_load_move > 0) {
2566 2567
		if (p->prio < *this_best_prio)
			*this_best_prio = p->prio;
I
Ingo Molnar 已提交
2568 2569
		p = iterator->next(iterator->arg);
		goto next;
L
Linus Torvalds 已提交
2570 2571 2572
	}
out:
	/*
2573
	 * Right now, this is one of only two places pull_task() is called,
L
Linus Torvalds 已提交
2574 2575 2576 2577
	 * so we can safely collect pull_task() stats here rather than
	 * inside pull_task().
	 */
	schedstat_add(sd, lb_gained[idle], pulled);
2578 2579 2580

	if (all_pinned)
		*all_pinned = pinned;
2581 2582

	return max_load_move - rem_load_move;
L
Linus Torvalds 已提交
2583 2584
}

I
Ingo Molnar 已提交
2585
/*
P
Peter Williams 已提交
2586 2587 2588
 * move_tasks tries to move up to max_load_move weighted load from busiest to
 * this_rq, as part of a balancing operation within domain "sd".
 * Returns 1 if successful and 0 otherwise.
I
Ingo Molnar 已提交
2589 2590 2591 2592
 *
 * Called with both runqueues locked.
 */
static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
P
Peter Williams 已提交
2593
		      unsigned long max_load_move,
I
Ingo Molnar 已提交
2594 2595 2596
		      struct sched_domain *sd, enum cpu_idle_type idle,
		      int *all_pinned)
{
2597
	const struct sched_class *class = sched_class_highest;
P
Peter Williams 已提交
2598
	unsigned long total_load_moved = 0;
2599
	int this_best_prio = this_rq->curr->prio;
I
Ingo Molnar 已提交
2600 2601

	do {
P
Peter Williams 已提交
2602 2603
		total_load_moved +=
			class->load_balance(this_rq, this_cpu, busiest,
2604
				max_load_move - total_load_moved,
2605
				sd, idle, all_pinned, &this_best_prio);
I
Ingo Molnar 已提交
2606
		class = class->next;
P
Peter Williams 已提交
2607
	} while (class && max_load_move > total_load_moved);
I
Ingo Molnar 已提交
2608

P
Peter Williams 已提交
2609 2610 2611
	return total_load_moved > 0;
}

2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
static int
iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
		   struct sched_domain *sd, enum cpu_idle_type idle,
		   struct rq_iterator *iterator)
{
	struct task_struct *p = iterator->start(iterator->arg);
	int pinned = 0;

	while (p) {
		if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
			pull_task(busiest, p, this_rq, this_cpu);
			/*
			 * Right now, this is only the second place pull_task()
			 * is called, so we can safely collect pull_task()
			 * stats here rather than inside pull_task().
			 */
			schedstat_inc(sd, lb_gained[idle]);

			return 1;
		}
		p = iterator->next(iterator->arg);
	}

	return 0;
}

P
Peter Williams 已提交
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
/*
 * move_one_task tries to move exactly one task from busiest to this_rq, as
 * part of active balancing operations within "domain".
 * Returns 1 if successful and 0 otherwise.
 *
 * Called with both runqueues locked.
 */
static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
			 struct sched_domain *sd, enum cpu_idle_type idle)
{
2648
	const struct sched_class *class;
P
Peter Williams 已提交
2649 2650

	for (class = sched_class_highest; class; class = class->next)
2651
		if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
P
Peter Williams 已提交
2652 2653 2654
			return 1;

	return 0;
I
Ingo Molnar 已提交
2655 2656
}

L
Linus Torvalds 已提交
2657 2658
/*
 * find_busiest_group finds and returns the busiest CPU group within the
2659 2660
 * domain. It calculates and returns the amount of weighted load which
 * should be moved to restore balance via the imbalance parameter.
L
Linus Torvalds 已提交
2661 2662 2663
 */
static struct sched_group *
find_busiest_group(struct sched_domain *sd, int this_cpu,
I
Ingo Molnar 已提交
2664 2665
		   unsigned long *imbalance, enum cpu_idle_type idle,
		   int *sd_idle, cpumask_t *cpus, int *balance)
L
Linus Torvalds 已提交
2666 2667 2668
{
	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
	unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2669
	unsigned long max_pull;
2670 2671
	unsigned long busiest_load_per_task, busiest_nr_running;
	unsigned long this_load_per_task, this_nr_running;
2672
	int load_idx, group_imb = 0;
2673 2674 2675 2676 2677 2678
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
	int power_savings_balance = 1;
	unsigned long leader_nr_running = 0, min_load_per_task = 0;
	unsigned long min_nr_running = ULONG_MAX;
	struct sched_group *group_min = NULL, *group_leader = NULL;
#endif
L
Linus Torvalds 已提交
2679 2680

	max_load = this_load = total_load = total_pwr = 0;
2681 2682
	busiest_load_per_task = busiest_nr_running = 0;
	this_load_per_task = this_nr_running = 0;
I
Ingo Molnar 已提交
2683
	if (idle == CPU_NOT_IDLE)
N
Nick Piggin 已提交
2684
		load_idx = sd->busy_idx;
I
Ingo Molnar 已提交
2685
	else if (idle == CPU_NEWLY_IDLE)
N
Nick Piggin 已提交
2686 2687 2688
		load_idx = sd->newidle_idx;
	else
		load_idx = sd->idle_idx;
L
Linus Torvalds 已提交
2689 2690

	do {
2691
		unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
L
Linus Torvalds 已提交
2692 2693
		int local_group;
		int i;
2694
		int __group_imb = 0;
2695
		unsigned int balance_cpu = -1, first_idle_cpu = 0;
2696
		unsigned long sum_nr_running, sum_weighted_load;
L
Linus Torvalds 已提交
2697 2698 2699

		local_group = cpu_isset(this_cpu, group->cpumask);

2700 2701 2702
		if (local_group)
			balance_cpu = first_cpu(group->cpumask);

L
Linus Torvalds 已提交
2703
		/* Tally up the load of all CPUs in the group */
2704
		sum_weighted_load = sum_nr_running = avg_load = 0;
2705 2706
		max_cpu_load = 0;
		min_cpu_load = ~0UL;
L
Linus Torvalds 已提交
2707 2708

		for_each_cpu_mask(i, group->cpumask) {
2709 2710 2711 2712 2713 2714
			struct rq *rq;

			if (!cpu_isset(i, *cpus))
				continue;

			rq = cpu_rq(i);
2715

2716
			if (*sd_idle && rq->nr_running)
N
Nick Piggin 已提交
2717 2718
				*sd_idle = 0;

L
Linus Torvalds 已提交
2719
			/* Bias balancing toward cpus of our domain */
2720 2721 2722 2723 2724 2725
			if (local_group) {
				if (idle_cpu(i) && !first_idle_cpu) {
					first_idle_cpu = 1;
					balance_cpu = i;
				}

N
Nick Piggin 已提交
2726
				load = target_load(i, load_idx);
2727
			} else {
N
Nick Piggin 已提交
2728
				load = source_load(i, load_idx);
2729 2730 2731 2732 2733
				if (load > max_cpu_load)
					max_cpu_load = load;
				if (min_cpu_load > load)
					min_cpu_load = load;
			}
L
Linus Torvalds 已提交
2734 2735

			avg_load += load;
2736
			sum_nr_running += rq->nr_running;
I
Ingo Molnar 已提交
2737
			sum_weighted_load += weighted_cpuload(i);
L
Linus Torvalds 已提交
2738 2739
		}

2740 2741 2742
		/*
		 * First idle cpu or the first cpu(busiest) in this sched group
		 * is eligible for doing load balancing at this and above
2743 2744
		 * domains. In the newly idle case, we will allow all the cpu's
		 * to do the newly idle load balance.
2745
		 */
2746 2747
		if (idle != CPU_NEWLY_IDLE && local_group &&
		    balance_cpu != this_cpu && balance) {
2748 2749 2750 2751
			*balance = 0;
			goto ret;
		}

L
Linus Torvalds 已提交
2752
		total_load += avg_load;
2753
		total_pwr += group->__cpu_power;
L
Linus Torvalds 已提交
2754 2755

		/* Adjust by relative CPU power of the group */
2756 2757
		avg_load = sg_div_cpu_power(group,
				avg_load * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2758

2759 2760 2761
		if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
			__group_imb = 1;

2762
		group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2763

L
Linus Torvalds 已提交
2764 2765 2766
		if (local_group) {
			this_load = avg_load;
			this = group;
2767 2768 2769
			this_nr_running = sum_nr_running;
			this_load_per_task = sum_weighted_load;
		} else if (avg_load > max_load &&
2770
			   (sum_nr_running > group_capacity || __group_imb)) {
L
Linus Torvalds 已提交
2771 2772
			max_load = avg_load;
			busiest = group;
2773 2774
			busiest_nr_running = sum_nr_running;
			busiest_load_per_task = sum_weighted_load;
2775
			group_imb = __group_imb;
L
Linus Torvalds 已提交
2776
		}
2777 2778 2779 2780 2781 2782

#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
		/*
		 * Busy processors will not participate in power savings
		 * balance.
		 */
I
Ingo Molnar 已提交
2783 2784 2785
		if (idle == CPU_NOT_IDLE ||
				!(sd->flags & SD_POWERSAVINGS_BALANCE))
			goto group_next;
2786 2787 2788 2789 2790 2791 2792 2793 2794

		/*
		 * If the local group is idle or completely loaded
		 * no need to do power savings balance at this domain
		 */
		if (local_group && (this_nr_running >= group_capacity ||
				    !this_nr_running))
			power_savings_balance = 0;

I
Ingo Molnar 已提交
2795
		/*
2796 2797
		 * If a group is already running at full capacity or idle,
		 * don't include that group in power savings calculations
I
Ingo Molnar 已提交
2798 2799
		 */
		if (!power_savings_balance || sum_nr_running >= group_capacity
2800
		    || !sum_nr_running)
I
Ingo Molnar 已提交
2801
			goto group_next;
2802

I
Ingo Molnar 已提交
2803
		/*
2804
		 * Calculate the group which has the least non-idle load.
I
Ingo Molnar 已提交
2805 2806 2807 2808 2809
		 * This is the group from where we need to pick up the load
		 * for saving power
		 */
		if ((sum_nr_running < min_nr_running) ||
		    (sum_nr_running == min_nr_running &&
2810 2811
		     first_cpu(group->cpumask) <
		     first_cpu(group_min->cpumask))) {
I
Ingo Molnar 已提交
2812 2813
			group_min = group;
			min_nr_running = sum_nr_running;
2814 2815
			min_load_per_task = sum_weighted_load /
						sum_nr_running;
I
Ingo Molnar 已提交
2816
		}
2817

I
Ingo Molnar 已提交
2818
		/*
2819
		 * Calculate the group which is almost near its
I
Ingo Molnar 已提交
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
		 * capacity but still has some space to pick up some load
		 * from other group and save more power
		 */
		if (sum_nr_running <= group_capacity - 1) {
			if (sum_nr_running > leader_nr_running ||
			    (sum_nr_running == leader_nr_running &&
			     first_cpu(group->cpumask) >
			      first_cpu(group_leader->cpumask))) {
				group_leader = group;
				leader_nr_running = sum_nr_running;
			}
2831
		}
2832 2833
group_next:
#endif
L
Linus Torvalds 已提交
2834 2835 2836
		group = group->next;
	} while (group != sd->groups);

2837
	if (!busiest || this_load >= max_load || busiest_nr_running == 0)
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844 2845
		goto out_balanced;

	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;

	if (this_load >= avg_load ||
			100*max_load <= sd->imbalance_pct*this_load)
		goto out_balanced;

2846
	busiest_load_per_task /= busiest_nr_running;
2847 2848 2849
	if (group_imb)
		busiest_load_per_task = min(busiest_load_per_task, avg_load);

L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * We're trying to get all the cpus to the average_load, so we don't
	 * want to push ourselves above the average load, nor do we wish to
	 * reduce the max loaded cpu below the average load, as either of these
	 * actions would just result in more rebalancing later, and ping-pong
	 * tasks around. Thus we look for the minimum possible imbalance.
	 * Negative imbalances (*we* are more loaded than anyone else) will
	 * be counted as no imbalance for these purposes -- we can't fix that
I
Ingo Molnar 已提交
2858
	 * by pulling tasks to us. Be careful of negative numbers as they'll
L
Linus Torvalds 已提交
2859 2860
	 * appear as very large values with unsigned longs.
	 */
2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
	if (max_load <= busiest_load_per_task)
		goto out_balanced;

	/*
	 * In the presence of smp nice balancing, certain scenarios can have
	 * max load less than avg load(as we skip the groups at or below
	 * its cpu_power, while calculating max_load..)
	 */
	if (max_load < avg_load) {
		*imbalance = 0;
		goto small_imbalance;
	}
2873 2874

	/* Don't want to pull so many tasks that a group would go idle */
2875
	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2876

L
Linus Torvalds 已提交
2877
	/* How much load to actually move to equalise the imbalance */
2878 2879
	*imbalance = min(max_pull * busiest->__cpu_power,
				(avg_load - this_load) * this->__cpu_power)
L
Linus Torvalds 已提交
2880 2881
			/ SCHED_LOAD_SCALE;

2882 2883 2884 2885 2886 2887
	/*
	 * if *imbalance is less than the average load per runnable task
	 * there is no gaurantee that any tasks will be moved so we'll have
	 * a think about bumping its value to force at least one task to be
	 * moved
	 */
2888
	if (*imbalance < busiest_load_per_task) {
2889
		unsigned long tmp, pwr_now, pwr_move;
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		unsigned int imbn;

small_imbalance:
		pwr_move = pwr_now = 0;
		imbn = 2;
		if (this_nr_running) {
			this_load_per_task /= this_nr_running;
			if (busiest_load_per_task > this_load_per_task)
				imbn = 1;
		} else
			this_load_per_task = SCHED_LOAD_SCALE;
L
Linus Torvalds 已提交
2901

I
Ingo Molnar 已提交
2902 2903
		if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
					busiest_load_per_task * imbn) {
2904
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911 2912 2913
			return busiest;
		}

		/*
		 * OK, we don't have enough imbalance to justify moving tasks,
		 * however we may be able to increase total CPU power used by
		 * moving them.
		 */

2914 2915 2916 2917
		pwr_now += busiest->__cpu_power *
				min(busiest_load_per_task, max_load);
		pwr_now += this->__cpu_power *
				min(this_load_per_task, this_load);
L
Linus Torvalds 已提交
2918 2919 2920
		pwr_now /= SCHED_LOAD_SCALE;

		/* Amount of load we'd subtract */
2921 2922
		tmp = sg_div_cpu_power(busiest,
				busiest_load_per_task * SCHED_LOAD_SCALE);
L
Linus Torvalds 已提交
2923
		if (max_load > tmp)
2924
			pwr_move += busiest->__cpu_power *
2925
				min(busiest_load_per_task, max_load - tmp);
L
Linus Torvalds 已提交
2926 2927

		/* Amount of load we'd add */
2928
		if (max_load * busiest->__cpu_power <
2929
				busiest_load_per_task * SCHED_LOAD_SCALE)
2930 2931
			tmp = sg_div_cpu_power(this,
					max_load * busiest->__cpu_power);
L
Linus Torvalds 已提交
2932
		else
2933 2934 2935 2936
			tmp = sg_div_cpu_power(this,
				busiest_load_per_task * SCHED_LOAD_SCALE);
		pwr_move += this->__cpu_power *
				min(this_load_per_task, this_load + tmp);
L
Linus Torvalds 已提交
2937 2938 2939
		pwr_move /= SCHED_LOAD_SCALE;

		/* Move if we gain throughput */
2940 2941
		if (pwr_move > pwr_now)
			*imbalance = busiest_load_per_task;
L
Linus Torvalds 已提交
2942 2943 2944 2945 2946
	}

	return busiest;

out_balanced:
2947
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
2948
	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2949
		goto ret;
L
Linus Torvalds 已提交
2950

2951 2952 2953 2954 2955
	if (this == group_leader && group_leader != group_min) {
		*imbalance = min_load_per_task;
		return group_min;
	}
#endif
2956
ret:
L
Linus Torvalds 已提交
2957 2958 2959 2960 2961 2962 2963
	*imbalance = 0;
	return NULL;
}

/*
 * find_busiest_queue - find the busiest runqueue among the cpus in group.
 */
2964
static struct rq *
I
Ingo Molnar 已提交
2965
find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2966
		   unsigned long imbalance, cpumask_t *cpus)
L
Linus Torvalds 已提交
2967
{
2968
	struct rq *busiest = NULL, *rq;
2969
	unsigned long max_load = 0;
L
Linus Torvalds 已提交
2970 2971 2972
	int i;

	for_each_cpu_mask(i, group->cpumask) {
I
Ingo Molnar 已提交
2973
		unsigned long wl;
2974 2975 2976 2977

		if (!cpu_isset(i, *cpus))
			continue;

2978
		rq = cpu_rq(i);
I
Ingo Molnar 已提交
2979
		wl = weighted_cpuload(i);
2980

I
Ingo Molnar 已提交
2981
		if (rq->nr_running == 1 && wl > imbalance)
2982
			continue;
L
Linus Torvalds 已提交
2983

I
Ingo Molnar 已提交
2984 2985
		if (wl > max_load) {
			max_load = wl;
2986
			busiest = rq;
L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992
		}
	}

	return busiest;
}

2993 2994 2995 2996 2997 2998
/*
 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
 * so long as it is large enough.
 */
#define MAX_PINNED_INTERVAL	512

L
Linus Torvalds 已提交
2999 3000 3001 3002
/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 */
3003
static int load_balance(int this_cpu, struct rq *this_rq,
I
Ingo Molnar 已提交
3004
			struct sched_domain *sd, enum cpu_idle_type idle,
3005
			int *balance)
L
Linus Torvalds 已提交
3006
{
P
Peter Williams 已提交
3007
	int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
L
Linus Torvalds 已提交
3008 3009
	struct sched_group *group;
	unsigned long imbalance;
3010
	struct rq *busiest;
3011
	cpumask_t cpus = CPU_MASK_ALL;
3012
	unsigned long flags;
N
Nick Piggin 已提交
3013

3014 3015 3016
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
I
Ingo Molnar 已提交
3017
	 * let the state of idle sibling percolate up as CPU_IDLE, instead of
I
Ingo Molnar 已提交
3018
	 * portraying it as CPU_NOT_IDLE.
3019
	 */
I
Ingo Molnar 已提交
3020
	if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3021
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3022
		sd_idle = 1;
L
Linus Torvalds 已提交
3023

3024
	schedstat_inc(sd, lb_count[idle]);
L
Linus Torvalds 已提交
3025

3026 3027
redo:
	group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3028 3029
				   &cpus, balance);

3030
	if (*balance == 0)
3031 3032
		goto out_balanced;

L
Linus Torvalds 已提交
3033 3034 3035 3036 3037
	if (!group) {
		schedstat_inc(sd, lb_nobusyg[idle]);
		goto out_balanced;
	}

3038
	busiest = find_busiest_queue(group, idle, imbalance, &cpus);
L
Linus Torvalds 已提交
3039 3040 3041 3042 3043
	if (!busiest) {
		schedstat_inc(sd, lb_nobusyq[idle]);
		goto out_balanced;
	}

N
Nick Piggin 已提交
3044
	BUG_ON(busiest == this_rq);
L
Linus Torvalds 已提交
3045 3046 3047

	schedstat_add(sd, lb_imbalance[idle], imbalance);

P
Peter Williams 已提交
3048
	ld_moved = 0;
L
Linus Torvalds 已提交
3049 3050 3051 3052
	if (busiest->nr_running > 1) {
		/*
		 * Attempt to move tasks. If find_busiest_group has found
		 * an imbalance but busiest->nr_running <= 1, the group is
P
Peter Williams 已提交
3053
		 * still unbalanced. ld_moved simply stays zero, so it is
L
Linus Torvalds 已提交
3054 3055
		 * correctly treated as an imbalance.
		 */
3056
		local_irq_save(flags);
N
Nick Piggin 已提交
3057
		double_rq_lock(this_rq, busiest);
P
Peter Williams 已提交
3058
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3059
				      imbalance, sd, idle, &all_pinned);
N
Nick Piggin 已提交
3060
		double_rq_unlock(this_rq, busiest);
3061
		local_irq_restore(flags);
3062

3063 3064 3065
		/*
		 * some other cpu did the load balance for us.
		 */
P
Peter Williams 已提交
3066
		if (ld_moved && this_cpu != smp_processor_id())
3067 3068
			resched_cpu(this_cpu);

3069
		/* All tasks on this runqueue were pinned by CPU affinity */
3070 3071 3072 3073
		if (unlikely(all_pinned)) {
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
3074
			goto out_balanced;
3075
		}
L
Linus Torvalds 已提交
3076
	}
3077

P
Peter Williams 已提交
3078
	if (!ld_moved) {
L
Linus Torvalds 已提交
3079 3080 3081 3082 3083
		schedstat_inc(sd, lb_failed[idle]);
		sd->nr_balance_failed++;

		if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {

3084
			spin_lock_irqsave(&busiest->lock, flags);
3085 3086 3087 3088 3089

			/* don't kick the migration_thread, if the curr
			 * task on busiest cpu can't be moved to this_cpu
			 */
			if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3090
				spin_unlock_irqrestore(&busiest->lock, flags);
3091 3092 3093 3094
				all_pinned = 1;
				goto out_one_pinned;
			}

L
Linus Torvalds 已提交
3095 3096 3097
			if (!busiest->active_balance) {
				busiest->active_balance = 1;
				busiest->push_cpu = this_cpu;
3098
				active_balance = 1;
L
Linus Torvalds 已提交
3099
			}
3100
			spin_unlock_irqrestore(&busiest->lock, flags);
3101
			if (active_balance)
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107
				wake_up_process(busiest->migration_thread);

			/*
			 * We've kicked active balancing, reset the failure
			 * counter.
			 */
3108
			sd->nr_balance_failed = sd->cache_nice_tries+1;
L
Linus Torvalds 已提交
3109
		}
3110
	} else
L
Linus Torvalds 已提交
3111 3112
		sd->nr_balance_failed = 0;

3113
	if (likely(!active_balance)) {
L
Linus Torvalds 已提交
3114 3115
		/* We were unbalanced, so reset the balancing interval */
		sd->balance_interval = sd->min_interval;
3116 3117 3118 3119 3120 3121 3122 3123 3124
	} else {
		/*
		 * If we've begun active balancing, start to back off. This
		 * case may not be covered by the all_pinned logic if there
		 * is only 1 task on the busy runqueue (because we don't call
		 * move_tasks).
		 */
		if (sd->balance_interval < sd->max_interval)
			sd->balance_interval *= 2;
L
Linus Torvalds 已提交
3125 3126
	}

P
Peter Williams 已提交
3127
	if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3128
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3129
		return -1;
P
Peter Williams 已提交
3130
	return ld_moved;
L
Linus Torvalds 已提交
3131 3132 3133 3134

out_balanced:
	schedstat_inc(sd, lb_balanced[idle]);

3135
	sd->nr_balance_failed = 0;
3136 3137

out_one_pinned:
L
Linus Torvalds 已提交
3138
	/* tune up the balancing interval */
3139 3140
	if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
			(sd->balance_interval < sd->max_interval))
L
Linus Torvalds 已提交
3141 3142
		sd->balance_interval *= 2;

3143
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3144
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3145
		return -1;
L
Linus Torvalds 已提交
3146 3147 3148 3149 3150 3151 3152
	return 0;
}

/*
 * Check this_cpu to ensure it is balanced within domain. Attempt to move
 * tasks if there is an imbalance.
 *
I
Ingo Molnar 已提交
3153
 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
L
Linus Torvalds 已提交
3154 3155
 * this_rq is locked.
 */
3156
static int
3157
load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
L
Linus Torvalds 已提交
3158 3159
{
	struct sched_group *group;
3160
	struct rq *busiest = NULL;
L
Linus Torvalds 已提交
3161
	unsigned long imbalance;
P
Peter Williams 已提交
3162
	int ld_moved = 0;
N
Nick Piggin 已提交
3163
	int sd_idle = 0;
3164
	int all_pinned = 0;
3165
	cpumask_t cpus = CPU_MASK_ALL;
N
Nick Piggin 已提交
3166

3167 3168 3169 3170
	/*
	 * When power savings policy is enabled for the parent domain, idle
	 * sibling can pick up load irrespective of busy siblings. In this case,
	 * let the state of idle sibling percolate up as IDLE, instead of
I
Ingo Molnar 已提交
3171
	 * portraying it as CPU_NOT_IDLE.
3172 3173 3174
	 */
	if (sd->flags & SD_SHARE_CPUPOWER &&
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3175
		sd_idle = 1;
L
Linus Torvalds 已提交
3176

3177
	schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3178
redo:
I
Ingo Molnar 已提交
3179
	group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3180
				   &sd_idle, &cpus, NULL);
L
Linus Torvalds 已提交
3181
	if (!group) {
I
Ingo Molnar 已提交
3182
		schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3183
		goto out_balanced;
L
Linus Torvalds 已提交
3184 3185
	}

I
Ingo Molnar 已提交
3186
	busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3187
				&cpus);
N
Nick Piggin 已提交
3188
	if (!busiest) {
I
Ingo Molnar 已提交
3189
		schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3190
		goto out_balanced;
L
Linus Torvalds 已提交
3191 3192
	}

N
Nick Piggin 已提交
3193 3194
	BUG_ON(busiest == this_rq);

I
Ingo Molnar 已提交
3195
	schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3196

P
Peter Williams 已提交
3197
	ld_moved = 0;
3198 3199 3200
	if (busiest->nr_running > 1) {
		/* Attempt to move tasks */
		double_lock_balance(this_rq, busiest);
3201 3202
		/* this_rq->clock is already updated */
		update_rq_clock(busiest);
P
Peter Williams 已提交
3203
		ld_moved = move_tasks(this_rq, this_cpu, busiest,
3204 3205
					imbalance, sd, CPU_NEWLY_IDLE,
					&all_pinned);
3206
		spin_unlock(&busiest->lock);
3207

3208
		if (unlikely(all_pinned)) {
3209 3210 3211 3212
			cpu_clear(cpu_of(busiest), cpus);
			if (!cpus_empty(cpus))
				goto redo;
		}
3213 3214
	}

P
Peter Williams 已提交
3215
	if (!ld_moved) {
I
Ingo Molnar 已提交
3216
		schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3217 3218
		if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
		    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3219 3220
			return -1;
	} else
3221
		sd->nr_balance_failed = 0;
L
Linus Torvalds 已提交
3222

P
Peter Williams 已提交
3223
	return ld_moved;
3224 3225

out_balanced:
I
Ingo Molnar 已提交
3226
	schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3227
	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3228
	    !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
N
Nick Piggin 已提交
3229
		return -1;
3230
	sd->nr_balance_failed = 0;
3231

3232
	return 0;
L
Linus Torvalds 已提交
3233 3234 3235 3236 3237 3238
}

/*
 * idle_balance is called by schedule() if this_cpu is about to become
 * idle. Attempts to pull tasks from other CPUs.
 */
3239
static void idle_balance(int this_cpu, struct rq *this_rq)
L
Linus Torvalds 已提交
3240 3241
{
	struct sched_domain *sd;
I
Ingo Molnar 已提交
3242 3243
	int pulled_task = -1;
	unsigned long next_balance = jiffies + HZ;
L
Linus Torvalds 已提交
3244 3245

	for_each_domain(this_cpu, sd) {
3246 3247 3248 3249 3250 3251
		unsigned long interval;

		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		if (sd->flags & SD_BALANCE_NEWIDLE)
3252
			/* If we've pulled tasks over stop searching: */
3253
			pulled_task = load_balance_newidle(this_cpu,
3254 3255 3256 3257 3258 3259 3260
								this_rq, sd);

		interval = msecs_to_jiffies(sd->balance_interval);
		if (time_after(next_balance, sd->last_balance + interval))
			next_balance = sd->last_balance + interval;
		if (pulled_task)
			break;
L
Linus Torvalds 已提交
3261
	}
I
Ingo Molnar 已提交
3262
	if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3263 3264 3265 3266 3267
		/*
		 * We are going idle. next_balance may be set based on
		 * a busy processor. So reset next_balance.
		 */
		this_rq->next_balance = next_balance;
I
Ingo Molnar 已提交
3268
	}
L
Linus Torvalds 已提交
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278
}

/*
 * active_load_balance is run by migration threads. It pushes running tasks
 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
 * running on each physical CPU where possible, and avoids physical /
 * logical imbalances.
 *
 * Called with busiest_rq locked.
 */
3279
static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
L
Linus Torvalds 已提交
3280
{
3281
	int target_cpu = busiest_rq->push_cpu;
3282 3283
	struct sched_domain *sd;
	struct rq *target_rq;
3284

3285
	/* Is there any task to move? */
3286 3287 3288 3289
	if (busiest_rq->nr_running <= 1)
		return;

	target_rq = cpu_rq(target_cpu);
L
Linus Torvalds 已提交
3290 3291

	/*
3292
	 * This condition is "impossible", if it occurs
I
Ingo Molnar 已提交
3293
	 * we need to fix it. Originally reported by
3294
	 * Bjorn Helgaas on a 128-cpu setup.
L
Linus Torvalds 已提交
3295
	 */
3296
	BUG_ON(busiest_rq == target_rq);
L
Linus Torvalds 已提交
3297

3298 3299
	/* move a task from busiest_rq to target_rq */
	double_lock_balance(busiest_rq, target_rq);
3300 3301
	update_rq_clock(busiest_rq);
	update_rq_clock(target_rq);
3302 3303

	/* Search for an sd spanning us and the target CPU. */
3304
	for_each_domain(target_cpu, sd) {
3305
		if ((sd->flags & SD_LOAD_BALANCE) &&
3306
		    cpu_isset(busiest_cpu, sd->span))
3307
				break;
3308
	}
3309

3310
	if (likely(sd)) {
3311
		schedstat_inc(sd, alb_count);
3312

P
Peter Williams 已提交
3313 3314
		if (move_one_task(target_rq, target_cpu, busiest_rq,
				  sd, CPU_IDLE))
3315 3316 3317 3318
			schedstat_inc(sd, alb_pushed);
		else
			schedstat_inc(sd, alb_failed);
	}
3319
	spin_unlock(&target_rq->lock);
L
Linus Torvalds 已提交
3320 3321
}

3322 3323 3324
#ifdef CONFIG_NO_HZ
static struct {
	atomic_t load_balancer;
I
Ingo Molnar 已提交
3325
	cpumask_t cpu_mask;
3326 3327 3328 3329 3330
} nohz ____cacheline_aligned = {
	.load_balancer = ATOMIC_INIT(-1),
	.cpu_mask = CPU_MASK_NONE,
};

3331
/*
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
 * This routine will try to nominate the ilb (idle load balancing)
 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
 * load balancing on behalf of all those cpus. If all the cpus in the system
 * go into this tickless mode, then there will be no ilb owner (as there is
 * no need for one) and all the cpus will sleep till the next wakeup event
 * arrives...
 *
 * For the ilb owner, tick is not stopped. And this tick will be used
 * for idle load balancing. ilb owner will still be part of
 * nohz.cpu_mask..
3342
 *
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
 * While stopping the tick, this cpu will become the ilb owner if there
 * is no other owner. And will be the owner till that cpu becomes busy
 * or if all cpus in the system stop their ticks at which point
 * there is no need for ilb owner.
 *
 * When the ilb owner becomes busy, it nominates another owner, during the
 * next busy scheduler_tick()
 */
int select_nohz_load_balancer(int stop_tick)
{
	int cpu = smp_processor_id();

	if (stop_tick) {
		cpu_set(cpu, nohz.cpu_mask);
		cpu_rq(cpu)->in_nohz_recently = 1;

		/*
		 * If we are going offline and still the leader, give up!
		 */
		if (cpu_is_offline(cpu) &&
		    atomic_read(&nohz.load_balancer) == cpu) {
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
			return 0;
		}

		/* time for ilb owner also to sleep */
		if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
			if (atomic_read(&nohz.load_balancer) == cpu)
				atomic_set(&nohz.load_balancer, -1);
			return 0;
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/* make me the ilb owner */
			if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
				return 1;
		} else if (atomic_read(&nohz.load_balancer) == cpu)
			return 1;
	} else {
		if (!cpu_isset(cpu, nohz.cpu_mask))
			return 0;

		cpu_clear(cpu, nohz.cpu_mask);

		if (atomic_read(&nohz.load_balancer) == cpu)
			if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
				BUG();
	}
	return 0;
}
#endif

static DEFINE_SPINLOCK(balancing);

/*
3399 3400 3401 3402 3403
 * It checks each scheduling domain to see if it is due to be balanced,
 * and initiates a balancing operation if so.
 *
 * Balancing parameters are set up in arch_init_sched_domains.
 */
A
Alexey Dobriyan 已提交
3404
static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3405
{
3406 3407
	int balance = 1;
	struct rq *rq = cpu_rq(cpu);
3408 3409
	unsigned long interval;
	struct sched_domain *sd;
3410
	/* Earliest time when we have to do rebalance again */
3411
	unsigned long next_balance = jiffies + 60*HZ;
3412
	int update_next_balance = 0;
L
Linus Torvalds 已提交
3413

3414
	for_each_domain(cpu, sd) {
L
Linus Torvalds 已提交
3415 3416 3417 3418
		if (!(sd->flags & SD_LOAD_BALANCE))
			continue;

		interval = sd->balance_interval;
I
Ingo Molnar 已提交
3419
		if (idle != CPU_IDLE)
L
Linus Torvalds 已提交
3420 3421 3422 3423 3424 3425
			interval *= sd->busy_factor;

		/* scale ms to jiffies */
		interval = msecs_to_jiffies(interval);
		if (unlikely(!interval))
			interval = 1;
I
Ingo Molnar 已提交
3426 3427 3428
		if (interval > HZ*NR_CPUS/10)
			interval = HZ*NR_CPUS/10;

L
Linus Torvalds 已提交
3429

3430 3431 3432 3433 3434
		if (sd->flags & SD_SERIALIZE) {
			if (!spin_trylock(&balancing))
				goto out;
		}

3435
		if (time_after_eq(jiffies, sd->last_balance + interval)) {
3436
			if (load_balance(cpu, rq, sd, idle, &balance)) {
3437 3438
				/*
				 * We've pulled tasks over so either we're no
N
Nick Piggin 已提交
3439 3440 3441
				 * longer idle, or one of our SMT siblings is
				 * not idle.
				 */
I
Ingo Molnar 已提交
3442
				idle = CPU_NOT_IDLE;
L
Linus Torvalds 已提交
3443
			}
3444
			sd->last_balance = jiffies;
L
Linus Torvalds 已提交
3445
		}
3446 3447 3448
		if (sd->flags & SD_SERIALIZE)
			spin_unlock(&balancing);
out:
3449
		if (time_after(next_balance, sd->last_balance + interval)) {
3450
			next_balance = sd->last_balance + interval;
3451 3452
			update_next_balance = 1;
		}
3453 3454 3455 3456 3457 3458 3459 3460

		/*
		 * Stop the load balance at this level. There is another
		 * CPU in our sched group which is doing load balancing more
		 * actively.
		 */
		if (!balance)
			break;
L
Linus Torvalds 已提交
3461
	}
3462 3463 3464 3465 3466 3467 3468 3469

	/*
	 * next_balance will be updated only when there is a need.
	 * When the cpu is attached to null domain for ex, it will not be
	 * updated.
	 */
	if (likely(update_next_balance))
		rq->next_balance = next_balance;
3470 3471 3472 3473 3474 3475 3476 3477 3478
}

/*
 * run_rebalance_domains is triggered when needed from the scheduler tick.
 * In CONFIG_NO_HZ case, the idle load balance owner will do the
 * rebalancing for all the cpus for whom scheduler ticks are stopped.
 */
static void run_rebalance_domains(struct softirq_action *h)
{
I
Ingo Molnar 已提交
3479 3480 3481 3482
	int this_cpu = smp_processor_id();
	struct rq *this_rq = cpu_rq(this_cpu);
	enum cpu_idle_type idle = this_rq->idle_at_tick ?
						CPU_IDLE : CPU_NOT_IDLE;
3483

I
Ingo Molnar 已提交
3484
	rebalance_domains(this_cpu, idle);
3485 3486 3487 3488 3489 3490 3491

#ifdef CONFIG_NO_HZ
	/*
	 * If this cpu is the owner for idle load balancing, then do the
	 * balancing on behalf of the other idle cpus whose ticks are
	 * stopped.
	 */
I
Ingo Molnar 已提交
3492 3493
	if (this_rq->idle_at_tick &&
	    atomic_read(&nohz.load_balancer) == this_cpu) {
3494 3495 3496 3497
		cpumask_t cpus = nohz.cpu_mask;
		struct rq *rq;
		int balance_cpu;

I
Ingo Molnar 已提交
3498
		cpu_clear(this_cpu, cpus);
3499 3500 3501 3502 3503 3504 3505 3506 3507
		for_each_cpu_mask(balance_cpu, cpus) {
			/*
			 * If this cpu gets work to do, stop the load balancing
			 * work being done for other cpus. Next load
			 * balancing owner will pick it up.
			 */
			if (need_resched())
				break;

3508
			rebalance_domains(balance_cpu, CPU_IDLE);
3509 3510

			rq = cpu_rq(balance_cpu);
I
Ingo Molnar 已提交
3511 3512
			if (time_after(this_rq->next_balance, rq->next_balance))
				this_rq->next_balance = rq->next_balance;
3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
		}
	}
#endif
}

/*
 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
 *
 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
 * idle load balancing owner or decide to stop the periodic load balancing,
 * if the whole system is idle.
 */
I
Ingo Molnar 已提交
3525
static inline void trigger_load_balance(struct rq *rq, int cpu)
3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
{
#ifdef CONFIG_NO_HZ
	/*
	 * If we were in the nohz mode recently and busy at the current
	 * scheduler tick, then check if we need to nominate new idle
	 * load balancer.
	 */
	if (rq->in_nohz_recently && !rq->idle_at_tick) {
		rq->in_nohz_recently = 0;

		if (atomic_read(&nohz.load_balancer) == cpu) {
			cpu_clear(cpu, nohz.cpu_mask);
			atomic_set(&nohz.load_balancer, -1);
		}

		if (atomic_read(&nohz.load_balancer) == -1) {
			/*
			 * simple selection for now: Nominate the
			 * first cpu in the nohz list to be the next
			 * ilb owner.
			 *
			 * TBD: Traverse the sched domains and nominate
			 * the nearest cpu in the nohz.cpu_mask.
			 */
			int ilb = first_cpu(nohz.cpu_mask);

			if (ilb != NR_CPUS)
				resched_cpu(ilb);
		}
	}

	/*
	 * If this cpu is idle and doing idle load balancing for all the
	 * cpus with ticks stopped, is it time for that to stop?
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
	    cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
		resched_cpu(cpu);
		return;
	}

	/*
	 * If this cpu is idle and the idle load balancing is done by
	 * someone else, then no need raise the SCHED_SOFTIRQ
	 */
	if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
	    cpu_isset(cpu, nohz.cpu_mask))
		return;
#endif
	if (time_after_eq(jiffies, rq->next_balance))
		raise_softirq(SCHED_SOFTIRQ);
L
Linus Torvalds 已提交
3577
}
I
Ingo Molnar 已提交
3578 3579 3580

#else	/* CONFIG_SMP */

L
Linus Torvalds 已提交
3581 3582 3583
/*
 * on UP we do not need to balance between CPUs:
 */
3584
static inline void idle_balance(int cpu, struct rq *rq)
L
Linus Torvalds 已提交
3585 3586
{
}
I
Ingo Molnar 已提交
3587

L
Linus Torvalds 已提交
3588 3589 3590 3591 3592 3593 3594
#endif

DEFINE_PER_CPU(struct kernel_stat, kstat);

EXPORT_PER_CPU_SYMBOL(kstat);

/*
3595 3596
 * Return p->sum_exec_runtime plus any more ns on the sched_clock
 * that have not yet been banked in case the task is currently running.
L
Linus Torvalds 已提交
3597
 */
3598
unsigned long long task_sched_runtime(struct task_struct *p)
L
Linus Torvalds 已提交
3599 3600
{
	unsigned long flags;
3601 3602
	u64 ns, delta_exec;
	struct rq *rq;
3603

3604 3605
	rq = task_rq_lock(p, &flags);
	ns = p->se.sum_exec_runtime;
3606
	if (task_current(rq, p)) {
I
Ingo Molnar 已提交
3607 3608
		update_rq_clock(rq);
		delta_exec = rq->clock - p->se.exec_start;
3609 3610 3611 3612
		if ((s64)delta_exec > 0)
			ns += delta_exec;
	}
	task_rq_unlock(rq, &flags);
3613

L
Linus Torvalds 已提交
3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	return ns;
}

/*
 * Account user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time(struct task_struct *p, cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp;

	p->utime = cputime_add(p->utime, cputime);

	/* Add user time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (TASK_NICE(p) > 0)
		cpustat->nice = cputime64_add(cpustat->nice, tmp);
	else
		cpustat->user = cputime64_add(cpustat->user, tmp);
}

3637 3638 3639 3640 3641
/*
 * Account guest cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in virtual machine since the last update
 */
3642
static void account_guest_time(struct task_struct *p, cputime_t cputime)
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
{
	cputime64_t tmp;
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;

	tmp = cputime_to_cputime64(cputime);

	p->utime = cputime_add(p->utime, cputime);
	p->gtime = cputime_add(p->gtime, cputime);

	cpustat->user = cputime64_add(cpustat->user, tmp);
	cpustat->guest = cputime64_add(cpustat->guest, tmp);
}

3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
/*
 * Account scaled user cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @cputime: the cpu time spent in user space since the last update
 */
void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->utimescaled = cputime_add(p->utimescaled, cputime);
}

L
Linus Torvalds 已提交
3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
/*
 * Account system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time(struct task_struct *p, int hardirq_offset,
			 cputime_t cputime)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3676
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3677 3678
	cputime64_t tmp;

3679 3680
	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
		return account_guest_time(p, cputime);
3681

L
Linus Torvalds 已提交
3682 3683 3684 3685 3686 3687 3688 3689
	p->stime = cputime_add(p->stime, cputime);

	/* Add system time to cpustat. */
	tmp = cputime_to_cputime64(cputime);
	if (hardirq_count() - hardirq_offset)
		cpustat->irq = cputime64_add(cpustat->irq, tmp);
	else if (softirq_count())
		cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3690
	else if (p != rq->idle)
L
Linus Torvalds 已提交
3691
		cpustat->system = cputime64_add(cpustat->system, tmp);
3692
	else if (atomic_read(&rq->nr_iowait) > 0)
L
Linus Torvalds 已提交
3693 3694 3695 3696 3697 3698 3699
		cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
	else
		cpustat->idle = cputime64_add(cpustat->idle, tmp);
	/* Account for system time used */
	acct_update_integrals(p);
}

3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
/*
 * Account scaled system cpu time to a process.
 * @p: the process that the cpu time gets accounted to
 * @hardirq_offset: the offset to subtract from hardirq_count()
 * @cputime: the cpu time spent in kernel space since the last update
 */
void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
{
	p->stimescaled = cputime_add(p->stimescaled, cputime);
}

L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718 3719
/*
 * Account for involuntary wait time.
 * @p: the process from which the cpu time has been stolen
 * @steal: the cpu time spent in involuntary wait
 */
void account_steal_time(struct task_struct *p, cputime_t steal)
{
	struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
	cputime64_t tmp = cputime_to_cputime64(steal);
3720
	struct rq *rq = this_rq();
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726 3727

	if (p == rq->idle) {
		p->stime = cputime_add(p->stime, steal);
		if (atomic_read(&rq->nr_iowait) > 0)
			cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
		else
			cpustat->idle = cputime64_add(cpustat->idle, tmp);
3728
	} else
L
Linus Torvalds 已提交
3729 3730 3731
		cpustat->steal = cputime64_add(cpustat->steal, tmp);
}

3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
/*
 * This function gets called by the timer code, with HZ frequency.
 * We call it with interrupts disabled.
 *
 * It also gets called by the fork code, when changing the parent's
 * timeslices.
 */
void scheduler_tick(void)
{
	int cpu = smp_processor_id();
	struct rq *rq = cpu_rq(cpu);
I
Ingo Molnar 已提交
3743
	struct task_struct *curr = rq->curr;
3744
	u64 next_tick = rq->tick_timestamp + TICK_NSEC;
I
Ingo Molnar 已提交
3745 3746

	spin_lock(&rq->lock);
3747
	__update_rq_clock(rq);
3748 3749 3750
	/*
	 * Let rq->clock advance by at least TICK_NSEC:
	 */
3751
	if (unlikely(rq->clock < next_tick)) {
3752
		rq->clock = next_tick;
3753 3754
		rq->clock_underflows++;
	}
3755
	rq->tick_timestamp = rq->clock;
3756
	update_cpu_load(rq);
P
Peter Zijlstra 已提交
3757 3758
	curr->sched_class->task_tick(rq, curr, 0);
	update_sched_rt_period(rq);
I
Ingo Molnar 已提交
3759
	spin_unlock(&rq->lock);
3760

3761
#ifdef CONFIG_SMP
I
Ingo Molnar 已提交
3762 3763
	rq->idle_at_tick = idle_cpu(cpu);
	trigger_load_balance(rq, cpu);
3764
#endif
L
Linus Torvalds 已提交
3765 3766 3767 3768
}

#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)

3769
void add_preempt_count(int val)
L
Linus Torvalds 已提交
3770 3771 3772 3773
{
	/*
	 * Underflow?
	 */
3774 3775
	if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
		return;
L
Linus Torvalds 已提交
3776 3777 3778 3779
	preempt_count() += val;
	/*
	 * Spinlock count overflowing soon?
	 */
3780 3781
	DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
				PREEMPT_MASK - 10);
L
Linus Torvalds 已提交
3782 3783 3784
}
EXPORT_SYMBOL(add_preempt_count);

3785
void sub_preempt_count(int val)
L
Linus Torvalds 已提交
3786 3787 3788 3789
{
	/*
	 * Underflow?
	 */
3790 3791
	if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
		return;
L
Linus Torvalds 已提交
3792 3793 3794
	/*
	 * Is the spinlock portion underflowing?
	 */
3795 3796 3797 3798
	if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
			!(preempt_count() & PREEMPT_MASK)))
		return;

L
Linus Torvalds 已提交
3799 3800 3801 3802 3803 3804 3805
	preempt_count() -= val;
}
EXPORT_SYMBOL(sub_preempt_count);

#endif

/*
I
Ingo Molnar 已提交
3806
 * Print scheduling while atomic bug:
L
Linus Torvalds 已提交
3807
 */
I
Ingo Molnar 已提交
3808
static noinline void __schedule_bug(struct task_struct *prev)
L
Linus Torvalds 已提交
3809
{
3810 3811 3812 3813 3814
	struct pt_regs *regs = get_irq_regs();

	printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
		prev->comm, prev->pid, preempt_count());

I
Ingo Molnar 已提交
3815 3816 3817
	debug_show_held_locks(prev);
	if (irqs_disabled())
		print_irqtrace_events(prev);
3818 3819 3820 3821 3822

	if (regs)
		show_regs(regs);
	else
		dump_stack();
I
Ingo Molnar 已提交
3823
}
L
Linus Torvalds 已提交
3824

I
Ingo Molnar 已提交
3825 3826 3827 3828 3829
/*
 * Various schedule()-time debugging checks and statistics:
 */
static inline void schedule_debug(struct task_struct *prev)
{
L
Linus Torvalds 已提交
3830
	/*
I
Ingo Molnar 已提交
3831
	 * Test if we are atomic. Since do_exit() needs to call into
L
Linus Torvalds 已提交
3832 3833 3834
	 * schedule() atomically, we ignore that path for now.
	 * Otherwise, whine if we are scheduling when we should not be.
	 */
I
Ingo Molnar 已提交
3835 3836 3837
	if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
		__schedule_bug(prev);

L
Linus Torvalds 已提交
3838 3839
	profile_hit(SCHED_PROFILING, __builtin_return_address(0));

3840
	schedstat_inc(this_rq(), sched_count);
I
Ingo Molnar 已提交
3841 3842
#ifdef CONFIG_SCHEDSTATS
	if (unlikely(prev->lock_depth >= 0)) {
3843 3844
		schedstat_inc(this_rq(), bkl_count);
		schedstat_inc(prev, sched_info.bkl_count);
I
Ingo Molnar 已提交
3845 3846
	}
#endif
I
Ingo Molnar 已提交
3847 3848 3849 3850 3851 3852
}

/*
 * Pick up the highest-prio task:
 */
static inline struct task_struct *
3853
pick_next_task(struct rq *rq, struct task_struct *prev)
I
Ingo Molnar 已提交
3854
{
3855
	const struct sched_class *class;
I
Ingo Molnar 已提交
3856
	struct task_struct *p;
L
Linus Torvalds 已提交
3857 3858

	/*
I
Ingo Molnar 已提交
3859 3860
	 * Optimization: we know that if all tasks are in
	 * the fair class we can call that function directly:
L
Linus Torvalds 已提交
3861
	 */
I
Ingo Molnar 已提交
3862
	if (likely(rq->nr_running == rq->cfs.nr_running)) {
3863
		p = fair_sched_class.pick_next_task(rq);
I
Ingo Molnar 已提交
3864 3865
		if (likely(p))
			return p;
L
Linus Torvalds 已提交
3866 3867
	}

I
Ingo Molnar 已提交
3868 3869
	class = sched_class_highest;
	for ( ; ; ) {
3870
		p = class->pick_next_task(rq);
I
Ingo Molnar 已提交
3871 3872 3873 3874 3875 3876 3877 3878 3879
		if (p)
			return p;
		/*
		 * Will never be NULL as the idle class always
		 * returns a non-NULL p:
		 */
		class = class->next;
	}
}
L
Linus Torvalds 已提交
3880

I
Ingo Molnar 已提交
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
/*
 * schedule() is the main scheduler function.
 */
asmlinkage void __sched schedule(void)
{
	struct task_struct *prev, *next;
	long *switch_count;
	struct rq *rq;
	int cpu;

need_resched:
	preempt_disable();
	cpu = smp_processor_id();
	rq = cpu_rq(cpu);
	rcu_qsctr_inc(cpu);
	prev = rq->curr;
	switch_count = &prev->nivcsw;

	release_kernel_lock(prev);
need_resched_nonpreemptible:

	schedule_debug(prev);
L
Linus Torvalds 已提交
3903

P
Peter Zijlstra 已提交
3904 3905
	hrtick_clear(rq);

3906 3907 3908 3909
	/*
	 * Do the rq-clock update outside the rq lock:
	 */
	local_irq_disable();
I
Ingo Molnar 已提交
3910
	__update_rq_clock(rq);
3911 3912
	spin_lock(&rq->lock);
	clear_tsk_need_resched(prev);
L
Linus Torvalds 已提交
3913 3914 3915

	if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
		if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
I
Ingo Molnar 已提交
3916
				unlikely(signal_pending(prev)))) {
L
Linus Torvalds 已提交
3917
			prev->state = TASK_RUNNING;
I
Ingo Molnar 已提交
3918
		} else {
3919
			deactivate_task(rq, prev, 1);
L
Linus Torvalds 已提交
3920
		}
I
Ingo Molnar 已提交
3921
		switch_count = &prev->nvcsw;
L
Linus Torvalds 已提交
3922 3923
	}

3924 3925 3926 3927
#ifdef CONFIG_SMP
	if (prev->sched_class->pre_schedule)
		prev->sched_class->pre_schedule(rq, prev);
#endif
3928

I
Ingo Molnar 已提交
3929
	if (unlikely(!rq->nr_running))
L
Linus Torvalds 已提交
3930 3931
		idle_balance(cpu, rq);

3932
	prev->sched_class->put_prev_task(rq, prev);
3933
	next = pick_next_task(rq, prev);
L
Linus Torvalds 已提交
3934 3935

	sched_info_switch(prev, next);
I
Ingo Molnar 已提交
3936

L
Linus Torvalds 已提交
3937 3938 3939 3940 3941
	if (likely(prev != next)) {
		rq->nr_switches++;
		rq->curr = next;
		++*switch_count;

I
Ingo Molnar 已提交
3942
		context_switch(rq, prev, next); /* unlocks the rq */
P
Peter Zijlstra 已提交
3943 3944 3945 3946 3947 3948
		/*
		 * the context switch might have flipped the stack from under
		 * us, hence refresh the local variables.
		 */
		cpu = smp_processor_id();
		rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
3949 3950 3951
	} else
		spin_unlock_irq(&rq->lock);

P
Peter Zijlstra 已提交
3952 3953 3954
	hrtick_set(rq);

	if (unlikely(reacquire_kernel_lock(current) < 0))
L
Linus Torvalds 已提交
3955
		goto need_resched_nonpreemptible;
P
Peter Zijlstra 已提交
3956

L
Linus Torvalds 已提交
3957 3958 3959 3960 3961 3962 3963 3964
	preempt_enable_no_resched();
	if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
		goto need_resched;
}
EXPORT_SYMBOL(schedule);

#ifdef CONFIG_PREEMPT
/*
3965
 * this is the entry point to schedule() from in-kernel preemption
I
Ingo Molnar 已提交
3966
 * off of preempt_enable. Kernel preemptions off return from interrupt
L
Linus Torvalds 已提交
3967 3968 3969 3970 3971 3972 3973
 * occur there and call schedule directly.
 */
asmlinkage void __sched preempt_schedule(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
3974

L
Linus Torvalds 已提交
3975 3976
	/*
	 * If there is a non-zero preempt_count or interrupts are disabled,
I
Ingo Molnar 已提交
3977
	 * we do not want to preempt the current task. Just return..
L
Linus Torvalds 已提交
3978
	 */
N
Nick Piggin 已提交
3979
	if (likely(ti->preempt_count || irqs_disabled()))
L
Linus Torvalds 已提交
3980 3981
		return;

3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		schedule();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
3995

3996 3997 3998 3999 4000 4001
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4002 4003 4004 4005
}
EXPORT_SYMBOL(preempt_schedule);

/*
4006
 * this is the entry point to schedule() from kernel preemption
L
Linus Torvalds 已提交
4007 4008 4009 4010 4011 4012 4013 4014 4015
 * off of irq context.
 * Note, that this is called and return with irqs disabled. This will
 * protect us against recursive calling from irq.
 */
asmlinkage void __sched preempt_schedule_irq(void)
{
	struct thread_info *ti = current_thread_info();
	struct task_struct *task = current;
	int saved_lock_depth;
4016

4017
	/* Catch callers which need to be fixed */
L
Linus Torvalds 已提交
4018 4019
	BUG_ON(ti->preempt_count || !irqs_disabled());

4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
	do {
		add_preempt_count(PREEMPT_ACTIVE);

		/*
		 * We keep the big kernel semaphore locked, but we
		 * clear ->lock_depth so that schedule() doesnt
		 * auto-release the semaphore:
		 */
		saved_lock_depth = task->lock_depth;
		task->lock_depth = -1;
		local_irq_enable();
		schedule();
		local_irq_disable();
		task->lock_depth = saved_lock_depth;
		sub_preempt_count(PREEMPT_ACTIVE);
L
Linus Torvalds 已提交
4035

4036 4037 4038 4039 4040 4041
		/*
		 * Check again in case we missed a preemption opportunity
		 * between schedule and now.
		 */
		barrier();
	} while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
L
Linus Torvalds 已提交
4042 4043 4044 4045
}

#endif /* CONFIG_PREEMPT */

I
Ingo Molnar 已提交
4046 4047
int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
			  void *key)
L
Linus Torvalds 已提交
4048
{
4049
	return try_to_wake_up(curr->private, mode, sync);
L
Linus Torvalds 已提交
4050 4051 4052 4053
}
EXPORT_SYMBOL(default_wake_function);

/*
I
Ingo Molnar 已提交
4054 4055
 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
L
Linus Torvalds 已提交
4056 4057 4058
 * number) then we wake all the non-exclusive tasks and one exclusive task.
 *
 * There are circumstances in which we can try to wake a task which has already
I
Ingo Molnar 已提交
4059
 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
L
Linus Torvalds 已提交
4060 4061 4062 4063 4064
 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 */
static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
			     int nr_exclusive, int sync, void *key)
{
4065
	wait_queue_t *curr, *next;
L
Linus Torvalds 已提交
4066

4067
	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4068 4069
		unsigned flags = curr->flags;

L
Linus Torvalds 已提交
4070
		if (curr->func(curr, mode, sync, key) &&
4071
				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076 4077 4078 4079 4080
			break;
	}
}

/**
 * __wake_up - wake up threads blocked on a waitqueue.
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4081
 * @key: is directly passed to the wakeup function
L
Linus Torvalds 已提交
4082
 */
4083
void __wake_up(wait_queue_head_t *q, unsigned int mode,
I
Ingo Molnar 已提交
4084
			int nr_exclusive, void *key)
L
Linus Torvalds 已提交
4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
{
	unsigned long flags;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, 0, key);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL(__wake_up);

/*
 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
 */
4097
void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
L
Linus Torvalds 已提交
4098 4099 4100 4101 4102
{
	__wake_up_common(q, mode, 1, 0, NULL);
}

/**
4103
 * __wake_up_sync - wake up threads blocked on a waitqueue.
L
Linus Torvalds 已提交
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
 * @q: the waitqueue
 * @mode: which threads
 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 *
 * The sync wakeup differs that the waker knows that it will schedule
 * away soon, so while the target thread will be woken up, it will not
 * be migrated to another CPU - ie. the two threads are 'synchronized'
 * with each other. This can prevent needless bouncing between CPUs.
 *
 * On UP it can prevent extra preemption.
 */
4115
void
I
Ingo Molnar 已提交
4116
__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
L
Linus Torvalds 已提交
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132
{
	unsigned long flags;
	int sync = 1;

	if (unlikely(!q))
		return;

	if (unlikely(!nr_exclusive))
		sync = 0;

	spin_lock_irqsave(&q->lock, flags);
	__wake_up_common(q, mode, nr_exclusive, sync, NULL);
	spin_unlock_irqrestore(&q->lock, flags);
}
EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */

4133
void complete(struct completion *x)
L
Linus Torvalds 已提交
4134 4135 4136 4137 4138
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
4139
	__wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
L
Linus Torvalds 已提交
4140 4141 4142 4143
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete);

4144
void complete_all(struct completion *x)
L
Linus Torvalds 已提交
4145 4146 4147 4148 4149
{
	unsigned long flags;

	spin_lock_irqsave(&x->wait.lock, flags);
	x->done += UINT_MAX/2;
4150
	__wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
L
Linus Torvalds 已提交
4151 4152 4153 4154
	spin_unlock_irqrestore(&x->wait.lock, flags);
}
EXPORT_SYMBOL(complete_all);

4155 4156
static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4157 4158 4159 4160 4161 4162 4163
{
	if (!x->done) {
		DECLARE_WAITQUEUE(wait, current);

		wait.flags |= WQ_FLAG_EXCLUSIVE;
		__add_wait_queue_tail(&x->wait, &wait);
		do {
M
Matthew Wilcox 已提交
4164 4165 4166 4167
			if ((state == TASK_INTERRUPTIBLE &&
			     signal_pending(current)) ||
			    (state == TASK_KILLABLE &&
			     fatal_signal_pending(current))) {
4168 4169 4170 4171
				__remove_wait_queue(&x->wait, &wait);
				return -ERESTARTSYS;
			}
			__set_current_state(state);
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176
			spin_unlock_irq(&x->wait.lock);
			timeout = schedule_timeout(timeout);
			spin_lock_irq(&x->wait.lock);
			if (!timeout) {
				__remove_wait_queue(&x->wait, &wait);
4177
				return timeout;
L
Linus Torvalds 已提交
4178 4179 4180 4181 4182 4183 4184 4185
			}
		} while (!x->done);
		__remove_wait_queue(&x->wait, &wait);
	}
	x->done--;
	return timeout;
}

4186 4187
static long __sched
wait_for_common(struct completion *x, long timeout, int state)
L
Linus Torvalds 已提交
4188 4189 4190 4191
{
	might_sleep();

	spin_lock_irq(&x->wait.lock);
4192
	timeout = do_wait_for_common(x, timeout, state);
L
Linus Torvalds 已提交
4193
	spin_unlock_irq(&x->wait.lock);
4194 4195
	return timeout;
}
L
Linus Torvalds 已提交
4196

4197
void __sched wait_for_completion(struct completion *x)
4198 4199
{
	wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4200
}
4201
EXPORT_SYMBOL(wait_for_completion);
L
Linus Torvalds 已提交
4202

4203
unsigned long __sched
4204
wait_for_completion_timeout(struct completion *x, unsigned long timeout)
L
Linus Torvalds 已提交
4205
{
4206
	return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
L
Linus Torvalds 已提交
4207
}
4208
EXPORT_SYMBOL(wait_for_completion_timeout);
L
Linus Torvalds 已提交
4209

4210
int __sched wait_for_completion_interruptible(struct completion *x)
I
Ingo Molnar 已提交
4211
{
4212 4213 4214 4215
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
I
Ingo Molnar 已提交
4216
}
4217
EXPORT_SYMBOL(wait_for_completion_interruptible);
L
Linus Torvalds 已提交
4218

4219
unsigned long __sched
4220 4221
wait_for_completion_interruptible_timeout(struct completion *x,
					  unsigned long timeout)
I
Ingo Molnar 已提交
4222
{
4223
	return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
I
Ingo Molnar 已提交
4224
}
4225
EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
L
Linus Torvalds 已提交
4226

M
Matthew Wilcox 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235
int __sched wait_for_completion_killable(struct completion *x)
{
	long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
	if (t == -ERESTARTSYS)
		return t;
	return 0;
}
EXPORT_SYMBOL(wait_for_completion_killable);

4236 4237
static long __sched
sleep_on_common(wait_queue_head_t *q, int state, long timeout)
L
Linus Torvalds 已提交
4238
{
I
Ingo Molnar 已提交
4239 4240 4241 4242
	unsigned long flags;
	wait_queue_t wait;

	init_waitqueue_entry(&wait, current);
L
Linus Torvalds 已提交
4243

4244
	__set_current_state(state);
L
Linus Torvalds 已提交
4245

4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
	spin_lock_irqsave(&q->lock, flags);
	__add_wait_queue(q, &wait);
	spin_unlock(&q->lock);
	timeout = schedule_timeout(timeout);
	spin_lock_irq(&q->lock);
	__remove_wait_queue(q, &wait);
	spin_unlock_irqrestore(&q->lock, flags);

	return timeout;
}

void __sched interruptible_sleep_on(wait_queue_head_t *q)
{
	sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4260 4261 4262
}
EXPORT_SYMBOL(interruptible_sleep_on);

I
Ingo Molnar 已提交
4263
long __sched
I
Ingo Molnar 已提交
4264
interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4265
{
4266
	return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4267 4268 4269
}
EXPORT_SYMBOL(interruptible_sleep_on_timeout);

I
Ingo Molnar 已提交
4270
void __sched sleep_on(wait_queue_head_t *q)
L
Linus Torvalds 已提交
4271
{
4272
	sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
L
Linus Torvalds 已提交
4273 4274 4275
}
EXPORT_SYMBOL(sleep_on);

I
Ingo Molnar 已提交
4276
long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
L
Linus Torvalds 已提交
4277
{
4278
	return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
L
Linus Torvalds 已提交
4279 4280 4281
}
EXPORT_SYMBOL(sleep_on_timeout);

4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293
#ifdef CONFIG_RT_MUTEXES

/*
 * rt_mutex_setprio - set the current priority of a task
 * @p: task
 * @prio: prio value (kernel-internal form)
 *
 * This function changes the 'effective' priority of a task. It does
 * not touch ->normal_prio like __setscheduler().
 *
 * Used by the rt_mutex code to implement priority inheritance logic.
 */
4294
void rt_mutex_setprio(struct task_struct *p, int prio)
4295 4296
{
	unsigned long flags;
4297
	int oldprio, on_rq, running;
4298
	struct rq *rq;
4299
	const struct sched_class *prev_class = p->sched_class;
4300 4301 4302 4303

	BUG_ON(prio < 0 || prio > MAX_PRIO);

	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4304
	update_rq_clock(rq);
4305

4306
	oldprio = p->prio;
I
Ingo Molnar 已提交
4307
	on_rq = p->se.on_rq;
4308
	running = task_current(rq, p);
4309
	if (on_rq) {
4310
		dequeue_task(rq, p, 0);
4311 4312 4313
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
I
Ingo Molnar 已提交
4314 4315 4316 4317 4318 4319

	if (rt_prio(prio))
		p->sched_class = &rt_sched_class;
	else
		p->sched_class = &fair_sched_class;

4320 4321
	p->prio = prio;

I
Ingo Molnar 已提交
4322
	if (on_rq) {
4323 4324
		if (running)
			p->sched_class->set_curr_task(rq);
4325

4326
		enqueue_task(rq, p, 0);
4327 4328

		check_class_changed(rq, p, prev_class, oldprio, running);
4329 4330 4331 4332 4333 4334
	}
	task_rq_unlock(rq, &flags);
}

#endif

4335
void set_user_nice(struct task_struct *p, long nice)
L
Linus Torvalds 已提交
4336
{
I
Ingo Molnar 已提交
4337
	int old_prio, delta, on_rq;
L
Linus Torvalds 已提交
4338
	unsigned long flags;
4339
	struct rq *rq;
L
Linus Torvalds 已提交
4340 4341 4342 4343 4344 4345 4346 4347

	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
		return;
	/*
	 * We have to be careful, if called from sys_setpriority(),
	 * the task might be in the middle of scheduling on another CPU.
	 */
	rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
4348
	update_rq_clock(rq);
L
Linus Torvalds 已提交
4349 4350 4351 4352
	/*
	 * The RT priorities are set via sched_setscheduler(), but we still
	 * allow the 'normal' nice value to be set - but as expected
	 * it wont have any effect on scheduling until the task is
I
Ingo Molnar 已提交
4353
	 * SCHED_FIFO/SCHED_RR:
L
Linus Torvalds 已提交
4354
	 */
4355
	if (task_has_rt_policy(p)) {
L
Linus Torvalds 已提交
4356 4357 4358
		p->static_prio = NICE_TO_PRIO(nice);
		goto out_unlock;
	}
I
Ingo Molnar 已提交
4359
	on_rq = p->se.on_rq;
4360
	if (on_rq)
4361
		dequeue_task(rq, p, 0);
L
Linus Torvalds 已提交
4362 4363

	p->static_prio = NICE_TO_PRIO(nice);
4364
	set_load_weight(p);
4365 4366 4367
	old_prio = p->prio;
	p->prio = effective_prio(p);
	delta = p->prio - old_prio;
L
Linus Torvalds 已提交
4368

I
Ingo Molnar 已提交
4369
	if (on_rq) {
4370
		enqueue_task(rq, p, 0);
L
Linus Torvalds 已提交
4371
		/*
4372 4373
		 * If the task increased its priority or is running and
		 * lowered its priority, then reschedule its CPU:
L
Linus Torvalds 已提交
4374
		 */
4375
		if (delta < 0 || (delta > 0 && task_running(rq, p)))
L
Linus Torvalds 已提交
4376 4377 4378 4379 4380 4381 4382
			resched_task(rq->curr);
	}
out_unlock:
	task_rq_unlock(rq, &flags);
}
EXPORT_SYMBOL(set_user_nice);

M
Matt Mackall 已提交
4383 4384 4385 4386 4387
/*
 * can_nice - check if a task can reduce its nice value
 * @p: task
 * @nice: nice value
 */
4388
int can_nice(const struct task_struct *p, const int nice)
M
Matt Mackall 已提交
4389
{
4390 4391
	/* convert nice value [19,-20] to rlimit style value [1,40] */
	int nice_rlim = 20 - nice;
4392

M
Matt Mackall 已提交
4393 4394 4395 4396
	return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
		capable(CAP_SYS_NICE));
}

L
Linus Torvalds 已提交
4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
#ifdef __ARCH_WANT_SYS_NICE

/*
 * sys_nice - change the priority of the current process.
 * @increment: priority increment
 *
 * sys_setpriority is a more generic, but much slower function that
 * does similar things.
 */
asmlinkage long sys_nice(int increment)
{
4408
	long nice, retval;
L
Linus Torvalds 已提交
4409 4410 4411 4412 4413 4414

	/*
	 * Setpriority might change our priority at the same moment.
	 * We don't have to worry. Conceptually one call occurs first
	 * and we have a single winner.
	 */
M
Matt Mackall 已提交
4415 4416
	if (increment < -40)
		increment = -40;
L
Linus Torvalds 已提交
4417 4418 4419 4420 4421 4422 4423 4424 4425
	if (increment > 40)
		increment = 40;

	nice = PRIO_TO_NICE(current->static_prio) + increment;
	if (nice < -20)
		nice = -20;
	if (nice > 19)
		nice = 19;

M
Matt Mackall 已提交
4426 4427 4428
	if (increment < 0 && !can_nice(current, nice))
		return -EPERM;

L
Linus Torvalds 已提交
4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
	retval = security_task_setnice(current, nice);
	if (retval)
		return retval;

	set_user_nice(current, nice);
	return 0;
}

#endif

/**
 * task_prio - return the priority value of a given task.
 * @p: the task in question.
 *
 * This is the priority value as seen by users in /proc.
 * RT tasks are offset by -200. Normal tasks are centered
 * around 0, value goes from -16 to +15.
 */
4447
int task_prio(const struct task_struct *p)
L
Linus Torvalds 已提交
4448 4449 4450 4451 4452 4453 4454 4455
{
	return p->prio - MAX_RT_PRIO;
}

/**
 * task_nice - return the nice value of a given task.
 * @p: the task in question.
 */
4456
int task_nice(const struct task_struct *p)
L
Linus Torvalds 已提交
4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474
{
	return TASK_NICE(p);
}
EXPORT_SYMBOL_GPL(task_nice);

/**
 * idle_cpu - is a given cpu idle currently?
 * @cpu: the processor in question.
 */
int idle_cpu(int cpu)
{
	return cpu_curr(cpu) == cpu_rq(cpu)->idle;
}

/**
 * idle_task - return the idle task for a given cpu.
 * @cpu: the processor in question.
 */
4475
struct task_struct *idle_task(int cpu)
L
Linus Torvalds 已提交
4476 4477 4478 4479 4480 4481 4482 4483
{
	return cpu_rq(cpu)->idle;
}

/**
 * find_process_by_pid - find a process with a matching PID value.
 * @pid: the pid in question.
 */
A
Alexey Dobriyan 已提交
4484
static struct task_struct *find_process_by_pid(pid_t pid)
L
Linus Torvalds 已提交
4485
{
4486
	return pid ? find_task_by_vpid(pid) : current;
L
Linus Torvalds 已提交
4487 4488 4489
}

/* Actually do priority change: must hold rq lock. */
I
Ingo Molnar 已提交
4490 4491
static void
__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
L
Linus Torvalds 已提交
4492
{
I
Ingo Molnar 已提交
4493
	BUG_ON(p->se.on_rq);
4494

L
Linus Torvalds 已提交
4495
	p->policy = policy;
I
Ingo Molnar 已提交
4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507
	switch (p->policy) {
	case SCHED_NORMAL:
	case SCHED_BATCH:
	case SCHED_IDLE:
		p->sched_class = &fair_sched_class;
		break;
	case SCHED_FIFO:
	case SCHED_RR:
		p->sched_class = &rt_sched_class;
		break;
	}

L
Linus Torvalds 已提交
4508
	p->rt_priority = prio;
4509 4510 4511
	p->normal_prio = normal_prio(p);
	/* we are holding p->pi_lock already */
	p->prio = rt_mutex_getprio(p);
4512
	set_load_weight(p);
L
Linus Torvalds 已提交
4513 4514 4515
}

/**
4516
 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
L
Linus Torvalds 已提交
4517 4518 4519
 * @p: the task in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
4520
 *
4521
 * NOTE that the task may be already dead.
L
Linus Torvalds 已提交
4522
 */
I
Ingo Molnar 已提交
4523 4524
int sched_setscheduler(struct task_struct *p, int policy,
		       struct sched_param *param)
L
Linus Torvalds 已提交
4525
{
4526
	int retval, oldprio, oldpolicy = -1, on_rq, running;
L
Linus Torvalds 已提交
4527
	unsigned long flags;
4528
	const struct sched_class *prev_class = p->sched_class;
4529
	struct rq *rq;
L
Linus Torvalds 已提交
4530

4531 4532
	/* may grab non-irq protected spin_locks */
	BUG_ON(in_interrupt());
L
Linus Torvalds 已提交
4533 4534 4535 4536 4537
recheck:
	/* double check policy once rq lock held */
	if (policy < 0)
		policy = oldpolicy = p->policy;
	else if (policy != SCHED_FIFO && policy != SCHED_RR &&
I
Ingo Molnar 已提交
4538 4539
			policy != SCHED_NORMAL && policy != SCHED_BATCH &&
			policy != SCHED_IDLE)
4540
		return -EINVAL;
L
Linus Torvalds 已提交
4541 4542
	/*
	 * Valid priorities for SCHED_FIFO and SCHED_RR are
I
Ingo Molnar 已提交
4543 4544
	 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
	 * SCHED_BATCH and SCHED_IDLE is 0.
L
Linus Torvalds 已提交
4545 4546
	 */
	if (param->sched_priority < 0 ||
I
Ingo Molnar 已提交
4547
	    (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4548
	    (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
L
Linus Torvalds 已提交
4549
		return -EINVAL;
4550
	if (rt_policy(policy) != (param->sched_priority != 0))
L
Linus Torvalds 已提交
4551 4552
		return -EINVAL;

4553 4554 4555 4556
	/*
	 * Allow unprivileged RT tasks to decrease priority:
	 */
	if (!capable(CAP_SYS_NICE)) {
4557
		if (rt_policy(policy)) {
4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573
			unsigned long rlim_rtprio;

			if (!lock_task_sighand(p, &flags))
				return -ESRCH;
			rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
			unlock_task_sighand(p, &flags);

			/* can't set/change the rt policy */
			if (policy != p->policy && !rlim_rtprio)
				return -EPERM;

			/* can't increase priority */
			if (param->sched_priority > p->rt_priority &&
			    param->sched_priority > rlim_rtprio)
				return -EPERM;
		}
I
Ingo Molnar 已提交
4574 4575 4576 4577 4578 4579
		/*
		 * Like positive nice levels, dont allow tasks to
		 * move out of SCHED_IDLE either:
		 */
		if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
			return -EPERM;
4580

4581 4582 4583 4584 4585
		/* can't change other user's priorities */
		if ((current->euid != p->euid) &&
		    (current->euid != p->uid))
			return -EPERM;
	}
L
Linus Torvalds 已提交
4586

4587 4588 4589 4590 4591 4592 4593 4594 4595
#ifdef CONFIG_RT_GROUP_SCHED
	/*
	 * Do not allow realtime tasks into groups that have no runtime
	 * assigned.
	 */
	if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
		return -EPERM;
#endif

L
Linus Torvalds 已提交
4596 4597 4598
	retval = security_task_setscheduler(p, policy, param);
	if (retval)
		return retval;
4599 4600 4601 4602 4603
	/*
	 * make sure no PI-waiters arrive (or leave) while we are
	 * changing the priority of the task:
	 */
	spin_lock_irqsave(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4604 4605 4606 4607
	/*
	 * To be able to change p->policy safely, the apropriate
	 * runqueue lock must be held.
	 */
4608
	rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
4609 4610 4611
	/* recheck policy now with rq lock held */
	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
		policy = oldpolicy = -1;
4612 4613
		__task_rq_unlock(rq);
		spin_unlock_irqrestore(&p->pi_lock, flags);
L
Linus Torvalds 已提交
4614 4615
		goto recheck;
	}
I
Ingo Molnar 已提交
4616
	update_rq_clock(rq);
I
Ingo Molnar 已提交
4617
	on_rq = p->se.on_rq;
4618
	running = task_current(rq, p);
4619
	if (on_rq) {
4620
		deactivate_task(rq, p, 0);
4621 4622 4623
		if (running)
			p->sched_class->put_prev_task(rq, p);
	}
4624

L
Linus Torvalds 已提交
4625
	oldprio = p->prio;
I
Ingo Molnar 已提交
4626
	__setscheduler(rq, p, policy, param->sched_priority);
4627

I
Ingo Molnar 已提交
4628
	if (on_rq) {
4629 4630
		if (running)
			p->sched_class->set_curr_task(rq);
4631

I
Ingo Molnar 已提交
4632
		activate_task(rq, p, 0);
4633 4634

		check_class_changed(rq, p, prev_class, oldprio, running);
L
Linus Torvalds 已提交
4635
	}
4636 4637 4638
	__task_rq_unlock(rq);
	spin_unlock_irqrestore(&p->pi_lock, flags);

4639 4640
	rt_mutex_adjust_pi(p);

L
Linus Torvalds 已提交
4641 4642 4643 4644
	return 0;
}
EXPORT_SYMBOL_GPL(sched_setscheduler);

I
Ingo Molnar 已提交
4645 4646
static int
do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4647 4648 4649
{
	struct sched_param lparam;
	struct task_struct *p;
4650
	int retval;
L
Linus Torvalds 已提交
4651 4652 4653 4654 4655

	if (!param || pid < 0)
		return -EINVAL;
	if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
		return -EFAULT;
4656 4657 4658

	rcu_read_lock();
	retval = -ESRCH;
L
Linus Torvalds 已提交
4659
	p = find_process_by_pid(pid);
4660 4661 4662
	if (p != NULL)
		retval = sched_setscheduler(p, policy, &lparam);
	rcu_read_unlock();
4663

L
Linus Torvalds 已提交
4664 4665 4666 4667 4668 4669 4670 4671 4672
	return retval;
}

/**
 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
 * @pid: the pid in question.
 * @policy: new policy.
 * @param: structure containing the new RT priority.
 */
I
Ingo Molnar 已提交
4673 4674
asmlinkage long
sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
L
Linus Torvalds 已提交
4675
{
4676 4677 4678 4679
	/* negative values for policy are not valid */
	if (policy < 0)
		return -EINVAL;

L
Linus Torvalds 已提交
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
	return do_sched_setscheduler(pid, policy, param);
}

/**
 * sys_sched_setparam - set/change the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the new RT priority.
 */
asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
{
	return do_sched_setscheduler(pid, -1, param);
}

/**
 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
 * @pid: the pid in question.
 */
asmlinkage long sys_sched_getscheduler(pid_t pid)
{
4699
	struct task_struct *p;
4700
	int retval;
L
Linus Torvalds 已提交
4701 4702

	if (pid < 0)
4703
		return -EINVAL;
L
Linus Torvalds 已提交
4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (p) {
		retval = security_task_getscheduler(p);
		if (!retval)
			retval = p->policy;
	}
	read_unlock(&tasklist_lock);
	return retval;
}

/**
 * sys_sched_getscheduler - get the RT priority of a thread
 * @pid: the pid in question.
 * @param: structure containing the RT priority.
 */
asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
{
	struct sched_param lp;
4725
	struct task_struct *p;
4726
	int retval;
L
Linus Torvalds 已提交
4727 4728

	if (!param || pid < 0)
4729
		return -EINVAL;
L
Linus Torvalds 已提交
4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758

	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	retval = -ESRCH;
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

	lp.sched_priority = p->rt_priority;
	read_unlock(&tasklist_lock);

	/*
	 * This one might sleep, we cannot do it with a spinlock held ...
	 */
	retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;

	return retval;

out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

long sched_setaffinity(pid_t pid, cpumask_t new_mask)
{
	cpumask_t cpus_allowed;
4759 4760
	struct task_struct *p;
	int retval;
L
Linus Torvalds 已提交
4761

4762
	get_online_cpus();
L
Linus Torvalds 已提交
4763 4764 4765 4766 4767
	read_lock(&tasklist_lock);

	p = find_process_by_pid(pid);
	if (!p) {
		read_unlock(&tasklist_lock);
4768
		put_online_cpus();
L
Linus Torvalds 已提交
4769 4770 4771 4772 4773
		return -ESRCH;
	}

	/*
	 * It is not safe to call set_cpus_allowed with the
I
Ingo Molnar 已提交
4774
	 * tasklist_lock held. We will bump the task_struct's
L
Linus Torvalds 已提交
4775 4776 4777 4778 4779 4780 4781 4782 4783 4784
	 * usage count and then drop tasklist_lock.
	 */
	get_task_struct(p);
	read_unlock(&tasklist_lock);

	retval = -EPERM;
	if ((current->euid != p->euid) && (current->euid != p->uid) &&
			!capable(CAP_SYS_NICE))
		goto out_unlock;

4785 4786 4787 4788
	retval = security_task_setscheduler(p, 0, NULL);
	if (retval)
		goto out_unlock;

L
Linus Torvalds 已提交
4789 4790
	cpus_allowed = cpuset_cpus_allowed(p);
	cpus_and(new_mask, new_mask, cpus_allowed);
P
Paul Menage 已提交
4791
 again:
L
Linus Torvalds 已提交
4792 4793
	retval = set_cpus_allowed(p, new_mask);

P
Paul Menage 已提交
4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805
	if (!retval) {
		cpus_allowed = cpuset_cpus_allowed(p);
		if (!cpus_subset(new_mask, cpus_allowed)) {
			/*
			 * We must have raced with a concurrent cpuset
			 * update. Just reset the cpus_allowed to the
			 * cpuset's cpus_allowed
			 */
			new_mask = cpus_allowed;
			goto again;
		}
	}
L
Linus Torvalds 已提交
4806 4807
out_unlock:
	put_task_struct(p);
4808
	put_online_cpus();
L
Linus Torvalds 已提交
4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848
	return retval;
}

static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
			     cpumask_t *new_mask)
{
	if (len < sizeof(cpumask_t)) {
		memset(new_mask, 0, sizeof(cpumask_t));
	} else if (len > sizeof(cpumask_t)) {
		len = sizeof(cpumask_t);
	}
	return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
}

/**
 * sys_sched_setaffinity - set the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to the new cpu mask
 */
asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	cpumask_t new_mask;
	int retval;

	retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
	if (retval)
		return retval;

	return sched_setaffinity(pid, new_mask);
}

/*
 * Represents all cpu's present in the system
 * In systems capable of hotplug, this map could dynamically grow
 * as new cpu's are detected in the system via any platform specific
 * method, such as ACPI for e.g.
 */

4849
cpumask_t cpu_present_map __read_mostly;
L
Linus Torvalds 已提交
4850 4851 4852
EXPORT_SYMBOL(cpu_present_map);

#ifndef CONFIG_SMP
4853
cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4854 4855
EXPORT_SYMBOL(cpu_online_map);

4856
cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4857
EXPORT_SYMBOL(cpu_possible_map);
L
Linus Torvalds 已提交
4858 4859 4860 4861
#endif

long sched_getaffinity(pid_t pid, cpumask_t *mask)
{
4862
	struct task_struct *p;
L
Linus Torvalds 已提交
4863 4864
	int retval;

4865
	get_online_cpus();
L
Linus Torvalds 已提交
4866 4867 4868 4869 4870 4871 4872
	read_lock(&tasklist_lock);

	retval = -ESRCH;
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

4873 4874 4875 4876
	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

4877
	cpus_and(*mask, p->cpus_allowed, cpu_online_map);
L
Linus Torvalds 已提交
4878 4879 4880

out_unlock:
	read_unlock(&tasklist_lock);
4881
	put_online_cpus();
L
Linus Torvalds 已提交
4882

4883
	return retval;
L
Linus Torvalds 已提交
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
}

/**
 * sys_sched_getaffinity - get the cpu affinity of a process
 * @pid: pid of the process
 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
 * @user_mask_ptr: user-space pointer to hold the current cpu mask
 */
asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
				      unsigned long __user *user_mask_ptr)
{
	int ret;
	cpumask_t mask;

	if (len < sizeof(cpumask_t))
		return -EINVAL;

	ret = sched_getaffinity(pid, &mask);
	if (ret < 0)
		return ret;

	if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
		return -EFAULT;

	return sizeof(cpumask_t);
}

/**
 * sys_sched_yield - yield the current processor to other threads.
 *
I
Ingo Molnar 已提交
4914 4915
 * This function yields the current CPU to other tasks. If there are no
 * other threads running on this CPU then this function will return.
L
Linus Torvalds 已提交
4916 4917 4918
 */
asmlinkage long sys_sched_yield(void)
{
4919
	struct rq *rq = this_rq_lock();
L
Linus Torvalds 已提交
4920

4921
	schedstat_inc(rq, yld_count);
4922
	current->sched_class->yield_task(rq);
L
Linus Torvalds 已提交
4923 4924 4925 4926 4927 4928

	/*
	 * Since we are going to call schedule() anyway, there's
	 * no need to preempt or enable interrupts:
	 */
	__release(rq->lock);
4929
	spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
L
Linus Torvalds 已提交
4930 4931 4932 4933 4934 4935 4936 4937
	_raw_spin_unlock(&rq->lock);
	preempt_enable_no_resched();

	schedule();

	return 0;
}

A
Andrew Morton 已提交
4938
static void __cond_resched(void)
L
Linus Torvalds 已提交
4939
{
4940 4941 4942
#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
	__might_sleep(__FILE__, __LINE__);
#endif
4943 4944 4945 4946 4947
	/*
	 * The BKS might be reacquired before we have dropped
	 * PREEMPT_ACTIVE, which could trigger a second
	 * cond_resched() call.
	 */
L
Linus Torvalds 已提交
4948 4949 4950 4951 4952 4953 4954
	do {
		add_preempt_count(PREEMPT_ACTIVE);
		schedule();
		sub_preempt_count(PREEMPT_ACTIVE);
	} while (need_resched());
}

4955 4956
#if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
int __sched _cond_resched(void)
L
Linus Torvalds 已提交
4957
{
4958 4959
	if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
					system_state == SYSTEM_RUNNING) {
L
Linus Torvalds 已提交
4960 4961 4962 4963 4964
		__cond_resched();
		return 1;
	}
	return 0;
}
4965 4966
EXPORT_SYMBOL(_cond_resched);
#endif
L
Linus Torvalds 已提交
4967 4968 4969 4970 4971

/*
 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
 * call schedule, and on return reacquire the lock.
 *
I
Ingo Molnar 已提交
4972
 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
L
Linus Torvalds 已提交
4973 4974 4975
 * operations here to prevent schedule() from being called twice (once via
 * spin_unlock(), once by hand).
 */
I
Ingo Molnar 已提交
4976
int cond_resched_lock(spinlock_t *lock)
L
Linus Torvalds 已提交
4977
{
N
Nick Piggin 已提交
4978
	int resched = need_resched() && system_state == SYSTEM_RUNNING;
J
Jan Kara 已提交
4979 4980
	int ret = 0;

N
Nick Piggin 已提交
4981
	if (spin_needbreak(lock) || resched) {
L
Linus Torvalds 已提交
4982
		spin_unlock(lock);
N
Nick Piggin 已提交
4983 4984 4985 4986
		if (resched && need_resched())
			__cond_resched();
		else
			cpu_relax();
J
Jan Kara 已提交
4987
		ret = 1;
L
Linus Torvalds 已提交
4988 4989
		spin_lock(lock);
	}
J
Jan Kara 已提交
4990
	return ret;
L
Linus Torvalds 已提交
4991 4992 4993 4994 4995 4996 4997
}
EXPORT_SYMBOL(cond_resched_lock);

int __sched cond_resched_softirq(void)
{
	BUG_ON(!in_softirq());

4998
	if (need_resched() && system_state == SYSTEM_RUNNING) {
4999
		local_bh_enable();
L
Linus Torvalds 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
		__cond_resched();
		local_bh_disable();
		return 1;
	}
	return 0;
}
EXPORT_SYMBOL(cond_resched_softirq);

/**
 * yield - yield the current processor to other threads.
 *
5011
 * This is a shortcut for kernel-space yielding - it marks the
L
Linus Torvalds 已提交
5012 5013 5014 5015 5016 5017 5018 5019 5020 5021
 * thread runnable and calls sys_sched_yield().
 */
void __sched yield(void)
{
	set_current_state(TASK_RUNNING);
	sys_sched_yield();
}
EXPORT_SYMBOL(yield);

/*
I
Ingo Molnar 已提交
5022
 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
L
Linus Torvalds 已提交
5023 5024 5025 5026 5027 5028 5029
 * that process accounting knows that this is a task in IO wait state.
 *
 * But don't do that if it is a deliberate, throttling IO wait (this task
 * has set its backing_dev_info: the queue against which it should throttle)
 */
void __sched io_schedule(void)
{
5030
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5031

5032
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5033 5034 5035
	atomic_inc(&rq->nr_iowait);
	schedule();
	atomic_dec(&rq->nr_iowait);
5036
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5037 5038 5039 5040 5041
}
EXPORT_SYMBOL(io_schedule);

long __sched io_schedule_timeout(long timeout)
{
5042
	struct rq *rq = &__raw_get_cpu_var(runqueues);
L
Linus Torvalds 已提交
5043 5044
	long ret;

5045
	delayacct_blkio_start();
L
Linus Torvalds 已提交
5046 5047 5048
	atomic_inc(&rq->nr_iowait);
	ret = schedule_timeout(timeout);
	atomic_dec(&rq->nr_iowait);
5049
	delayacct_blkio_end();
L
Linus Torvalds 已提交
5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069
	return ret;
}

/**
 * sys_sched_get_priority_max - return maximum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the maximum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_max(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = MAX_USER_RT_PRIO-1;
		break;
	case SCHED_NORMAL:
5070
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5071
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094
		ret = 0;
		break;
	}
	return ret;
}

/**
 * sys_sched_get_priority_min - return minimum RT priority.
 * @policy: scheduling class.
 *
 * this syscall returns the minimum rt_priority that can be used
 * by a given scheduling class.
 */
asmlinkage long sys_sched_get_priority_min(int policy)
{
	int ret = -EINVAL;

	switch (policy) {
	case SCHED_FIFO:
	case SCHED_RR:
		ret = 1;
		break;
	case SCHED_NORMAL:
5095
	case SCHED_BATCH:
I
Ingo Molnar 已提交
5096
	case SCHED_IDLE:
L
Linus Torvalds 已提交
5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112
		ret = 0;
	}
	return ret;
}

/**
 * sys_sched_rr_get_interval - return the default timeslice of a process.
 * @pid: pid of the process.
 * @interval: userspace pointer to the timeslice value.
 *
 * this syscall writes the default timeslice value of a given process
 * into the user-space timespec buffer. A value of '0' means infinity.
 */
asmlinkage
long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
{
5113
	struct task_struct *p;
D
Dmitry Adamushko 已提交
5114
	unsigned int time_slice;
5115
	int retval;
L
Linus Torvalds 已提交
5116 5117 5118
	struct timespec t;

	if (pid < 0)
5119
		return -EINVAL;
L
Linus Torvalds 已提交
5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130

	retval = -ESRCH;
	read_lock(&tasklist_lock);
	p = find_process_by_pid(pid);
	if (!p)
		goto out_unlock;

	retval = security_task_getscheduler(p);
	if (retval)
		goto out_unlock;

5131 5132 5133 5134 5135 5136
	/*
	 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
	 * tasks that are on an otherwise idle runqueue:
	 */
	time_slice = 0;
	if (p->policy == SCHED_RR) {
D
Dmitry Adamushko 已提交
5137
		time_slice = DEF_TIMESLICE;
5138
	} else {
D
Dmitry Adamushko 已提交
5139 5140 5141 5142 5143
		struct sched_entity *se = &p->se;
		unsigned long flags;
		struct rq *rq;

		rq = task_rq_lock(p, &flags);
5144 5145
		if (rq->cfs.load.weight)
			time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
D
Dmitry Adamushko 已提交
5146 5147
		task_rq_unlock(rq, &flags);
	}
L
Linus Torvalds 已提交
5148
	read_unlock(&tasklist_lock);
D
Dmitry Adamushko 已提交
5149
	jiffies_to_timespec(time_slice, &t);
L
Linus Torvalds 已提交
5150 5151
	retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
	return retval;
5152

L
Linus Torvalds 已提交
5153 5154 5155 5156 5157
out_unlock:
	read_unlock(&tasklist_lock);
	return retval;
}

5158
static const char stat_nam[] = "RSDTtZX";
5159

5160
void sched_show_task(struct task_struct *p)
L
Linus Torvalds 已提交
5161 5162
{
	unsigned long free = 0;
5163
	unsigned state;
L
Linus Torvalds 已提交
5164 5165

	state = p->state ? __ffs(p->state) + 1 : 0;
I
Ingo Molnar 已提交
5166
	printk(KERN_INFO "%-13.13s %c", p->comm,
5167
		state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5168
#if BITS_PER_LONG == 32
L
Linus Torvalds 已提交
5169
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5170
		printk(KERN_CONT " running  ");
L
Linus Torvalds 已提交
5171
	else
I
Ingo Molnar 已提交
5172
		printk(KERN_CONT " %08lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5173 5174
#else
	if (state == TASK_RUNNING)
I
Ingo Molnar 已提交
5175
		printk(KERN_CONT "  running task    ");
L
Linus Torvalds 已提交
5176
	else
I
Ingo Molnar 已提交
5177
		printk(KERN_CONT " %016lx ", thread_saved_pc(p));
L
Linus Torvalds 已提交
5178 5179 5180
#endif
#ifdef CONFIG_DEBUG_STACK_USAGE
	{
5181
		unsigned long *n = end_of_stack(p);
L
Linus Torvalds 已提交
5182 5183
		while (!*n)
			n++;
5184
		free = (unsigned long)n - (unsigned long)end_of_stack(p);
L
Linus Torvalds 已提交
5185 5186
	}
#endif
5187
	printk(KERN_CONT "%5lu %5d %6d\n", free,
R
Roland McGrath 已提交
5188
		task_pid_nr(p), task_pid_nr(p->real_parent));
L
Linus Torvalds 已提交
5189

5190
	show_stack(p, NULL);
L
Linus Torvalds 已提交
5191 5192
}

I
Ingo Molnar 已提交
5193
void show_state_filter(unsigned long state_filter)
L
Linus Torvalds 已提交
5194
{
5195
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
5196

5197 5198 5199
#if BITS_PER_LONG == 32
	printk(KERN_INFO
		"  task                PC stack   pid father\n");
L
Linus Torvalds 已提交
5200
#else
5201 5202
	printk(KERN_INFO
		"  task                        PC stack   pid father\n");
L
Linus Torvalds 已提交
5203 5204 5205 5206 5207 5208 5209 5210
#endif
	read_lock(&tasklist_lock);
	do_each_thread(g, p) {
		/*
		 * reset the NMI-timeout, listing all files on a slow
		 * console might take alot of time:
		 */
		touch_nmi_watchdog();
I
Ingo Molnar 已提交
5211
		if (!state_filter || (p->state & state_filter))
5212
			sched_show_task(p);
L
Linus Torvalds 已提交
5213 5214
	} while_each_thread(g, p);

5215 5216
	touch_all_softlockup_watchdogs();

I
Ingo Molnar 已提交
5217 5218 5219
#ifdef CONFIG_SCHED_DEBUG
	sysrq_sched_debug_show();
#endif
L
Linus Torvalds 已提交
5220
	read_unlock(&tasklist_lock);
I
Ingo Molnar 已提交
5221 5222 5223 5224 5225
	/*
	 * Only show locks if all tasks are dumped:
	 */
	if (state_filter == -1)
		debug_show_all_locks();
L
Linus Torvalds 已提交
5226 5227
}

I
Ingo Molnar 已提交
5228 5229
void __cpuinit init_idle_bootup_task(struct task_struct *idle)
{
I
Ingo Molnar 已提交
5230
	idle->sched_class = &idle_sched_class;
I
Ingo Molnar 已提交
5231 5232
}

5233 5234 5235 5236 5237 5238 5239 5240
/**
 * init_idle - set up an idle thread for a given CPU
 * @idle: task in question
 * @cpu: cpu the idle task belongs to
 *
 * NOTE: this function does not set the idle thread's NEED_RESCHED
 * flag, to make booting more robust.
 */
5241
void __cpuinit init_idle(struct task_struct *idle, int cpu)
L
Linus Torvalds 已提交
5242
{
5243
	struct rq *rq = cpu_rq(cpu);
L
Linus Torvalds 已提交
5244 5245
	unsigned long flags;

I
Ingo Molnar 已提交
5246 5247 5248
	__sched_fork(idle);
	idle->se.exec_start = sched_clock();

5249
	idle->prio = idle->normal_prio = MAX_PRIO;
L
Linus Torvalds 已提交
5250
	idle->cpus_allowed = cpumask_of_cpu(cpu);
I
Ingo Molnar 已提交
5251
	__set_task_cpu(idle, cpu);
L
Linus Torvalds 已提交
5252 5253 5254

	spin_lock_irqsave(&rq->lock, flags);
	rq->curr = rq->idle = idle;
5255 5256 5257
#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
	idle->oncpu = 1;
#endif
L
Linus Torvalds 已提交
5258 5259 5260
	spin_unlock_irqrestore(&rq->lock, flags);

	/* Set the preempt count _outside_ the spinlocks! */
A
Al Viro 已提交
5261
	task_thread_info(idle)->preempt_count = 0;
5262

I
Ingo Molnar 已提交
5263 5264 5265 5266
	/*
	 * The idle tasks have their own, simple scheduling class:
	 */
	idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277
}

/*
 * In a system that switches off the HZ timer nohz_cpu_mask
 * indicates which cpus entered this state. This is used
 * in the rcu update to wait only for active cpus. For system
 * which do not switch off the HZ timer nohz_cpu_mask should
 * always be CPU_MASK_NONE.
 */
cpumask_t nohz_cpu_mask = CPU_MASK_NONE;

I
Ingo Molnar 已提交
5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303
/*
 * Increase the granularity value when there are more CPUs,
 * because with more CPUs the 'effective latency' as visible
 * to users decreases. But the relationship is not linear,
 * so pick a second-best guess by going with the log2 of the
 * number of CPUs.
 *
 * This idea comes from the SD scheduler of Con Kolivas:
 */
static inline void sched_init_granularity(void)
{
	unsigned int factor = 1 + ilog2(num_online_cpus());
	const unsigned long limit = 200000000;

	sysctl_sched_min_granularity *= factor;
	if (sysctl_sched_min_granularity > limit)
		sysctl_sched_min_granularity = limit;

	sysctl_sched_latency *= factor;
	if (sysctl_sched_latency > limit)
		sysctl_sched_latency = limit;

	sysctl_sched_wakeup_granularity *= factor;
	sysctl_sched_batch_wakeup_granularity *= factor;
}

L
Linus Torvalds 已提交
5304 5305 5306 5307
#ifdef CONFIG_SMP
/*
 * This is how migration works:
 *
5308
 * 1) we queue a struct migration_req structure in the source CPU's
L
Linus Torvalds 已提交
5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326
 *    runqueue and wake up that CPU's migration thread.
 * 2) we down() the locked semaphore => thread blocks.
 * 3) migration thread wakes up (implicitly it forces the migrated
 *    thread off the CPU)
 * 4) it gets the migration request and checks whether the migrated
 *    task is still in the wrong runqueue.
 * 5) if it's in the wrong runqueue then the migration thread removes
 *    it and puts it into the right queue.
 * 6) migration thread up()s the semaphore.
 * 7) we wake up and the migration is done.
 */

/*
 * Change a given task's CPU affinity. Migrate the thread to a
 * proper CPU and schedule it away if the CPU it's executing on
 * is removed from the allowed bitmask.
 *
 * NOTE: the caller must have a valid reference to the task, the
I
Ingo Molnar 已提交
5327
 * task must not exit() & deallocate itself prematurely. The
L
Linus Torvalds 已提交
5328 5329
 * call is not atomic; no spinlocks may be held.
 */
5330
int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
L
Linus Torvalds 已提交
5331
{
5332
	struct migration_req req;
L
Linus Torvalds 已提交
5333
	unsigned long flags;
5334
	struct rq *rq;
5335
	int ret = 0;
L
Linus Torvalds 已提交
5336 5337 5338 5339 5340 5341 5342

	rq = task_rq_lock(p, &flags);
	if (!cpus_intersects(new_mask, cpu_online_map)) {
		ret = -EINVAL;
		goto out;
	}

5343 5344 5345
	if (p->sched_class->set_cpus_allowed)
		p->sched_class->set_cpus_allowed(p, &new_mask);
	else {
I
Ingo Molnar 已提交
5346
		p->cpus_allowed = new_mask;
P
Peter Zijlstra 已提交
5347
		p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5348 5349
	}

L
Linus Torvalds 已提交
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363
	/* Can the task run on the task's current CPU? If so, we're done */
	if (cpu_isset(task_cpu(p), new_mask))
		goto out;

	if (migrate_task(p, any_online_cpu(new_mask), &req)) {
		/* Need help from migration thread: drop lock and wait. */
		task_rq_unlock(rq, &flags);
		wake_up_process(rq->migration_thread);
		wait_for_completion(&req.done);
		tlb_migrate_finish(p->mm);
		return 0;
	}
out:
	task_rq_unlock(rq, &flags);
5364

L
Linus Torvalds 已提交
5365 5366 5367 5368 5369
	return ret;
}
EXPORT_SYMBOL_GPL(set_cpus_allowed);

/*
I
Ingo Molnar 已提交
5370
 * Move (not current) task off this cpu, onto dest cpu. We're doing
L
Linus Torvalds 已提交
5371 5372 5373 5374 5375 5376
 * this because either it can't run here any more (set_cpus_allowed()
 * away from this CPU, or CPU going down), or because we're
 * attempting to rebalance this task on exec (sched_exec).
 *
 * So we race with normal scheduler movements, but that's OK, as long
 * as the task is no longer on this CPU.
5377 5378
 *
 * Returns non-zero if task was successfully migrated.
L
Linus Torvalds 已提交
5379
 */
5380
static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
L
Linus Torvalds 已提交
5381
{
5382
	struct rq *rq_dest, *rq_src;
I
Ingo Molnar 已提交
5383
	int ret = 0, on_rq;
L
Linus Torvalds 已提交
5384 5385

	if (unlikely(cpu_is_offline(dest_cpu)))
5386
		return ret;
L
Linus Torvalds 已提交
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398

	rq_src = cpu_rq(src_cpu);
	rq_dest = cpu_rq(dest_cpu);

	double_rq_lock(rq_src, rq_dest);
	/* Already moved. */
	if (task_cpu(p) != src_cpu)
		goto out;
	/* Affinity changed (again). */
	if (!cpu_isset(dest_cpu, p->cpus_allowed))
		goto out;

I
Ingo Molnar 已提交
5399
	on_rq = p->se.on_rq;
5400
	if (on_rq)
5401
		deactivate_task(rq_src, p, 0);
5402

L
Linus Torvalds 已提交
5403
	set_task_cpu(p, dest_cpu);
I
Ingo Molnar 已提交
5404 5405 5406
	if (on_rq) {
		activate_task(rq_dest, p, 0);
		check_preempt_curr(rq_dest, p);
L
Linus Torvalds 已提交
5407
	}
5408
	ret = 1;
L
Linus Torvalds 已提交
5409 5410
out:
	double_rq_unlock(rq_src, rq_dest);
5411
	return ret;
L
Linus Torvalds 已提交
5412 5413 5414 5415 5416 5417 5418
}

/*
 * migration_thread - this is a highprio system thread that performs
 * thread migration by bumping thread off CPU then 'pushing' onto
 * another runqueue.
 */
I
Ingo Molnar 已提交
5419
static int migration_thread(void *data)
L
Linus Torvalds 已提交
5420 5421
{
	int cpu = (long)data;
5422
	struct rq *rq;
L
Linus Torvalds 已提交
5423 5424 5425 5426 5427 5428

	rq = cpu_rq(cpu);
	BUG_ON(rq->migration_thread != current);

	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
5429
		struct migration_req *req;
L
Linus Torvalds 已提交
5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
		struct list_head *head;

		spin_lock_irq(&rq->lock);

		if (cpu_is_offline(cpu)) {
			spin_unlock_irq(&rq->lock);
			goto wait_to_die;
		}

		if (rq->active_balance) {
			active_load_balance(rq, cpu);
			rq->active_balance = 0;
		}

		head = &rq->migration_queue;

		if (list_empty(head)) {
			spin_unlock_irq(&rq->lock);
			schedule();
			set_current_state(TASK_INTERRUPTIBLE);
			continue;
		}
5452
		req = list_entry(head->next, struct migration_req, list);
L
Linus Torvalds 已提交
5453 5454
		list_del_init(head->next);

N
Nick Piggin 已提交
5455 5456 5457
		spin_unlock(&rq->lock);
		__migrate_task(req->task, cpu, req->dest_cpu);
		local_irq_enable();
L
Linus Torvalds 已提交
5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475

		complete(&req->done);
	}
	__set_current_state(TASK_RUNNING);
	return 0;

wait_to_die:
	/* Wait for kthread_stop */
	set_current_state(TASK_INTERRUPTIBLE);
	while (!kthread_should_stop()) {
		schedule();
		set_current_state(TASK_INTERRUPTIBLE);
	}
	__set_current_state(TASK_RUNNING);
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU
5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
{
	int ret;

	local_irq_disable();
	ret = __migrate_task(p, src_cpu, dest_cpu);
	local_irq_enable();
	return ret;
}

5487
/*
5488
 * Figure out where task on dead CPU should go, use force if necessary.
5489 5490
 * NOTE: interrupts should be disabled by the caller
 */
5491
static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5492
{
5493
	unsigned long flags;
L
Linus Torvalds 已提交
5494
	cpumask_t mask;
5495 5496
	struct rq *rq;
	int dest_cpu;
L
Linus Torvalds 已提交
5497

5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509
	do {
		/* On same node? */
		mask = node_to_cpumask(cpu_to_node(dead_cpu));
		cpus_and(mask, mask, p->cpus_allowed);
		dest_cpu = any_online_cpu(mask);

		/* On any allowed CPU? */
		if (dest_cpu == NR_CPUS)
			dest_cpu = any_online_cpu(p->cpus_allowed);

		/* No more Mr. Nice Guy. */
		if (dest_cpu == NR_CPUS) {
5510 5511 5512 5513 5514
			cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
			/*
			 * Try to stay on the same cpuset, where the
			 * current cpuset may be a subset of all cpus.
			 * The cpuset_cpus_allowed_locked() variant of
I
Ingo Molnar 已提交
5515
			 * cpuset_cpus_allowed() will not block. It must be
5516 5517
			 * called within calls to cpuset_lock/cpuset_unlock.
			 */
5518
			rq = task_rq_lock(p, &flags);
5519
			p->cpus_allowed = cpus_allowed;
5520 5521
			dest_cpu = any_online_cpu(p->cpus_allowed);
			task_rq_unlock(rq, &flags);
L
Linus Torvalds 已提交
5522

5523 5524 5525 5526 5527
			/*
			 * Don't tell them about moving exiting tasks or
			 * kernel threads (both mm NULL), since they never
			 * leave kernel.
			 */
I
Ingo Molnar 已提交
5528
			if (p->mm && printk_ratelimit()) {
5529 5530
				printk(KERN_INFO "process %d (%s) no "
				       "longer affine to cpu%d\n",
I
Ingo Molnar 已提交
5531 5532
					task_pid_nr(p), p->comm, dead_cpu);
			}
5533
		}
5534
	} while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
L
Linus Torvalds 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543
}

/*
 * While a dead CPU has no uninterruptible tasks queued at this point,
 * it might still have a nonzero ->nr_uninterruptible counter, because
 * for performance reasons the counter is not stricly tracking tasks to
 * their home CPUs. So we just add the counter to another CPU's counter,
 * to keep the global sum constant after CPU-down:
 */
5544
static void migrate_nr_uninterruptible(struct rq *rq_src)
L
Linus Torvalds 已提交
5545
{
5546
	struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
L
Linus Torvalds 已提交
5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
	unsigned long flags;

	local_irq_save(flags);
	double_rq_lock(rq_src, rq_dest);
	rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
	rq_src->nr_uninterruptible = 0;
	double_rq_unlock(rq_src, rq_dest);
	local_irq_restore(flags);
}

/* Run through task list and migrate tasks from the dead cpu. */
static void migrate_live_tasks(int src_cpu)
{
5560
	struct task_struct *p, *t;
L
Linus Torvalds 已提交
5561

5562
	read_lock(&tasklist_lock);
L
Linus Torvalds 已提交
5563

5564 5565
	do_each_thread(t, p) {
		if (p == current)
L
Linus Torvalds 已提交
5566 5567
			continue;

5568 5569 5570
		if (task_cpu(p) == src_cpu)
			move_task_off_dead_cpu(src_cpu, p);
	} while_each_thread(t, p);
L
Linus Torvalds 已提交
5571

5572
	read_unlock(&tasklist_lock);
L
Linus Torvalds 已提交
5573 5574
}

I
Ingo Molnar 已提交
5575 5576
/*
 * Schedules idle task to be the next runnable task on current CPU.
5577 5578
 * It does so by boosting its priority to highest possible.
 * Used by CPU offline code.
L
Linus Torvalds 已提交
5579 5580 5581
 */
void sched_idle_next(void)
{
5582
	int this_cpu = smp_processor_id();
5583
	struct rq *rq = cpu_rq(this_cpu);
L
Linus Torvalds 已提交
5584 5585 5586 5587
	struct task_struct *p = rq->idle;
	unsigned long flags;

	/* cpu has to be offline */
5588
	BUG_ON(cpu_online(this_cpu));
L
Linus Torvalds 已提交
5589

5590 5591 5592
	/*
	 * Strictly not necessary since rest of the CPUs are stopped by now
	 * and interrupts disabled on the current cpu.
L
Linus Torvalds 已提交
5593 5594 5595
	 */
	spin_lock_irqsave(&rq->lock, flags);

I
Ingo Molnar 已提交
5596
	__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5597

5598 5599
	update_rq_clock(rq);
	activate_task(rq, p, 0);
L
Linus Torvalds 已提交
5600 5601 5602 5603

	spin_unlock_irqrestore(&rq->lock, flags);
}

5604 5605
/*
 * Ensures that the idle task is using init_mm right before its cpu goes
L
Linus Torvalds 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
 * offline.
 */
void idle_task_exit(void)
{
	struct mm_struct *mm = current->active_mm;

	BUG_ON(cpu_online(smp_processor_id()));

	if (mm != &init_mm)
		switch_mm(mm, &init_mm, current);
	mmdrop(mm);
}

5619
/* called under rq->lock with disabled interrupts */
5620
static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
L
Linus Torvalds 已提交
5621
{
5622
	struct rq *rq = cpu_rq(dead_cpu);
L
Linus Torvalds 已提交
5623 5624

	/* Must be exiting, otherwise would be on tasklist. */
E
Eugene Teo 已提交
5625
	BUG_ON(!p->exit_state);
L
Linus Torvalds 已提交
5626 5627

	/* Cannot have done final schedule yet: would have vanished. */
5628
	BUG_ON(p->state == TASK_DEAD);
L
Linus Torvalds 已提交
5629

5630
	get_task_struct(p);
L
Linus Torvalds 已提交
5631 5632 5633

	/*
	 * Drop lock around migration; if someone else moves it,
I
Ingo Molnar 已提交
5634
	 * that's OK. No task can be added to this CPU, so iteration is
L
Linus Torvalds 已提交
5635 5636
	 * fine.
	 */
5637
	spin_unlock_irq(&rq->lock);
5638
	move_task_off_dead_cpu(dead_cpu, p);
5639
	spin_lock_irq(&rq->lock);
L
Linus Torvalds 已提交
5640

5641
	put_task_struct(p);
L
Linus Torvalds 已提交
5642 5643 5644 5645 5646
}

/* release_task() removes task from tasklist, so we won't find dead tasks. */
static void migrate_dead_tasks(unsigned int dead_cpu)
{
5647
	struct rq *rq = cpu_rq(dead_cpu);
I
Ingo Molnar 已提交
5648
	struct task_struct *next;
5649

I
Ingo Molnar 已提交
5650 5651 5652
	for ( ; ; ) {
		if (!rq->nr_running)
			break;
I
Ingo Molnar 已提交
5653
		update_rq_clock(rq);
5654
		next = pick_next_task(rq, rq->curr);
I
Ingo Molnar 已提交
5655 5656 5657
		if (!next)
			break;
		migrate_dead(dead_cpu, next);
5658

L
Linus Torvalds 已提交
5659 5660 5661 5662
	}
}
#endif /* CONFIG_HOTPLUG_CPU */

5663 5664 5665
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)

static struct ctl_table sd_ctl_dir[] = {
5666 5667
	{
		.procname	= "sched_domain",
5668
		.mode		= 0555,
5669
	},
I
Ingo Molnar 已提交
5670
	{0, },
5671 5672 5673
};

static struct ctl_table sd_ctl_root[] = {
5674
	{
5675
		.ctl_name	= CTL_KERN,
5676
		.procname	= "kernel",
5677
		.mode		= 0555,
5678 5679
		.child		= sd_ctl_dir,
	},
I
Ingo Molnar 已提交
5680
	{0, },
5681 5682 5683 5684 5685
};

static struct ctl_table *sd_alloc_ctl_entry(int n)
{
	struct ctl_table *entry =
5686
		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5687 5688 5689 5690

	return entry;
}

5691 5692
static void sd_free_ctl_entry(struct ctl_table **tablep)
{
5693
	struct ctl_table *entry;
5694

5695 5696 5697
	/*
	 * In the intermediate directories, both the child directory and
	 * procname are dynamically allocated and could fail but the mode
I
Ingo Molnar 已提交
5698
	 * will always be set. In the lowest directory the names are
5699 5700 5701
	 * static strings and all have proc handlers.
	 */
	for (entry = *tablep; entry->mode; entry++) {
5702 5703
		if (entry->child)
			sd_free_ctl_entry(&entry->child);
5704 5705 5706
		if (entry->proc_handler == NULL)
			kfree(entry->procname);
	}
5707 5708 5709 5710 5711

	kfree(*tablep);
	*tablep = NULL;
}

5712
static void
5713
set_table_entry(struct ctl_table *entry,
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
		const char *procname, void *data, int maxlen,
		mode_t mode, proc_handler *proc_handler)
{
	entry->procname = procname;
	entry->data = data;
	entry->maxlen = maxlen;
	entry->mode = mode;
	entry->proc_handler = proc_handler;
}

static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain *sd)
{
5727
	struct ctl_table *table = sd_alloc_ctl_entry(12);
5728

5729 5730 5731
	if (table == NULL)
		return NULL;

5732
	set_table_entry(&table[0], "min_interval", &sd->min_interval,
5733
		sizeof(long), 0644, proc_doulongvec_minmax);
5734
	set_table_entry(&table[1], "max_interval", &sd->max_interval,
5735
		sizeof(long), 0644, proc_doulongvec_minmax);
5736
	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5737
		sizeof(int), 0644, proc_dointvec_minmax);
5738
	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5739
		sizeof(int), 0644, proc_dointvec_minmax);
5740
	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5741
		sizeof(int), 0644, proc_dointvec_minmax);
5742
	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5743
		sizeof(int), 0644, proc_dointvec_minmax);
5744
	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5745
		sizeof(int), 0644, proc_dointvec_minmax);
5746
	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5747
		sizeof(int), 0644, proc_dointvec_minmax);
5748
	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5749
		sizeof(int), 0644, proc_dointvec_minmax);
5750
	set_table_entry(&table[9], "cache_nice_tries",
5751 5752
		&sd->cache_nice_tries,
		sizeof(int), 0644, proc_dointvec_minmax);
5753
	set_table_entry(&table[10], "flags", &sd->flags,
5754
		sizeof(int), 0644, proc_dointvec_minmax);
5755
	/* &table[11] is terminator */
5756 5757 5758 5759

	return table;
}

5760
static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5761 5762 5763 5764 5765 5766 5767 5768 5769
{
	struct ctl_table *entry, *table;
	struct sched_domain *sd;
	int domain_num = 0, i;
	char buf[32];

	for_each_domain(cpu, sd)
		domain_num++;
	entry = table = sd_alloc_ctl_entry(domain_num + 1);
5770 5771
	if (table == NULL)
		return NULL;
5772 5773 5774 5775 5776

	i = 0;
	for_each_domain(cpu, sd) {
		snprintf(buf, 32, "domain%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5777
		entry->mode = 0555;
5778 5779 5780 5781 5782 5783 5784 5785
		entry->child = sd_alloc_ctl_domain_table(sd);
		entry++;
		i++;
	}
	return table;
}

static struct ctl_table_header *sd_sysctl_header;
5786
static void register_sched_domain_sysctl(void)
5787 5788 5789 5790 5791
{
	int i, cpu_num = num_online_cpus();
	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
	char buf[32];

5792 5793 5794
	WARN_ON(sd_ctl_dir[0].child);
	sd_ctl_dir[0].child = entry;

5795 5796 5797
	if (entry == NULL)
		return;

5798
	for_each_online_cpu(i) {
5799 5800
		snprintf(buf, 32, "cpu%d", i);
		entry->procname = kstrdup(buf, GFP_KERNEL);
5801
		entry->mode = 0555;
5802
		entry->child = sd_alloc_ctl_cpu_table(i);
5803
		entry++;
5804
	}
5805 5806

	WARN_ON(sd_sysctl_header);
5807 5808
	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
}
5809

5810
/* may be called multiple times per register */
5811 5812
static void unregister_sched_domain_sysctl(void)
{
5813 5814
	if (sd_sysctl_header)
		unregister_sysctl_table(sd_sysctl_header);
5815
	sd_sysctl_header = NULL;
5816 5817
	if (sd_ctl_dir[0].child)
		sd_free_ctl_entry(&sd_ctl_dir[0].child);
5818
}
5819
#else
5820 5821 5822 5823
static void register_sched_domain_sysctl(void)
{
}
static void unregister_sched_domain_sysctl(void)
5824 5825 5826 5827
{
}
#endif

L
Linus Torvalds 已提交
5828 5829 5830 5831
/*
 * migration_call - callback that gets triggered when a CPU is added.
 * Here we can start up the necessary migration thread for the new CPU.
 */
5832 5833
static int __cpuinit
migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
5834 5835
{
	struct task_struct *p;
5836
	int cpu = (long)hcpu;
L
Linus Torvalds 已提交
5837
	unsigned long flags;
5838
	struct rq *rq;
L
Linus Torvalds 已提交
5839 5840

	switch (action) {
5841

L
Linus Torvalds 已提交
5842
	case CPU_UP_PREPARE:
5843
	case CPU_UP_PREPARE_FROZEN:
I
Ingo Molnar 已提交
5844
		p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
L
Linus Torvalds 已提交
5845 5846 5847 5848 5849
		if (IS_ERR(p))
			return NOTIFY_BAD;
		kthread_bind(p, cpu);
		/* Must be high prio: stop_machine expects to yield to it. */
		rq = task_rq_lock(p, &flags);
I
Ingo Molnar 已提交
5850
		__setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
L
Linus Torvalds 已提交
5851 5852 5853
		task_rq_unlock(rq, &flags);
		cpu_rq(cpu)->migration_thread = p;
		break;
5854

L
Linus Torvalds 已提交
5855
	case CPU_ONLINE:
5856
	case CPU_ONLINE_FROZEN:
5857
		/* Strictly unnecessary, as first user will wake it. */
L
Linus Torvalds 已提交
5858
		wake_up_process(cpu_rq(cpu)->migration_thread);
G
Gregory Haskins 已提交
5859 5860 5861 5862 5863 5864 5865 5866 5867

		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_set(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
L
Linus Torvalds 已提交
5868
		break;
5869

L
Linus Torvalds 已提交
5870 5871
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_UP_CANCELED:
5872
	case CPU_UP_CANCELED_FROZEN:
5873 5874
		if (!cpu_rq(cpu)->migration_thread)
			break;
I
Ingo Molnar 已提交
5875
		/* Unbind it from offline cpu so it can run. Fall thru. */
5876 5877
		kthread_bind(cpu_rq(cpu)->migration_thread,
			     any_online_cpu(cpu_online_map));
L
Linus Torvalds 已提交
5878 5879 5880
		kthread_stop(cpu_rq(cpu)->migration_thread);
		cpu_rq(cpu)->migration_thread = NULL;
		break;
5881

L
Linus Torvalds 已提交
5882
	case CPU_DEAD:
5883
	case CPU_DEAD_FROZEN:
5884
		cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
L
Linus Torvalds 已提交
5885 5886 5887 5888 5889
		migrate_live_tasks(cpu);
		rq = cpu_rq(cpu);
		kthread_stop(rq->migration_thread);
		rq->migration_thread = NULL;
		/* Idle task back to normal (off runqueue, low prio) */
5890
		spin_lock_irq(&rq->lock);
I
Ingo Molnar 已提交
5891
		update_rq_clock(rq);
5892
		deactivate_task(rq, rq->idle, 0);
L
Linus Torvalds 已提交
5893
		rq->idle->static_prio = MAX_PRIO;
I
Ingo Molnar 已提交
5894 5895
		__setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
		rq->idle->sched_class = &idle_sched_class;
L
Linus Torvalds 已提交
5896
		migrate_dead_tasks(cpu);
5897
		spin_unlock_irq(&rq->lock);
5898
		cpuset_unlock();
L
Linus Torvalds 已提交
5899 5900 5901
		migrate_nr_uninterruptible(rq);
		BUG_ON(rq->nr_running != 0);

I
Ingo Molnar 已提交
5902 5903 5904 5905 5906
		/*
		 * No need to migrate the tasks: it was best-effort if
		 * they didn't take sched_hotcpu_mutex. Just wake up
		 * the requestors.
		 */
L
Linus Torvalds 已提交
5907 5908
		spin_lock_irq(&rq->lock);
		while (!list_empty(&rq->migration_queue)) {
5909 5910
			struct migration_req *req;

L
Linus Torvalds 已提交
5911
			req = list_entry(rq->migration_queue.next,
5912
					 struct migration_req, list);
L
Linus Torvalds 已提交
5913 5914 5915 5916 5917
			list_del_init(&req->list);
			complete(&req->done);
		}
		spin_unlock_irq(&rq->lock);
		break;
G
Gregory Haskins 已提交
5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928

	case CPU_DOWN_PREPARE:
		/* Update our root-domain */
		rq = cpu_rq(cpu);
		spin_lock_irqsave(&rq->lock, flags);
		if (rq->rd) {
			BUG_ON(!cpu_isset(cpu, rq->rd->span));
			cpu_clear(cpu, rq->rd->online);
		}
		spin_unlock_irqrestore(&rq->lock, flags);
		break;
L
Linus Torvalds 已提交
5929 5930 5931 5932 5933 5934 5935 5936
#endif
	}
	return NOTIFY_OK;
}

/* Register at highest priority so that task migration (migrate_all_tasks)
 * happens before everything else.
 */
5937
static struct notifier_block __cpuinitdata migration_notifier = {
L
Linus Torvalds 已提交
5938 5939 5940 5941
	.notifier_call = migration_call,
	.priority = 10
};

5942
void __init migration_init(void)
L
Linus Torvalds 已提交
5943 5944
{
	void *cpu = (void *)(long)smp_processor_id();
5945
	int err;
5946 5947

	/* Start one for the boot CPU: */
5948 5949
	err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
	BUG_ON(err == NOTIFY_BAD);
L
Linus Torvalds 已提交
5950 5951 5952 5953 5954 5955
	migration_call(&migration_notifier, CPU_ONLINE, cpu);
	register_cpu_notifier(&migration_notifier);
}
#endif

#ifdef CONFIG_SMP
5956 5957 5958 5959 5960

/* Number of possible processor ids */
int nr_cpu_ids __read_mostly = NR_CPUS;
EXPORT_SYMBOL(nr_cpu_ids);

5961
#ifdef CONFIG_SCHED_DEBUG
I
Ingo Molnar 已提交
5962 5963

static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
L
Linus Torvalds 已提交
5964
{
I
Ingo Molnar 已提交
5965 5966 5967
	struct sched_group *group = sd->groups;
	cpumask_t groupmask;
	char str[NR_CPUS];
L
Linus Torvalds 已提交
5968

I
Ingo Molnar 已提交
5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979
	cpumask_scnprintf(str, NR_CPUS, sd->span);
	cpus_clear(groupmask);

	printk(KERN_DEBUG "%*s domain %d: ", level, "", level);

	if (!(sd->flags & SD_LOAD_BALANCE)) {
		printk("does not load-balance\n");
		if (sd->parent)
			printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
					" has parent");
		return -1;
N
Nick Piggin 已提交
5980 5981
	}

I
Ingo Molnar 已提交
5982 5983 5984 5985 5986 5987 5988 5989 5990 5991
	printk(KERN_CONT "span %s\n", str);

	if (!cpu_isset(cpu, sd->span)) {
		printk(KERN_ERR "ERROR: domain->span does not contain "
				"CPU%d\n", cpu);
	}
	if (!cpu_isset(cpu, group->cpumask)) {
		printk(KERN_ERR "ERROR: domain->groups does not contain"
				" CPU%d\n", cpu);
	}
L
Linus Torvalds 已提交
5992

I
Ingo Molnar 已提交
5993
	printk(KERN_DEBUG "%*s groups:", level + 1, "");
L
Linus Torvalds 已提交
5994
	do {
I
Ingo Molnar 已提交
5995 5996 5997
		if (!group) {
			printk("\n");
			printk(KERN_ERR "ERROR: group is NULL\n");
L
Linus Torvalds 已提交
5998 5999 6000
			break;
		}

I
Ingo Molnar 已提交
6001 6002 6003 6004 6005 6006
		if (!group->__cpu_power) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: domain->cpu_power not "
					"set\n");
			break;
		}
L
Linus Torvalds 已提交
6007

I
Ingo Molnar 已提交
6008 6009 6010 6011 6012
		if (!cpus_weight(group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: empty group\n");
			break;
		}
L
Linus Torvalds 已提交
6013

I
Ingo Molnar 已提交
6014 6015 6016 6017 6018
		if (cpus_intersects(groupmask, group->cpumask)) {
			printk(KERN_CONT "\n");
			printk(KERN_ERR "ERROR: repeated CPUs\n");
			break;
		}
L
Linus Torvalds 已提交
6019

I
Ingo Molnar 已提交
6020
		cpus_or(groupmask, groupmask, group->cpumask);
L
Linus Torvalds 已提交
6021

I
Ingo Molnar 已提交
6022 6023
		cpumask_scnprintf(str, NR_CPUS, group->cpumask);
		printk(KERN_CONT " %s", str);
L
Linus Torvalds 已提交
6024

I
Ingo Molnar 已提交
6025 6026 6027
		group = group->next;
	} while (group != sd->groups);
	printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
6028

I
Ingo Molnar 已提交
6029 6030
	if (!cpus_equal(sd->span, groupmask))
		printk(KERN_ERR "ERROR: groups don't span domain->span\n");
L
Linus Torvalds 已提交
6031

I
Ingo Molnar 已提交
6032 6033 6034 6035 6036
	if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
		printk(KERN_ERR "ERROR: parent span is not a superset "
			"of domain->span\n");
	return 0;
}
L
Linus Torvalds 已提交
6037

I
Ingo Molnar 已提交
6038 6039 6040
static void sched_domain_debug(struct sched_domain *sd, int cpu)
{
	int level = 0;
L
Linus Torvalds 已提交
6041

I
Ingo Molnar 已提交
6042 6043 6044 6045
	if (!sd) {
		printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
		return;
	}
L
Linus Torvalds 已提交
6046

I
Ingo Molnar 已提交
6047 6048 6049 6050 6051
	printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);

	for (;;) {
		if (sched_domain_debug_one(sd, cpu, level))
			break;
L
Linus Torvalds 已提交
6052 6053
		level++;
		sd = sd->parent;
6054
		if (!sd)
I
Ingo Molnar 已提交
6055 6056
			break;
	}
L
Linus Torvalds 已提交
6057 6058
}
#else
6059
# define sched_domain_debug(sd, cpu) do { } while (0)
L
Linus Torvalds 已提交
6060 6061
#endif

6062
static int sd_degenerate(struct sched_domain *sd)
6063 6064 6065 6066 6067 6068 6069 6070
{
	if (cpus_weight(sd->span) == 1)
		return 1;

	/* Following flags need at least 2 groups */
	if (sd->flags & (SD_LOAD_BALANCE |
			 SD_BALANCE_NEWIDLE |
			 SD_BALANCE_FORK |
6071 6072 6073
			 SD_BALANCE_EXEC |
			 SD_SHARE_CPUPOWER |
			 SD_SHARE_PKG_RESOURCES)) {
6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086
		if (sd->groups != sd->groups->next)
			return 0;
	}

	/* Following flags don't use groups */
	if (sd->flags & (SD_WAKE_IDLE |
			 SD_WAKE_AFFINE |
			 SD_WAKE_BALANCE))
		return 0;

	return 1;
}

6087 6088
static int
sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106
{
	unsigned long cflags = sd->flags, pflags = parent->flags;

	if (sd_degenerate(parent))
		return 1;

	if (!cpus_equal(sd->span, parent->span))
		return 0;

	/* Does parent contain flags not in child? */
	/* WAKE_BALANCE is a subset of WAKE_AFFINE */
	if (cflags & SD_WAKE_AFFINE)
		pflags &= ~SD_WAKE_BALANCE;
	/* Flags needing groups don't count if only 1 group in parent */
	if (parent->groups == parent->groups->next) {
		pflags &= ~(SD_LOAD_BALANCE |
				SD_BALANCE_NEWIDLE |
				SD_BALANCE_FORK |
6107 6108 6109
				SD_BALANCE_EXEC |
				SD_SHARE_CPUPOWER |
				SD_SHARE_PKG_RESOURCES);
6110 6111 6112 6113 6114 6115 6116
	}
	if (~cflags & pflags)
		return 0;

	return 1;
}

G
Gregory Haskins 已提交
6117 6118 6119 6120 6121 6122 6123 6124 6125 6126
static void rq_attach_root(struct rq *rq, struct root_domain *rd)
{
	unsigned long flags;
	const struct sched_class *class;

	spin_lock_irqsave(&rq->lock, flags);

	if (rq->rd) {
		struct root_domain *old_rd = rq->rd;

I
Ingo Molnar 已提交
6127
		for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6128 6129
			if (class->leave_domain)
				class->leave_domain(rq);
I
Ingo Molnar 已提交
6130
		}
G
Gregory Haskins 已提交
6131

6132 6133 6134
		cpu_clear(rq->cpu, old_rd->span);
		cpu_clear(rq->cpu, old_rd->online);

G
Gregory Haskins 已提交
6135 6136 6137 6138 6139 6140 6141
		if (atomic_dec_and_test(&old_rd->refcount))
			kfree(old_rd);
	}

	atomic_inc(&rd->refcount);
	rq->rd = rd;

6142 6143 6144 6145
	cpu_set(rq->cpu, rd->span);
	if (cpu_isset(rq->cpu, cpu_online_map))
		cpu_set(rq->cpu, rd->online);

I
Ingo Molnar 已提交
6146
	for (class = sched_class_highest; class; class = class->next) {
G
Gregory Haskins 已提交
6147 6148
		if (class->join_domain)
			class->join_domain(rq);
I
Ingo Molnar 已提交
6149
	}
G
Gregory Haskins 已提交
6150 6151 6152 6153

	spin_unlock_irqrestore(&rq->lock, flags);
}

6154
static void init_rootdomain(struct root_domain *rd)
G
Gregory Haskins 已提交
6155 6156 6157
{
	memset(rd, 0, sizeof(*rd));

6158 6159
	cpus_clear(rd->span);
	cpus_clear(rd->online);
G
Gregory Haskins 已提交
6160 6161 6162 6163
}

static void init_defrootdomain(void)
{
6164
	init_rootdomain(&def_root_domain);
G
Gregory Haskins 已提交
6165 6166 6167
	atomic_set(&def_root_domain.refcount, 1);
}

6168
static struct root_domain *alloc_rootdomain(void)
G
Gregory Haskins 已提交
6169 6170 6171 6172 6173 6174 6175
{
	struct root_domain *rd;

	rd = kmalloc(sizeof(*rd), GFP_KERNEL);
	if (!rd)
		return NULL;

6176
	init_rootdomain(rd);
G
Gregory Haskins 已提交
6177 6178 6179 6180

	return rd;
}

L
Linus Torvalds 已提交
6181
/*
I
Ingo Molnar 已提交
6182
 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
L
Linus Torvalds 已提交
6183 6184
 * hold the hotplug lock.
 */
I
Ingo Molnar 已提交
6185 6186
static void
cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
L
Linus Torvalds 已提交
6187
{
6188
	struct rq *rq = cpu_rq(cpu);
6189 6190 6191 6192 6193 6194 6195
	struct sched_domain *tmp;

	/* Remove the sched domains which do not contribute to scheduling. */
	for (tmp = sd; tmp; tmp = tmp->parent) {
		struct sched_domain *parent = tmp->parent;
		if (!parent)
			break;
6196
		if (sd_parent_degenerate(tmp, parent)) {
6197
			tmp->parent = parent->parent;
6198 6199 6200
			if (parent->parent)
				parent->parent->child = tmp;
		}
6201 6202
	}

6203
	if (sd && sd_degenerate(sd)) {
6204
		sd = sd->parent;
6205 6206 6207
		if (sd)
			sd->child = NULL;
	}
L
Linus Torvalds 已提交
6208 6209 6210

	sched_domain_debug(sd, cpu);

G
Gregory Haskins 已提交
6211
	rq_attach_root(rq, rd);
N
Nick Piggin 已提交
6212
	rcu_assign_pointer(rq->sd, sd);
L
Linus Torvalds 已提交
6213 6214 6215
}

/* cpus with isolated domains */
6216
static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
L
Linus Torvalds 已提交
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230

/* Setup the mask of cpus configured for isolated domains */
static int __init isolated_cpu_setup(char *str)
{
	int ints[NR_CPUS], i;

	str = get_options(str, ARRAY_SIZE(ints), ints);
	cpus_clear(cpu_isolated_map);
	for (i = 1; i <= ints[0]; i++)
		if (ints[i] < NR_CPUS)
			cpu_set(ints[i], cpu_isolated_map);
	return 1;
}

I
Ingo Molnar 已提交
6231
__setup("isolcpus=", isolated_cpu_setup);
L
Linus Torvalds 已提交
6232 6233

/*
6234 6235 6236 6237
 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
 * to a function which identifies what group(along with sched group) a CPU
 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
 * (due to the fact that we keep track of groups covered with a cpumask_t).
L
Linus Torvalds 已提交
6238 6239 6240 6241 6242
 *
 * init_sched_build_groups will build a circular linked list of the groups
 * covered by the given span, and will set each group's ->cpumask correctly,
 * and ->cpu_power to 0.
 */
6243
static void
6244 6245 6246
init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
			int (*group_fn)(int cpu, const cpumask_t *cpu_map,
					struct sched_group **sg))
L
Linus Torvalds 已提交
6247 6248 6249 6250 6251 6252
{
	struct sched_group *first = NULL, *last = NULL;
	cpumask_t covered = CPU_MASK_NONE;
	int i;

	for_each_cpu_mask(i, span) {
6253 6254
		struct sched_group *sg;
		int group = group_fn(i, cpu_map, &sg);
L
Linus Torvalds 已提交
6255 6256 6257 6258 6259 6260
		int j;

		if (cpu_isset(i, covered))
			continue;

		sg->cpumask = CPU_MASK_NONE;
6261
		sg->__cpu_power = 0;
L
Linus Torvalds 已提交
6262 6263

		for_each_cpu_mask(j, span) {
6264
			if (group_fn(j, cpu_map, NULL) != group)
L
Linus Torvalds 已提交
6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
				continue;

			cpu_set(j, covered);
			cpu_set(j, sg->cpumask);
		}
		if (!first)
			first = sg;
		if (last)
			last->next = sg;
		last = sg;
	}
	last->next = first;
}

6279
#define SD_NODES_PER_DOMAIN 16
L
Linus Torvalds 已提交
6280

6281
#ifdef CONFIG_NUMA
6282

6283 6284 6285 6286 6287
/**
 * find_next_best_node - find the next node to include in a sched_domain
 * @node: node whose sched_domain we're building
 * @used_nodes: nodes already in the sched_domain
 *
I
Ingo Molnar 已提交
6288
 * Find the next node to include in a given scheduling domain. Simply
6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327
 * finds the closest node not already in the @used_nodes map.
 *
 * Should use nodemask_t.
 */
static int find_next_best_node(int node, unsigned long *used_nodes)
{
	int i, n, val, min_val, best_node = 0;

	min_val = INT_MAX;

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Start at @node */
		n = (node + i) % MAX_NUMNODES;

		if (!nr_cpus_node(n))
			continue;

		/* Skip already used nodes */
		if (test_bit(n, used_nodes))
			continue;

		/* Simple min distance search */
		val = node_distance(node, n);

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	set_bit(best_node, used_nodes);
	return best_node;
}

/**
 * sched_domain_node_span - get a cpumask for a node's sched_domain
 * @node: node whose cpumask we're constructing
 * @size: number of nodes to include in this span
 *
I
Ingo Molnar 已提交
6328
 * Given a node, construct a good cpumask for its sched_domain to span. It
6329 6330 6331 6332 6333 6334
 * should be one that prevents unnecessary balancing, but also spreads tasks
 * out optimally.
 */
static cpumask_t sched_domain_node_span(int node)
{
	DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6335 6336
	cpumask_t span, nodemask;
	int i;
6337 6338 6339 6340 6341 6342 6343 6344 6345 6346

	cpus_clear(span);
	bitmap_zero(used_nodes, MAX_NUMNODES);

	nodemask = node_to_cpumask(node);
	cpus_or(span, span, nodemask);
	set_bit(node, used_nodes);

	for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
		int next_node = find_next_best_node(node, used_nodes);
6347

6348 6349 6350 6351 6352 6353 6354 6355
		nodemask = node_to_cpumask(next_node);
		cpus_or(span, span, nodemask);
	}

	return span;
}
#endif

6356
int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6357

6358
/*
6359
 * SMT sched-domains:
6360
 */
L
Linus Torvalds 已提交
6361 6362
#ifdef CONFIG_SCHED_SMT
static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6363
static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6364

I
Ingo Molnar 已提交
6365 6366
static int
cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6367
{
6368 6369
	if (sg)
		*sg = &per_cpu(sched_group_cpus, cpu);
L
Linus Torvalds 已提交
6370 6371 6372 6373
	return cpu;
}
#endif

6374 6375 6376
/*
 * multi-core sched-domains:
 */
6377 6378
#ifdef CONFIG_SCHED_MC
static DEFINE_PER_CPU(struct sched_domain, core_domains);
6379
static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6380 6381 6382
#endif

#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
I
Ingo Molnar 已提交
6383 6384
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6385
{
6386
	int group;
6387
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6388
	cpus_and(mask, mask, *cpu_map);
6389 6390 6391 6392
	group = first_cpu(mask);
	if (sg)
		*sg = &per_cpu(sched_group_core, group);
	return group;
6393 6394
}
#elif defined(CONFIG_SCHED_MC)
I
Ingo Molnar 已提交
6395 6396
static int
cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6397
{
6398 6399
	if (sg)
		*sg = &per_cpu(sched_group_core, cpu);
6400 6401 6402 6403
	return cpu;
}
#endif

L
Linus Torvalds 已提交
6404
static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6405
static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6406

I
Ingo Molnar 已提交
6407 6408
static int
cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
L
Linus Torvalds 已提交
6409
{
6410
	int group;
6411
#ifdef CONFIG_SCHED_MC
6412
	cpumask_t mask = cpu_coregroup_map(cpu);
6413
	cpus_and(mask, mask, *cpu_map);
6414
	group = first_cpu(mask);
6415
#elif defined(CONFIG_SCHED_SMT)
6416
	cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6417
	cpus_and(mask, mask, *cpu_map);
6418
	group = first_cpu(mask);
L
Linus Torvalds 已提交
6419
#else
6420
	group = cpu;
L
Linus Torvalds 已提交
6421
#endif
6422 6423 6424
	if (sg)
		*sg = &per_cpu(sched_group_phys, group);
	return group;
L
Linus Torvalds 已提交
6425 6426 6427 6428
}

#ifdef CONFIG_NUMA
/*
6429 6430 6431
 * The init_sched_build_groups can't handle what we want to do with node
 * groups, so roll our own. Now each node has its own list of groups which
 * gets dynamically allocated.
L
Linus Torvalds 已提交
6432
 */
6433
static DEFINE_PER_CPU(struct sched_domain, node_domains);
6434
static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
L
Linus Torvalds 已提交
6435

6436
static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6437
static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6438

6439 6440
static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
				 struct sched_group **sg)
6441
{
6442 6443 6444 6445 6446 6447 6448 6449 6450
	cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
	int group;

	cpus_and(nodemask, nodemask, *cpu_map);
	group = first_cpu(nodemask);

	if (sg)
		*sg = &per_cpu(sched_group_allnodes, group);
	return group;
L
Linus Torvalds 已提交
6451
}
6452

6453 6454 6455 6456 6457 6458 6459
static void init_numa_sched_groups_power(struct sched_group *group_head)
{
	struct sched_group *sg = group_head;
	int j;

	if (!sg)
		return;
6460 6461 6462
	do {
		for_each_cpu_mask(j, sg->cpumask) {
			struct sched_domain *sd;
6463

6464 6465 6466 6467 6468 6469 6470 6471
			sd = &per_cpu(phys_domains, j);
			if (j != first_cpu(sd->groups->cpumask)) {
				/*
				 * Only add "power" once for each
				 * physical package.
				 */
				continue;
			}
6472

6473 6474 6475 6476
			sg_inc_cpu_power(sg, sd->groups->__cpu_power);
		}
		sg = sg->next;
	} while (sg != group_head);
6477
}
L
Linus Torvalds 已提交
6478 6479
#endif

6480
#ifdef CONFIG_NUMA
6481 6482 6483
/* Free memory allocated for various sched_group structures */
static void free_sched_groups(const cpumask_t *cpu_map)
{
6484
	int cpu, i;
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514

	for_each_cpu_mask(cpu, *cpu_map) {
		struct sched_group **sched_group_nodes
			= sched_group_nodes_bycpu[cpu];

		if (!sched_group_nodes)
			continue;

		for (i = 0; i < MAX_NUMNODES; i++) {
			cpumask_t nodemask = node_to_cpumask(i);
			struct sched_group *oldsg, *sg = sched_group_nodes[i];

			cpus_and(nodemask, nodemask, *cpu_map);
			if (cpus_empty(nodemask))
				continue;

			if (sg == NULL)
				continue;
			sg = sg->next;
next_sg:
			oldsg = sg;
			sg = sg->next;
			kfree(oldsg);
			if (oldsg != sched_group_nodes[i])
				goto next_sg;
		}
		kfree(sched_group_nodes);
		sched_group_nodes_bycpu[cpu] = NULL;
	}
}
6515 6516 6517 6518 6519
#else
static void free_sched_groups(const cpumask_t *cpu_map)
{
}
#endif
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546
/*
 * Initialize sched groups cpu_power.
 *
 * cpu_power indicates the capacity of sched group, which is used while
 * distributing the load between different sched groups in a sched domain.
 * Typically cpu_power for all the groups in a sched domain will be same unless
 * there are asymmetries in the topology. If there are asymmetries, group
 * having more cpu_power will pickup more load compared to the group having
 * less cpu_power.
 *
 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
 * the maximum number of tasks a group can handle in the presence of other idle
 * or lightly loaded groups in the same sched domain.
 */
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
{
	struct sched_domain *child;
	struct sched_group *group;

	WARN_ON(!sd || !sd->groups);

	if (cpu != first_cpu(sd->groups->cpumask))
		return;

	child = sd->child;

6547 6548
	sd->groups->__cpu_power = 0;

6549 6550 6551 6552 6553 6554 6555 6556 6557 6558
	/*
	 * For perf policy, if the groups in child domain share resources
	 * (for example cores sharing some portions of the cache hierarchy
	 * or SMT), then set this domain groups cpu_power such that each group
	 * can handle only one task, when there are other idle groups in the
	 * same sched domain.
	 */
	if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
		       (child->flags &
			(SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6559
		sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6560 6561 6562 6563 6564 6565 6566 6567
		return;
	}

	/*
	 * add cpu_power of each child group to this groups cpu_power
	 */
	group = child->groups;
	do {
6568
		sg_inc_cpu_power(sd->groups, group->__cpu_power);
6569 6570 6571 6572
		group = group->next;
	} while (group != child->groups);
}

L
Linus Torvalds 已提交
6573
/*
6574 6575
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
L
Linus Torvalds 已提交
6576
 */
6577
static int build_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6578 6579
{
	int i;
G
Gregory Haskins 已提交
6580
	struct root_domain *rd;
6581 6582
#ifdef CONFIG_NUMA
	struct sched_group **sched_group_nodes = NULL;
6583
	int sd_allnodes = 0;
6584 6585 6586 6587

	/*
	 * Allocate the per-node list of sched groups
	 */
6588
	sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
I
Ingo Molnar 已提交
6589
				    GFP_KERNEL);
6590 6591
	if (!sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
6592
		return -ENOMEM;
6593 6594 6595
	}
	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
#endif
L
Linus Torvalds 已提交
6596

6597
	rd = alloc_rootdomain();
G
Gregory Haskins 已提交
6598 6599 6600 6601 6602
	if (!rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		return -ENOMEM;
	}

L
Linus Torvalds 已提交
6603
	/*
6604
	 * Set up domains for cpus specified by the cpu_map.
L
Linus Torvalds 已提交
6605
	 */
6606
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6607 6608 6609
		struct sched_domain *sd = NULL, *p;
		cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));

6610
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6611 6612

#ifdef CONFIG_NUMA
I
Ingo Molnar 已提交
6613 6614
		if (cpus_weight(*cpu_map) >
				SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6615 6616 6617
			sd = &per_cpu(allnodes_domains, i);
			*sd = SD_ALLNODES_INIT;
			sd->span = *cpu_map;
6618
			cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6619
			p = sd;
6620
			sd_allnodes = 1;
6621 6622 6623
		} else
			p = NULL;

L
Linus Torvalds 已提交
6624 6625
		sd = &per_cpu(node_domains, i);
		*sd = SD_NODE_INIT;
6626 6627
		sd->span = sched_domain_node_span(cpu_to_node(i));
		sd->parent = p;
6628 6629
		if (p)
			p->child = sd;
6630
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6631 6632 6633 6634 6635 6636 6637
#endif

		p = sd;
		sd = &per_cpu(phys_domains, i);
		*sd = SD_CPU_INIT;
		sd->span = nodemask;
		sd->parent = p;
6638 6639
		if (p)
			p->child = sd;
6640
		cpu_to_phys_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6641

6642 6643 6644 6645 6646 6647 6648
#ifdef CONFIG_SCHED_MC
		p = sd;
		sd = &per_cpu(core_domains, i);
		*sd = SD_MC_INIT;
		sd->span = cpu_coregroup_map(i);
		cpus_and(sd->span, sd->span, *cpu_map);
		sd->parent = p;
6649
		p->child = sd;
6650
		cpu_to_core_group(i, cpu_map, &sd->groups);
6651 6652
#endif

L
Linus Torvalds 已提交
6653 6654 6655 6656
#ifdef CONFIG_SCHED_SMT
		p = sd;
		sd = &per_cpu(cpu_domains, i);
		*sd = SD_SIBLING_INIT;
6657
		sd->span = per_cpu(cpu_sibling_map, i);
6658
		cpus_and(sd->span, sd->span, *cpu_map);
L
Linus Torvalds 已提交
6659
		sd->parent = p;
6660
		p->child = sd;
6661
		cpu_to_cpu_group(i, cpu_map, &sd->groups);
L
Linus Torvalds 已提交
6662 6663 6664 6665 6666
#endif
	}

#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
6667
	for_each_cpu_mask(i, *cpu_map) {
6668
		cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6669
		cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
L
Linus Torvalds 已提交
6670 6671 6672
		if (i != first_cpu(this_sibling_map))
			continue;

I
Ingo Molnar 已提交
6673 6674
		init_sched_build_groups(this_sibling_map, cpu_map,
					&cpu_to_cpu_group);
L
Linus Torvalds 已提交
6675 6676 6677
	}
#endif

6678 6679 6680 6681 6682 6683 6684
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	for_each_cpu_mask(i, *cpu_map) {
		cpumask_t this_core_map = cpu_coregroup_map(i);
		cpus_and(this_core_map, this_core_map, *cpu_map);
		if (i != first_cpu(this_core_map))
			continue;
I
Ingo Molnar 已提交
6685 6686
		init_sched_build_groups(this_core_map, cpu_map,
					&cpu_to_core_group);
6687 6688 6689
	}
#endif

L
Linus Torvalds 已提交
6690 6691 6692 6693
	/* Set up physical groups */
	for (i = 0; i < MAX_NUMNODES; i++) {
		cpumask_t nodemask = node_to_cpumask(i);

6694
		cpus_and(nodemask, nodemask, *cpu_map);
L
Linus Torvalds 已提交
6695 6696 6697
		if (cpus_empty(nodemask))
			continue;

6698
		init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
L
Linus Torvalds 已提交
6699 6700 6701 6702
	}

#ifdef CONFIG_NUMA
	/* Set up node groups */
6703
	if (sd_allnodes)
I
Ingo Molnar 已提交
6704 6705
		init_sched_build_groups(*cpu_map, cpu_map,
					&cpu_to_allnodes_group);
6706 6707 6708 6709 6710 6711 6712 6713 6714 6715

	for (i = 0; i < MAX_NUMNODES; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		cpumask_t nodemask = node_to_cpumask(i);
		cpumask_t domainspan;
		cpumask_t covered = CPU_MASK_NONE;
		int j;

		cpus_and(nodemask, nodemask, *cpu_map);
6716 6717
		if (cpus_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
6718
			continue;
6719
		}
6720 6721 6722 6723

		domainspan = sched_domain_node_span(i);
		cpus_and(domainspan, domainspan, *cpu_map);

6724
		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6725 6726 6727 6728 6729
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
			goto error;
		}
6730 6731 6732
		sched_group_nodes[i] = sg;
		for_each_cpu_mask(j, nodemask) {
			struct sched_domain *sd;
I
Ingo Molnar 已提交
6733

6734 6735 6736
			sd = &per_cpu(node_domains, j);
			sd->groups = sg;
		}
6737
		sg->__cpu_power = 0;
6738
		sg->cpumask = nodemask;
6739
		sg->next = sg;
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
		cpus_or(covered, covered, nodemask);
		prev = sg;

		for (j = 0; j < MAX_NUMNODES; j++) {
			cpumask_t tmp, notcovered;
			int n = (i + j) % MAX_NUMNODES;

			cpus_complement(notcovered, covered);
			cpus_and(tmp, notcovered, *cpu_map);
			cpus_and(tmp, tmp, domainspan);
			if (cpus_empty(tmp))
				break;

			nodemask = node_to_cpumask(n);
			cpus_and(tmp, tmp, nodemask);
			if (cpus_empty(tmp))
				continue;

6758 6759
			sg = kmalloc_node(sizeof(struct sched_group),
					  GFP_KERNEL, i);
6760 6761 6762
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
6763
				goto error;
6764
			}
6765
			sg->__cpu_power = 0;
6766
			sg->cpumask = tmp;
6767
			sg->next = prev->next;
6768 6769 6770 6771 6772
			cpus_or(covered, covered, tmp);
			prev->next = sg;
			prev = sg;
		}
	}
L
Linus Torvalds 已提交
6773 6774 6775
#endif

	/* Calculate CPU power for physical packages and nodes */
6776
#ifdef CONFIG_SCHED_SMT
6777
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6778 6779
		struct sched_domain *sd = &per_cpu(cpu_domains, i);

6780
		init_sched_groups_power(i, sd);
6781
	}
L
Linus Torvalds 已提交
6782
#endif
6783
#ifdef CONFIG_SCHED_MC
6784
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6785 6786
		struct sched_domain *sd = &per_cpu(core_domains, i);

6787
		init_sched_groups_power(i, sd);
6788 6789
	}
#endif
6790

6791
	for_each_cpu_mask(i, *cpu_map) {
I
Ingo Molnar 已提交
6792 6793
		struct sched_domain *sd = &per_cpu(phys_domains, i);

6794
		init_sched_groups_power(i, sd);
L
Linus Torvalds 已提交
6795 6796
	}

6797
#ifdef CONFIG_NUMA
6798 6799
	for (i = 0; i < MAX_NUMNODES; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
6800

6801 6802
	if (sd_allnodes) {
		struct sched_group *sg;
6803

6804
		cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6805 6806
		init_numa_sched_groups_power(sg);
	}
6807 6808
#endif

L
Linus Torvalds 已提交
6809
	/* Attach the domains */
6810
	for_each_cpu_mask(i, *cpu_map) {
L
Linus Torvalds 已提交
6811 6812 6813
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i);
6814 6815
#elif defined(CONFIG_SCHED_MC)
		sd = &per_cpu(core_domains, i);
L
Linus Torvalds 已提交
6816 6817 6818
#else
		sd = &per_cpu(phys_domains, i);
#endif
G
Gregory Haskins 已提交
6819
		cpu_attach_domain(sd, rd, i);
L
Linus Torvalds 已提交
6820
	}
6821 6822 6823

	return 0;

6824
#ifdef CONFIG_NUMA
6825 6826 6827
error:
	free_sched_groups(cpu_map);
	return -ENOMEM;
6828
#endif
L
Linus Torvalds 已提交
6829
}
P
Paul Jackson 已提交
6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840

static cpumask_t *doms_cur;	/* current sched domains */
static int ndoms_cur;		/* number of sched domains in 'doms_cur' */

/*
 * Special case: If a kmalloc of a doms_cur partition (array of
 * cpumask_t) fails, then fallback to a single sched domain,
 * as determined by the single cpumask_t fallback_doms.
 */
static cpumask_t fallback_doms;

6841
/*
I
Ingo Molnar 已提交
6842
 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
P
Paul Jackson 已提交
6843 6844
 * For now this just excludes isolated cpus, but could be used to
 * exclude other special cases in the future.
6845
 */
6846
static int arch_init_sched_domains(const cpumask_t *cpu_map)
6847
{
6848 6849
	int err;

P
Paul Jackson 已提交
6850 6851 6852 6853 6854
	ndoms_cur = 1;
	doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
	if (!doms_cur)
		doms_cur = &fallback_doms;
	cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6855
	err = build_sched_domains(doms_cur);
6856
	register_sched_domain_sysctl();
6857 6858

	return err;
6859 6860 6861
}

static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
L
Linus Torvalds 已提交
6862
{
6863
	free_sched_groups(cpu_map);
6864
}
L
Linus Torvalds 已提交
6865

6866 6867 6868 6869
/*
 * Detach sched domains from a group of cpus specified in cpu_map
 * These cpus will now be attached to the NULL domain
 */
6870
static void detach_destroy_domains(const cpumask_t *cpu_map)
6871 6872 6873
{
	int i;

6874 6875
	unregister_sched_domain_sysctl();

6876
	for_each_cpu_mask(i, *cpu_map)
G
Gregory Haskins 已提交
6877
		cpu_attach_domain(NULL, &def_root_domain, i);
6878 6879 6880 6881
	synchronize_sched();
	arch_destroy_sched_domains(cpu_map);
}

P
Paul Jackson 已提交
6882 6883
/*
 * Partition sched domains as specified by the 'ndoms_new'
I
Ingo Molnar 已提交
6884
 * cpumasks in the array doms_new[] of cpumasks. This compares
P
Paul Jackson 已提交
6885 6886 6887 6888
 * doms_new[] to the current sched domain partitioning, doms_cur[].
 * It destroys each deleted domain and builds each new domain.
 *
 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
I
Ingo Molnar 已提交
6889 6890 6891
 * The masks don't intersect (don't overlap.) We should setup one
 * sched domain for each mask. CPUs not in any of the cpumasks will
 * not be load balanced. If the same cpumask appears both in the
P
Paul Jackson 已提交
6892 6893 6894
 * current 'doms_cur' domains and in the new 'doms_new', we can leave
 * it as it is.
 *
I
Ingo Molnar 已提交
6895 6896
 * The passed in 'doms_new' should be kmalloc'd. This routine takes
 * ownership of it and will kfree it when done with it. If the caller
P
Paul Jackson 已提交
6897 6898 6899 6900 6901 6902 6903 6904 6905 6906
 * failed the kmalloc call, then it can pass in doms_new == NULL,
 * and partition_sched_domains() will fallback to the single partition
 * 'fallback_doms'.
 *
 * Call with hotplug lock held
 */
void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
{
	int i, j;

6907 6908
	lock_doms_cur();

6909 6910 6911
	/* always unregister in case we don't destroy any domains */
	unregister_sched_domain_sysctl();

P
Paul Jackson 已提交
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946
	if (doms_new == NULL) {
		ndoms_new = 1;
		doms_new = &fallback_doms;
		cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
	}

	/* Destroy deleted domains */
	for (i = 0; i < ndoms_cur; i++) {
		for (j = 0; j < ndoms_new; j++) {
			if (cpus_equal(doms_cur[i], doms_new[j]))
				goto match1;
		}
		/* no match - a current sched domain not in new doms_new[] */
		detach_destroy_domains(doms_cur + i);
match1:
		;
	}

	/* Build new domains */
	for (i = 0; i < ndoms_new; i++) {
		for (j = 0; j < ndoms_cur; j++) {
			if (cpus_equal(doms_new[i], doms_cur[j]))
				goto match2;
		}
		/* no match - add a new doms_new */
		build_sched_domains(doms_new + i);
match2:
		;
	}

	/* Remember the new sched domains */
	if (doms_cur != &fallback_doms)
		kfree(doms_cur);
	doms_cur = doms_new;
	ndoms_cur = ndoms_new;
6947 6948

	register_sched_domain_sysctl();
6949 6950

	unlock_doms_cur();
P
Paul Jackson 已提交
6951 6952
}

6953
#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
A
Adrian Bunk 已提交
6954
static int arch_reinit_sched_domains(void)
6955 6956 6957
{
	int err;

6958
	get_online_cpus();
6959 6960
	detach_destroy_domains(&cpu_online_map);
	err = arch_init_sched_domains(&cpu_online_map);
6961
	put_online_cpus();
6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987

	return err;
}

static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
{
	int ret;

	if (buf[0] != '0' && buf[0] != '1')
		return -EINVAL;

	if (smt)
		sched_smt_power_savings = (buf[0] == '1');
	else
		sched_mc_power_savings = (buf[0] == '1');

	ret = arch_reinit_sched_domains();

	return ret ? ret : count;
}

#ifdef CONFIG_SCHED_MC
static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_mc_power_savings);
}
6988 6989
static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
					    const char *buf, size_t count)
6990 6991 6992
{
	return sched_power_savings_store(buf, count, 0);
}
A
Adrian Bunk 已提交
6993 6994
static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
		   sched_mc_power_savings_store);
6995 6996 6997 6998 6999 7000 7001
#endif

#ifdef CONFIG_SCHED_SMT
static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
{
	return sprintf(page, "%u\n", sched_smt_power_savings);
}
7002 7003
static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
					     const char *buf, size_t count)
7004 7005 7006
{
	return sched_power_savings_store(buf, count, 1);
}
A
Adrian Bunk 已提交
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
		   sched_smt_power_savings_store);
#endif

int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
{
	int err = 0;

#ifdef CONFIG_SCHED_SMT
	if (smt_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_smt_power_savings.attr);
#endif
#ifdef CONFIG_SCHED_MC
	if (!err && mc_capable())
		err = sysfs_create_file(&cls->kset.kobj,
					&attr_sched_mc_power_savings.attr);
#endif
	return err;
}
7027 7028
#endif

L
Linus Torvalds 已提交
7029
/*
I
Ingo Molnar 已提交
7030
 * Force a reinitialization of the sched domains hierarchy. The domains
L
Linus Torvalds 已提交
7031
 * and groups cannot be updated in place without racing with the balancing
N
Nick Piggin 已提交
7032
 * code, so we temporarily attach all running cpus to the NULL domain
L
Linus Torvalds 已提交
7033 7034 7035 7036 7037 7038 7039
 * which will prevent rebalancing while the sched domains are recalculated.
 */
static int update_sched_domains(struct notifier_block *nfb,
				unsigned long action, void *hcpu)
{
	switch (action) {
	case CPU_UP_PREPARE:
7040
	case CPU_UP_PREPARE_FROZEN:
L
Linus Torvalds 已提交
7041
	case CPU_DOWN_PREPARE:
7042
	case CPU_DOWN_PREPARE_FROZEN:
7043
		detach_destroy_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7044 7045 7046
		return NOTIFY_OK;

	case CPU_UP_CANCELED:
7047
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
7048
	case CPU_DOWN_FAILED:
7049
	case CPU_DOWN_FAILED_FROZEN:
L
Linus Torvalds 已提交
7050
	case CPU_ONLINE:
7051
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
7052
	case CPU_DEAD:
7053
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
7054 7055 7056 7057 7058 7059 7060 7061 7062
		/*
		 * Fall through and re-initialise the domains.
		 */
		break;
	default:
		return NOTIFY_DONE;
	}

	/* The hotplug lock is already held by cpu_up/cpu_down */
7063
	arch_init_sched_domains(&cpu_online_map);
L
Linus Torvalds 已提交
7064 7065 7066 7067 7068 7069

	return NOTIFY_OK;
}

void __init sched_init_smp(void)
{
7070 7071
	cpumask_t non_isolated_cpus;

7072
	get_online_cpus();
7073
	arch_init_sched_domains(&cpu_online_map);
7074
	cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7075 7076
	if (cpus_empty(non_isolated_cpus))
		cpu_set(smp_processor_id(), non_isolated_cpus);
7077
	put_online_cpus();
L
Linus Torvalds 已提交
7078 7079
	/* XXX: Theoretical race here - CPU may be hotplugged now */
	hotcpu_notifier(update_sched_domains, 0);
7080 7081 7082 7083

	/* Move init over to a non-isolated CPU */
	if (set_cpus_allowed(current, non_isolated_cpus) < 0)
		BUG();
I
Ingo Molnar 已提交
7084
	sched_init_granularity();
7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099

#ifdef CONFIG_FAIR_GROUP_SCHED
	if (nr_cpu_ids == 1)
		return;

	lb_monitor_task = kthread_create(load_balance_monitor, NULL,
					 "group_balance");
	if (!IS_ERR(lb_monitor_task)) {
		lb_monitor_task->flags |= PF_NOFREEZE;
		wake_up_process(lb_monitor_task);
	} else {
		printk(KERN_ERR "Could not create load balance monitor thread"
			"(error = %ld) \n", PTR_ERR(lb_monitor_task));
	}
#endif
L
Linus Torvalds 已提交
7100 7101 7102 7103
}
#else
void __init sched_init_smp(void)
{
I
Ingo Molnar 已提交
7104
	sched_init_granularity();
L
Linus Torvalds 已提交
7105 7106 7107 7108 7109 7110 7111 7112 7113 7114
}
#endif /* CONFIG_SMP */

int in_sched_functions(unsigned long addr)
{
	return in_lock_functions(addr) ||
		(addr >= (unsigned long)__sched_text_start
		&& addr < (unsigned long)__sched_text_end);
}

A
Alexey Dobriyan 已提交
7115
static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
I
Ingo Molnar 已提交
7116 7117 7118 7119 7120
{
	cfs_rq->tasks_timeline = RB_ROOT;
#ifdef CONFIG_FAIR_GROUP_SCHED
	cfs_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7121
	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
I
Ingo Molnar 已提交
7122 7123
}

P
Peter Zijlstra 已提交
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
{
	struct rt_prio_array *array;
	int i;

	array = &rt_rq->active;
	for (i = 0; i < MAX_RT_PRIO; i++) {
		INIT_LIST_HEAD(array->queue + i);
		__clear_bit(i, array->bitmap);
	}
	/* delimiter for bitsearch: */
	__set_bit(MAX_RT_PRIO, array->bitmap);

7137
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7138 7139
	rt_rq->highest_prio = MAX_RT_PRIO;
#endif
P
Peter Zijlstra 已提交
7140 7141 7142 7143 7144 7145 7146
#ifdef CONFIG_SMP
	rt_rq->rt_nr_migratory = 0;
	rt_rq->overloaded = 0;
#endif

	rt_rq->rt_time = 0;
	rt_rq->rt_throttled = 0;
P
Peter Zijlstra 已提交
7147

7148
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7149
	rt_rq->rt_nr_boosted = 0;
P
Peter Zijlstra 已提交
7150 7151
	rt_rq->rq = rq;
#endif
P
Peter Zijlstra 已提交
7152 7153
}

P
Peter Zijlstra 已提交
7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
#ifdef CONFIG_FAIR_GROUP_SCHED
static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
		struct cfs_rq *cfs_rq, struct sched_entity *se,
		int cpu, int add)
{
	tg->cfs_rq[cpu] = cfs_rq;
	init_cfs_rq(cfs_rq, rq);
	cfs_rq->tg = tg;
	if (add)
		list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);

	tg->se[cpu] = se;
	se->cfs_rq = &rq->cfs;
	se->my_q = cfs_rq;
	se->load.weight = tg->shares;
	se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
	se->parent = NULL;
}
7172
#endif
P
Peter Zijlstra 已提交
7173

7174
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
		struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
		int cpu, int add)
{
	tg->rt_rq[cpu] = rt_rq;
	init_rt_rq(rt_rq, rq);
	rt_rq->tg = tg;
	rt_rq->rt_se = rt_se;
	if (add)
		list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);

	tg->rt_se[cpu] = rt_se;
	rt_se->rt_rq = &rq->rt;
	rt_se->my_q = rt_rq;
	rt_se->parent = NULL;
	INIT_LIST_HEAD(&rt_se->run_list);
}
#endif

L
Linus Torvalds 已提交
7194 7195
void __init sched_init(void)
{
7196
	int highest_cpu = 0;
I
Ingo Molnar 已提交
7197 7198
	int i, j;

G
Gregory Haskins 已提交
7199 7200 7201 7202
#ifdef CONFIG_SMP
	init_defrootdomain();
#endif

7203
#ifdef CONFIG_GROUP_SCHED
P
Peter Zijlstra 已提交
7204 7205 7206
	list_add(&init_task_group.list, &task_groups);
#endif

7207
	for_each_possible_cpu(i) {
7208
		struct rq *rq;
L
Linus Torvalds 已提交
7209 7210 7211

		rq = cpu_rq(i);
		spin_lock_init(&rq->lock);
7212
		lockdep_set_class(&rq->lock, &rq->rq_lock_key);
N
Nick Piggin 已提交
7213
		rq->nr_running = 0;
I
Ingo Molnar 已提交
7214 7215
		rq->clock = 1;
		init_cfs_rq(&rq->cfs, rq);
P
Peter Zijlstra 已提交
7216
		init_rt_rq(&rq->rt, rq);
I
Ingo Molnar 已提交
7217
#ifdef CONFIG_FAIR_GROUP_SCHED
7218
		init_task_group.shares = init_task_group_load;
P
Peter Zijlstra 已提交
7219 7220 7221 7222 7223
		INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
		init_tg_cfs_entry(rq, &init_task_group,
				&per_cpu(init_cfs_rq, i),
				&per_cpu(init_sched_entity, i), i, 1);

7224 7225
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7226 7227
		init_task_group.rt_runtime =
			sysctl_sched_rt_runtime * NSEC_PER_USEC;
P
Peter Zijlstra 已提交
7228 7229 7230 7231
		INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
		init_tg_rt_entry(rq, &init_task_group,
				&per_cpu(init_rt_rq, i),
				&per_cpu(init_sched_rt_entity, i), i, 1);
I
Ingo Molnar 已提交
7232
#endif
P
Peter Zijlstra 已提交
7233
		rq->rt_period_expire = 0;
P
Peter Zijlstra 已提交
7234
		rq->rt_throttled = 0;
L
Linus Torvalds 已提交
7235

I
Ingo Molnar 已提交
7236 7237
		for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
			rq->cpu_load[j] = 0;
L
Linus Torvalds 已提交
7238
#ifdef CONFIG_SMP
N
Nick Piggin 已提交
7239
		rq->sd = NULL;
G
Gregory Haskins 已提交
7240
		rq->rd = NULL;
L
Linus Torvalds 已提交
7241
		rq->active_balance = 0;
I
Ingo Molnar 已提交
7242
		rq->next_balance = jiffies;
L
Linus Torvalds 已提交
7243
		rq->push_cpu = 0;
7244
		rq->cpu = i;
L
Linus Torvalds 已提交
7245 7246
		rq->migration_thread = NULL;
		INIT_LIST_HEAD(&rq->migration_queue);
7247
		rq_attach_root(rq, &def_root_domain);
L
Linus Torvalds 已提交
7248
#endif
P
Peter Zijlstra 已提交
7249
		init_rq_hrtick(rq);
L
Linus Torvalds 已提交
7250
		atomic_set(&rq->nr_iowait, 0);
7251
		highest_cpu = i;
L
Linus Torvalds 已提交
7252 7253
	}

7254
	set_load_weight(&init_task);
7255

7256 7257 7258 7259
#ifdef CONFIG_PREEMPT_NOTIFIERS
	INIT_HLIST_HEAD(&init_task.preempt_notifiers);
#endif

7260
#ifdef CONFIG_SMP
7261
	nr_cpu_ids = highest_cpu + 1;
7262 7263 7264
	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
#endif

7265 7266 7267 7268
#ifdef CONFIG_RT_MUTEXES
	plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
#endif

L
Linus Torvalds 已提交
7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281
	/*
	 * The boot idle thread does lazy MMU switching as well:
	 */
	atomic_inc(&init_mm.mm_count);
	enter_lazy_tlb(&init_mm, current);

	/*
	 * Make us the idle thread. Technically, schedule() should not be
	 * called from this thread, however somewhere below it might be,
	 * but because we are the idle thread, we just pick up running again
	 * when this runqueue becomes "idle".
	 */
	init_idle(current, smp_processor_id());
I
Ingo Molnar 已提交
7282 7283 7284 7285
	/*
	 * During early bootup we pretend to be a normal task:
	 */
	current->sched_class = &fair_sched_class;
L
Linus Torvalds 已提交
7286 7287 7288 7289 7290
}

#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
void __might_sleep(char *file, int line)
{
7291
#ifdef in_atomic
L
Linus Torvalds 已提交
7292 7293 7294 7295 7296 7297 7298
	static unsigned long prev_jiffy;	/* ratelimiting */

	if ((in_atomic() || irqs_disabled()) &&
	    system_state == SYSTEM_RUNNING && !oops_in_progress) {
		if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
			return;
		prev_jiffy = jiffies;
7299
		printk(KERN_ERR "BUG: sleeping function called from invalid"
L
Linus Torvalds 已提交
7300 7301 7302
				" context at %s:%d\n", file, line);
		printk("in_atomic():%d, irqs_disabled():%d\n",
			in_atomic(), irqs_disabled());
7303
		debug_show_held_locks(current);
7304 7305
		if (irqs_disabled())
			print_irqtrace_events(current);
L
Linus Torvalds 已提交
7306 7307 7308 7309 7310 7311 7312 7313
		dump_stack();
	}
#endif
}
EXPORT_SYMBOL(__might_sleep);
#endif

#ifdef CONFIG_MAGIC_SYSRQ
7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327
static void normalize_task(struct rq *rq, struct task_struct *p)
{
	int on_rq;
	update_rq_clock(rq);
	on_rq = p->se.on_rq;
	if (on_rq)
		deactivate_task(rq, p, 0);
	__setscheduler(rq, p, SCHED_NORMAL, 0);
	if (on_rq) {
		activate_task(rq, p, 0);
		resched_task(rq->curr);
	}
}

L
Linus Torvalds 已提交
7328 7329
void normalize_rt_tasks(void)
{
7330
	struct task_struct *g, *p;
L
Linus Torvalds 已提交
7331
	unsigned long flags;
7332
	struct rq *rq;
L
Linus Torvalds 已提交
7333

7334
	read_lock_irqsave(&tasklist_lock, flags);
7335
	do_each_thread(g, p) {
7336 7337 7338 7339 7340 7341
		/*
		 * Only normalize user tasks:
		 */
		if (!p->mm)
			continue;

I
Ingo Molnar 已提交
7342 7343
		p->se.exec_start		= 0;
#ifdef CONFIG_SCHEDSTATS
I
Ingo Molnar 已提交
7344 7345 7346
		p->se.wait_start		= 0;
		p->se.sleep_start		= 0;
		p->se.block_start		= 0;
I
Ingo Molnar 已提交
7347
#endif
I
Ingo Molnar 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356
		task_rq(p)->clock		= 0;

		if (!rt_task(p)) {
			/*
			 * Renice negative nice level userspace
			 * tasks back to 0:
			 */
			if (TASK_NICE(p) < 0 && p->mm)
				set_user_nice(p, 0);
L
Linus Torvalds 已提交
7357
			continue;
I
Ingo Molnar 已提交
7358
		}
L
Linus Torvalds 已提交
7359

7360
		spin_lock(&p->pi_lock);
7361
		rq = __task_rq_lock(p);
L
Linus Torvalds 已提交
7362

7363
		normalize_task(rq, p);
7364

7365
		__task_rq_unlock(rq);
7366
		spin_unlock(&p->pi_lock);
7367 7368
	} while_each_thread(g, p);

7369
	read_unlock_irqrestore(&tasklist_lock, flags);
L
Linus Torvalds 已提交
7370 7371 7372
}

#endif /* CONFIG_MAGIC_SYSRQ */
7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390

#ifdef CONFIG_IA64
/*
 * These functions are only useful for the IA64 MCA handling.
 *
 * They can only be called when the whole system has been
 * stopped - every CPU needs to be quiescent, and no scheduling
 * activity can take place. Using them for anything else would
 * be a serious bug, and as a result, they aren't even visible
 * under any other configuration.
 */

/**
 * curr_task - return the current task for a given cpu.
 * @cpu: the processor in question.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7391
struct task_struct *curr_task(int cpu)
7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
{
	return cpu_curr(cpu);
}

/**
 * set_curr_task - set the current task for a given cpu.
 * @cpu: the processor in question.
 * @p: the task pointer to set.
 *
 * Description: This function must only be used when non-maskable interrupts
I
Ingo Molnar 已提交
7402 7403
 * are serviced on a separate stack. It allows the architecture to switch the
 * notion of the current task on a cpu in a non-blocking manner. This function
7404 7405 7406 7407 7408 7409 7410
 * must be called with all CPU's synchronized, and interrupts disabled, the
 * and caller must save the original value of the current task (see
 * curr_task() above) and restore that value before reenabling interrupts and
 * re-starting the system.
 *
 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
 */
7411
void set_curr_task(int cpu, struct task_struct *p)
7412 7413 7414 7415 7416
{
	cpu_curr(cpu) = p;
}

#endif
S
Srivatsa Vaddagiri 已提交
7417

7418
#ifdef CONFIG_GROUP_SCHED
S
Srivatsa Vaddagiri 已提交
7419

7420
#if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7421 7422
/*
 * distribute shares of all task groups among their schedulable entities,
P
Peter Zijlstra 已提交
7423
 * to reflect load distribution across cpus.
7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441
 */
static int rebalance_shares(struct sched_domain *sd, int this_cpu)
{
	struct cfs_rq *cfs_rq;
	struct rq *rq = cpu_rq(this_cpu);
	cpumask_t sdspan = sd->span;
	int balanced = 1;

	/* Walk thr' all the task groups that we have */
	for_each_leaf_cfs_rq(rq, cfs_rq) {
		int i;
		unsigned long total_load = 0, total_shares;
		struct task_group *tg = cfs_rq->tg;

		/* Gather total task load of this group across cpus */
		for_each_cpu_mask(i, sdspan)
			total_load += tg->cfs_rq[i]->load.weight;

I
Ingo Molnar 已提交
7442
		/* Nothing to do if this group has no load */
7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
		if (!total_load)
			continue;

		/*
		 * tg->shares represents the number of cpu shares the task group
		 * is eligible to hold on a single cpu. On N cpus, it is
		 * eligible to hold (N * tg->shares) number of cpu shares.
		 */
		total_shares = tg->shares * cpus_weight(sdspan);

		/*
		 * redistribute total_shares across cpus as per the task load
		 * distribution.
		 */
		for_each_cpu_mask(i, sdspan) {
			unsigned long local_load, local_shares;

			local_load = tg->cfs_rq[i]->load.weight;
			local_shares = (local_load * total_shares) / total_load;
			if (!local_shares)
				local_shares = MIN_GROUP_SHARES;
			if (local_shares == tg->se[i]->load.weight)
				continue;

			spin_lock_irq(&cpu_rq(i)->lock);
			set_se_shares(tg->se[i], local_shares);
			spin_unlock_irq(&cpu_rq(i)->lock);
			balanced = 0;
		}
	}

	return balanced;
}

/*
 * How frequently should we rebalance_shares() across cpus?
 *
 * The more frequently we rebalance shares, the more accurate is the fairness
 * of cpu bandwidth distribution between task groups. However higher frequency
 * also implies increased scheduling overhead.
 *
 * sysctl_sched_min_bal_int_shares represents the minimum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
 * sysctl_sched_max_bal_int_shares represents the maximum interval between
 * consecutive calls to rebalance_shares() in the same sched domain.
 *
P
Peter Zijlstra 已提交
7490
 * These settings allows for the appropriate trade-off between accuracy of
7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522
 * fairness and the associated overhead.
 *
 */

/* default: 8ms, units: milliseconds */
const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;

/* default: 128ms, units: milliseconds */
const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;

/* kernel thread that runs rebalance_shares() periodically */
static int load_balance_monitor(void *unused)
{
	unsigned int timeout = sysctl_sched_min_bal_int_shares;
	struct sched_param schedparm;
	int ret;

	/*
	 * We don't want this thread's execution to be limited by the shares
	 * assigned to default group (init_task_group). Hence make it run
	 * as a SCHED_RR RT task at the lowest priority.
	 */
	schedparm.sched_priority = 1;
	ret = sched_setscheduler(current, SCHED_RR, &schedparm);
	if (ret)
		printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
				" monitor thread (error = %d) \n", ret);

	while (!kthread_should_stop()) {
		int i, cpu, balanced = 1;

		/* Prevent cpus going down or coming up */
7523
		get_online_cpus();
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556
		/* lockout changes to doms_cur[] array */
		lock_doms_cur();
		/*
		 * Enter a rcu read-side critical section to safely walk rq->sd
		 * chain on various cpus and to walk task group list
		 * (rq->leaf_cfs_rq_list) in rebalance_shares().
		 */
		rcu_read_lock();

		for (i = 0; i < ndoms_cur; i++) {
			cpumask_t cpumap = doms_cur[i];
			struct sched_domain *sd = NULL, *sd_prev = NULL;

			cpu = first_cpu(cpumap);

			/* Find the highest domain at which to balance shares */
			for_each_domain(cpu, sd) {
				if (!(sd->flags & SD_LOAD_BALANCE))
					continue;
				sd_prev = sd;
			}

			sd = sd_prev;
			/* sd == NULL? No load balance reqd in this domain */
			if (!sd)
				continue;

			balanced &= rebalance_shares(sd, cpu);
		}

		rcu_read_unlock();

		unlock_doms_cur();
7557
		put_online_cpus();
7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570

		if (!balanced)
			timeout = sysctl_sched_min_bal_int_shares;
		else if (timeout < sysctl_sched_max_bal_int_shares)
			timeout *= 2;

		msleep_interruptible(timeout);
	}

	return 0;
}
#endif	/* CONFIG_SMP */

7571 7572
#ifdef CONFIG_FAIR_GROUP_SCHED
static void free_fair_sched_group(struct task_group *tg)
P
Peter Zijlstra 已提交
7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->cfs_rq)
			kfree(tg->cfs_rq[i]);
		if (tg->se)
			kfree(tg->se[i]);
	}

	kfree(tg->cfs_rq);
	kfree(tg->se);
}

7587
static int alloc_fair_sched_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7588 7589 7590
{
	struct cfs_rq *cfs_rq;
	struct sched_entity *se;
7591
	struct rq *rq;
S
Srivatsa Vaddagiri 已提交
7592 7593
	int i;

7594
	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7595 7596
	if (!tg->cfs_rq)
		goto err;
7597
	tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
S
Srivatsa Vaddagiri 已提交
7598 7599
	if (!tg->se)
		goto err;
7600 7601

	tg->shares = NICE_0_LOAD;
S
Srivatsa Vaddagiri 已提交
7602 7603

	for_each_possible_cpu(i) {
7604
		rq = cpu_rq(i);
S
Srivatsa Vaddagiri 已提交
7605

P
Peter Zijlstra 已提交
7606 7607
		cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7608 7609 7610
		if (!cfs_rq)
			goto err;

P
Peter Zijlstra 已提交
7611 7612
		se = kmalloc_node(sizeof(struct sched_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
S
Srivatsa Vaddagiri 已提交
7613 7614 7615
		if (!se)
			goto err;

7616
		init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651
	}

	return 1;

 err:
	return 0;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
			&cpu_rq(cpu)->leaf_cfs_rq_list);
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
}
#else
static inline void free_fair_sched_group(struct task_group *tg)
{
}

static inline int alloc_fair_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_fair_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
{
}
7652 7653 7654
#endif

#ifdef CONFIG_RT_GROUP_SCHED
7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688
static void free_rt_sched_group(struct task_group *tg)
{
	int i;

	for_each_possible_cpu(i) {
		if (tg->rt_rq)
			kfree(tg->rt_rq[i]);
		if (tg->rt_se)
			kfree(tg->rt_se[i]);
	}

	kfree(tg->rt_rq);
	kfree(tg->rt_se);
}

static int alloc_rt_sched_group(struct task_group *tg)
{
	struct rt_rq *rt_rq;
	struct sched_rt_entity *rt_se;
	struct rq *rq;
	int i;

	tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_rq)
		goto err;
	tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
	if (!tg->rt_se)
		goto err;

	tg->rt_runtime = 0;

	for_each_possible_cpu(i) {
		rq = cpu_rq(i);

P
Peter Zijlstra 已提交
7689 7690 7691 7692
		rt_rq = kmalloc_node(sizeof(struct rt_rq),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_rq)
			goto err;
S
Srivatsa Vaddagiri 已提交
7693

P
Peter Zijlstra 已提交
7694 7695 7696 7697
		rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
				GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
		if (!rt_se)
			goto err;
S
Srivatsa Vaddagiri 已提交
7698

P
Peter Zijlstra 已提交
7699
		init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
S
Srivatsa Vaddagiri 已提交
7700 7701
	}

7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
	return 1;

 err:
	return 0;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
	list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
			&cpu_rq(cpu)->leaf_rt_rq_list);
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
	list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
}
#else
static inline void free_rt_sched_group(struct task_group *tg)
{
}

static inline int alloc_rt_sched_group(struct task_group *tg)
{
	return 1;
}

static inline void register_rt_sched_group(struct task_group *tg, int cpu)
{
}

static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
{
}
#endif

static void free_sched_group(struct task_group *tg)
{
	free_fair_sched_group(tg);
	free_rt_sched_group(tg);
	kfree(tg);
}

/* allocate runqueue etc for a new task group */
struct task_group *sched_create_group(void)
{
	struct task_group *tg;
	unsigned long flags;
	int i;

	tg = kzalloc(sizeof(*tg), GFP_KERNEL);
	if (!tg)
		return ERR_PTR(-ENOMEM);

	if (!alloc_fair_sched_group(tg))
		goto err;

	if (!alloc_rt_sched_group(tg))
		goto err;

7761
	spin_lock_irqsave(&task_group_lock, flags);
7762
	for_each_possible_cpu(i) {
7763 7764
		register_fair_sched_group(tg, i);
		register_rt_sched_group(tg, i);
7765
	}
P
Peter Zijlstra 已提交
7766
	list_add_rcu(&tg->list, &task_groups);
7767
	spin_unlock_irqrestore(&task_group_lock, flags);
S
Srivatsa Vaddagiri 已提交
7768

7769
	return tg;
S
Srivatsa Vaddagiri 已提交
7770 7771

err:
P
Peter Zijlstra 已提交
7772
	free_sched_group(tg);
S
Srivatsa Vaddagiri 已提交
7773 7774 7775
	return ERR_PTR(-ENOMEM);
}

7776
/* rcu callback to free various structures associated with a task group */
P
Peter Zijlstra 已提交
7777
static void free_sched_group_rcu(struct rcu_head *rhp)
S
Srivatsa Vaddagiri 已提交
7778 7779
{
	/* now it should be safe to free those cfs_rqs */
P
Peter Zijlstra 已提交
7780
	free_sched_group(container_of(rhp, struct task_group, rcu));
S
Srivatsa Vaddagiri 已提交
7781 7782
}

7783
/* Destroy runqueue etc associated with a task group */
7784
void sched_destroy_group(struct task_group *tg)
S
Srivatsa Vaddagiri 已提交
7785
{
7786
	unsigned long flags;
7787
	int i;
S
Srivatsa Vaddagiri 已提交
7788

7789
	spin_lock_irqsave(&task_group_lock, flags);
7790
	for_each_possible_cpu(i) {
7791 7792
		unregister_fair_sched_group(tg, i);
		unregister_rt_sched_group(tg, i);
7793
	}
P
Peter Zijlstra 已提交
7794
	list_del_rcu(&tg->list);
7795
	spin_unlock_irqrestore(&task_group_lock, flags);
7796 7797

	/* wait for possible concurrent references to cfs_rqs complete */
P
Peter Zijlstra 已提交
7798
	call_rcu(&tg->rcu, free_sched_group_rcu);
S
Srivatsa Vaddagiri 已提交
7799 7800
}

7801
/* change task's runqueue when it moves between groups.
I
Ingo Molnar 已提交
7802 7803 7804
 *	The caller of this function should have put the task in its new group
 *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
 *	reflect its new group.
7805 7806
 */
void sched_move_task(struct task_struct *tsk)
S
Srivatsa Vaddagiri 已提交
7807 7808 7809 7810 7811 7812 7813 7814 7815
{
	int on_rq, running;
	unsigned long flags;
	struct rq *rq;

	rq = task_rq_lock(tsk, &flags);

	update_rq_clock(rq);

7816
	running = task_current(rq, tsk);
S
Srivatsa Vaddagiri 已提交
7817 7818
	on_rq = tsk->se.on_rq;

7819
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7820
		dequeue_task(rq, tsk, 0);
7821 7822 7823
		if (unlikely(running))
			tsk->sched_class->put_prev_task(rq, tsk);
	}
S
Srivatsa Vaddagiri 已提交
7824

P
Peter Zijlstra 已提交
7825
	set_task_rq(tsk, task_cpu(tsk));
S
Srivatsa Vaddagiri 已提交
7826

7827 7828 7829
	if (on_rq) {
		if (unlikely(running))
			tsk->sched_class->set_curr_task(rq);
7830
		enqueue_task(rq, tsk, 0);
7831
	}
S
Srivatsa Vaddagiri 已提交
7832 7833 7834 7835

	task_rq_unlock(rq, &flags);
}

7836
#ifdef CONFIG_FAIR_GROUP_SCHED
7837
/* rq->lock to be locked by caller */
S
Srivatsa Vaddagiri 已提交
7838 7839 7840 7841 7842 7843
static void set_se_shares(struct sched_entity *se, unsigned long shares)
{
	struct cfs_rq *cfs_rq = se->cfs_rq;
	struct rq *rq = cfs_rq->rq;
	int on_rq;

7844 7845
	if (!shares)
		shares = MIN_GROUP_SHARES;
S
Srivatsa Vaddagiri 已提交
7846 7847

	on_rq = se->on_rq;
7848
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7849
		dequeue_entity(cfs_rq, se, 0);
7850 7851
		dec_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7852 7853 7854 7855

	se->load.weight = shares;
	se->load.inv_weight = div64_64((1ULL<<32), shares);

7856
	if (on_rq) {
S
Srivatsa Vaddagiri 已提交
7857
		enqueue_entity(cfs_rq, se, 0);
7858 7859
		inc_cpu_load(rq, se->load.weight);
	}
S
Srivatsa Vaddagiri 已提交
7860 7861
}

7862 7863
static DEFINE_MUTEX(shares_mutex);

7864
int sched_group_set_shares(struct task_group *tg, unsigned long shares)
S
Srivatsa Vaddagiri 已提交
7865 7866
{
	int i;
7867
	unsigned long flags;
7868

7869
	mutex_lock(&shares_mutex);
7870
	if (tg->shares == shares)
7871
		goto done;
S
Srivatsa Vaddagiri 已提交
7872

7873 7874 7875 7876 7877 7878 7879 7880
	if (shares < MIN_GROUP_SHARES)
		shares = MIN_GROUP_SHARES;

	/*
	 * Prevent any load balance activity (rebalance_shares,
	 * load_balance_fair) from referring to this group first,
	 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
	 */
7881
	spin_lock_irqsave(&task_group_lock, flags);
7882 7883
	for_each_possible_cpu(i)
		unregister_fair_sched_group(tg, i);
7884
	spin_unlock_irqrestore(&task_group_lock, flags);
7885 7886 7887 7888 7889 7890 7891 7892

	/* wait for any ongoing reference to this group to finish */
	synchronize_sched();

	/*
	 * Now we are free to modify the group's share on each cpu
	 * w/o tripping rebalance_share or load_balance_fair.
	 */
7893
	tg->shares = shares;
7894 7895
	for_each_possible_cpu(i) {
		spin_lock_irq(&cpu_rq(i)->lock);
7896
		set_se_shares(tg->se[i], shares);
7897 7898
		spin_unlock_irq(&cpu_rq(i)->lock);
	}
S
Srivatsa Vaddagiri 已提交
7899

7900 7901 7902 7903
	/*
	 * Enable load balance activity on this group, by inserting it back on
	 * each cpu's rq->leaf_cfs_rq_list.
	 */
7904
	spin_lock_irqsave(&task_group_lock, flags);
7905 7906
	for_each_possible_cpu(i)
		register_fair_sched_group(tg, i);
7907
	spin_unlock_irqrestore(&task_group_lock, flags);
7908
done:
7909
	mutex_unlock(&shares_mutex);
7910
	return 0;
S
Srivatsa Vaddagiri 已提交
7911 7912
}

7913 7914 7915 7916
unsigned long sched_group_shares(struct task_group *tg)
{
	return tg->shares;
}
7917
#endif
7918

7919
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
7920
/*
P
Peter Zijlstra 已提交
7921
 * Ensure that the real time constraints are schedulable.
P
Peter Zijlstra 已提交
7922
 */
P
Peter Zijlstra 已提交
7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935
static DEFINE_MUTEX(rt_constraints_mutex);

static unsigned long to_ratio(u64 period, u64 runtime)
{
	if (runtime == RUNTIME_INF)
		return 1ULL << 16;

	runtime *= (1ULL << 16);
	div64_64(runtime, period);
	return runtime;
}

static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
P
Peter Zijlstra 已提交
7936 7937 7938
{
	struct task_group *tgi;
	unsigned long total = 0;
P
Peter Zijlstra 已提交
7939 7940 7941 7942
	unsigned long global_ratio =
		to_ratio(sysctl_sched_rt_period,
			 sysctl_sched_rt_runtime < 0 ?
				RUNTIME_INF : sysctl_sched_rt_runtime);
P
Peter Zijlstra 已提交
7943 7944

	rcu_read_lock();
P
Peter Zijlstra 已提交
7945 7946 7947
	list_for_each_entry_rcu(tgi, &task_groups, list) {
		if (tgi == tg)
			continue;
P
Peter Zijlstra 已提交
7948

P
Peter Zijlstra 已提交
7949 7950 7951
		total += to_ratio(period, tgi->rt_runtime);
	}
	rcu_read_unlock();
P
Peter Zijlstra 已提交
7952

P
Peter Zijlstra 已提交
7953
	return total + to_ratio(period, runtime) < global_ratio;
P
Peter Zijlstra 已提交
7954 7955
}

P
Peter Zijlstra 已提交
7956
int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
P
Peter Zijlstra 已提交
7957
{
P
Peter Zijlstra 已提交
7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977
	u64 rt_runtime, rt_period;
	int err = 0;

	rt_period = sysctl_sched_rt_period * NSEC_PER_USEC;
	rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
	if (rt_runtime_us == -1)
		rt_runtime = rt_period;

	mutex_lock(&rt_constraints_mutex);
	if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
		err = -EINVAL;
		goto unlock;
	}
	if (rt_runtime_us == -1)
		rt_runtime = RUNTIME_INF;
	tg->rt_runtime = rt_runtime;
 unlock:
	mutex_unlock(&rt_constraints_mutex);

	return err;
P
Peter Zijlstra 已提交
7978 7979
}

P
Peter Zijlstra 已提交
7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990
long sched_group_rt_runtime(struct task_group *tg)
{
	u64 rt_runtime_us;

	if (tg->rt_runtime == RUNTIME_INF)
		return -1;

	rt_runtime_us = tg->rt_runtime;
	do_div(rt_runtime_us, NSEC_PER_USEC);
	return rt_runtime_us;
}
7991 7992
#endif
#endif	/* CONFIG_GROUP_SCHED */
7993

7994
#ifdef CONFIG_CGROUP_SCHED
7995 7996

/* return corresponding task_group object of a cgroup */
7997
static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7998
{
7999 8000
	return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
			    struct task_group, css);
8001 8002 8003
}

static struct cgroup_subsys_state *
8004
cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8005 8006 8007
{
	struct task_group *tg;

8008
	if (!cgrp->parent) {
8009
		/* This is early initialization for the top cgroup */
8010
		init_task_group.css.cgroup = cgrp;
8011 8012 8013 8014
		return &init_task_group.css;
	}

	/* we support only 1-level deep hierarchical scheduler atm */
8015
	if (cgrp->parent->parent)
8016 8017 8018 8019 8020 8021 8022
		return ERR_PTR(-EINVAL);

	tg = sched_create_group();
	if (IS_ERR(tg))
		return ERR_PTR(-ENOMEM);

	/* Bind the cgroup to task_group object we just created */
8023
	tg->css.cgroup = cgrp;
8024 8025 8026 8027

	return &tg->css;
}

I
Ingo Molnar 已提交
8028 8029
static void
cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8030
{
8031
	struct task_group *tg = cgroup_tg(cgrp);
8032 8033 8034 8035

	sched_destroy_group(tg);
}

I
Ingo Molnar 已提交
8036 8037 8038
static int
cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
		      struct task_struct *tsk)
8039
{
8040 8041 8042 8043 8044
#ifdef CONFIG_RT_GROUP_SCHED
	/* Don't accept realtime tasks when there is no way for them to run */
	if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
		return -EINVAL;
#else
8045 8046 8047
	/* We don't support RT-tasks being in separate groups */
	if (tsk->sched_class != &fair_sched_class)
		return -EINVAL;
8048
#endif
8049 8050 8051 8052 8053

	return 0;
}

static void
8054
cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8055 8056 8057 8058 8059
			struct cgroup *old_cont, struct task_struct *tsk)
{
	sched_move_task(tsk);
}

8060
#ifdef CONFIG_FAIR_GROUP_SCHED
8061 8062
static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
8063
{
8064
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8065 8066
}

8067
static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8068
{
8069
	struct task_group *tg = cgroup_tg(cgrp);
8070 8071 8072

	return (u64) tg->shares;
}
8073
#endif
8074

8075
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8076 8077 8078 8079
static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
P
Peter Zijlstra 已提交
8080
{
P
Peter Zijlstra 已提交
8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106
	char buffer[64];
	int retval = 0;
	s64 val;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */

	/* strip newline if necessary */
	if (nbytes && (buffer[nbytes-1] == '\n'))
		buffer[nbytes-1] = 0;
	val = simple_strtoll(buffer, &end, 0);
	if (*end)
		return -EINVAL;

	/* Pass to subsystem */
	retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
	if (!retval)
		retval = nbytes;
	return retval;
P
Peter Zijlstra 已提交
8107 8108
}

P
Peter Zijlstra 已提交
8109 8110 8111 8112
static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   char __user *buf, size_t nbytes,
				   loff_t *ppos)
P
Peter Zijlstra 已提交
8113
{
P
Peter Zijlstra 已提交
8114 8115 8116
	char tmp[64];
	long val = sched_group_rt_runtime(cgroup_tg(cgrp));
	int len = sprintf(tmp, "%ld\n", val);
P
Peter Zijlstra 已提交
8117

P
Peter Zijlstra 已提交
8118
	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
P
Peter Zijlstra 已提交
8119
}
8120
#endif
P
Peter Zijlstra 已提交
8121

8122
static struct cftype cpu_files[] = {
8123
#ifdef CONFIG_FAIR_GROUP_SCHED
8124 8125 8126 8127 8128
	{
		.name = "shares",
		.read_uint = cpu_shares_read_uint,
		.write_uint = cpu_shares_write_uint,
	},
8129 8130
#endif
#ifdef CONFIG_RT_GROUP_SCHED
P
Peter Zijlstra 已提交
8131
	{
P
Peter Zijlstra 已提交
8132 8133 8134
		.name = "rt_runtime_us",
		.read = cpu_rt_runtime_read,
		.write = cpu_rt_runtime_write,
P
Peter Zijlstra 已提交
8135
	},
8136
#endif
8137 8138 8139 8140
};

static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
8141
	return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8142 8143 8144
}

struct cgroup_subsys cpu_cgroup_subsys = {
I
Ingo Molnar 已提交
8145 8146 8147 8148 8149 8150 8151
	.name		= "cpu",
	.create		= cpu_cgroup_create,
	.destroy	= cpu_cgroup_destroy,
	.can_attach	= cpu_cgroup_can_attach,
	.attach		= cpu_cgroup_attach,
	.populate	= cpu_cgroup_populate,
	.subsys_id	= cpu_cgroup_subsys_id,
8152 8153 8154
	.early_init	= 1,
};

8155
#endif	/* CONFIG_CGROUP_SCHED */
8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207

#ifdef CONFIG_CGROUP_CPUACCT

/*
 * CPU accounting code for task groups.
 *
 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
 * (balbir@in.ibm.com).
 */

/* track cpu usage of a group of tasks */
struct cpuacct {
	struct cgroup_subsys_state css;
	/* cpuusage holds pointer to a u64-type object on every cpu */
	u64 *cpuusage;
};

struct cgroup_subsys cpuacct_subsys;

/* return cpu accounting group corresponding to this container */
static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
{
	return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* return cpu accounting group to which this task belongs */
static inline struct cpuacct *task_ca(struct task_struct *tsk)
{
	return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
			    struct cpuacct, css);
}

/* create a new cpu accounting group */
static struct cgroup_subsys_state *cpuacct_create(
	struct cgroup_subsys *ss, struct cgroup *cont)
{
	struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);

	if (!ca)
		return ERR_PTR(-ENOMEM);

	ca->cpuusage = alloc_percpu(u64);
	if (!ca->cpuusage) {
		kfree(ca);
		return ERR_PTR(-ENOMEM);
	}

	return &ca->css;
}

/* destroy an existing cpu accounting group */
I
Ingo Molnar 已提交
8208 8209
static void
cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278
{
	struct cpuacct *ca = cgroup_ca(cont);

	free_percpu(ca->cpuusage);
	kfree(ca);
}

/* return total cpu usage (in nanoseconds) of a group */
static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
{
	struct cpuacct *ca = cgroup_ca(cont);
	u64 totalcpuusage = 0;
	int i;

	for_each_possible_cpu(i) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, i);

		/*
		 * Take rq->lock to make 64-bit addition safe on 32-bit
		 * platforms.
		 */
		spin_lock_irq(&cpu_rq(i)->lock);
		totalcpuusage += *cpuusage;
		spin_unlock_irq(&cpu_rq(i)->lock);
	}

	return totalcpuusage;
}

static struct cftype files[] = {
	{
		.name = "usage",
		.read_uint = cpuusage_read,
	},
};

static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
}

/*
 * charge this task's execution time to its accounting group.
 *
 * called with rq->lock held.
 */
static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
{
	struct cpuacct *ca;

	if (!cpuacct_subsys.active)
		return;

	ca = task_ca(tsk);
	if (ca) {
		u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));

		*cpuusage += cputime;
	}
}

struct cgroup_subsys cpuacct_subsys = {
	.name = "cpuacct",
	.create = cpuacct_create,
	.destroy = cpuacct_destroy,
	.populate = cpuacct_populate,
	.subsys_id = cpuacct_subsys_id,
};
#endif	/* CONFIG_CGROUP_CPUACCT */