clock_cache.cc 54.4 KB
Newer Older
Y
Yi Wu 已提交
1
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
S
Siying Dong 已提交
2 3 4
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
Y
Yi Wu 已提交
5 6 7 8 9
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

10
#include "cache/clock_cache.h"
Y
Yi Wu 已提交
11

G
Guido Tagliavini Ponce 已提交
12 13
#include <cassert>
#include <functional>
14
#include <numeric>
Y
Yi Wu 已提交
15

16
#include "cache/cache_key.h"
17
#include "logging/logging.h"
G
Guido Tagliavini Ponce 已提交
18 19 20 21 22 23
#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics.h"
#include "port/lang.h"
#include "util/hash.h"
#include "util/math.h"
#include "util/random.h"
Y
Yi Wu 已提交
24

G
Guido Tagliavini Ponce 已提交
25
namespace ROCKSDB_NAMESPACE {
Y
Yi Wu 已提交
26

27
namespace clock_cache {
Y
Yi Wu 已提交
28

29
namespace {
30 31 32 33 34 35
inline uint64_t GetRefcount(uint64_t meta) {
  return ((meta >> ClockHandle::kAcquireCounterShift) -
          (meta >> ClockHandle::kReleaseCounterShift)) &
         ClockHandle::kCounterMask;
}

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
inline uint64_t GetInitialCountdown(Cache::Priority priority) {
  // Set initial clock data from priority
  // TODO: configuration parameters for priority handling and clock cycle
  // count?
  switch (priority) {
    case Cache::Priority::HIGH:
      return ClockHandle::kHighCountdown;
    default:
      assert(false);
      FALLTHROUGH_INTENDED;
    case Cache::Priority::LOW:
      return ClockHandle::kLowCountdown;
    case Cache::Priority::BOTTOM:
      return ClockHandle::kBottomCountdown;
  }
}

inline void FreeDataMarkEmpty(ClockHandle& h) {
  // NOTE: in theory there's more room for parallelism if we copy the handle
  // data and delay actions like this until after marking the entry as empty,
  // but performance tests only show a regression by copying the few words
  // of data.
  h.FreeData();

#ifndef NDEBUG
  // Mark slot as empty, with assertion
  uint64_t meta = h.meta.exchange(0, std::memory_order_release);
  assert(meta >> ClockHandle::kStateShift == ClockHandle::kStateConstruction);
#else
  // Mark slot as empty
  h.meta.store(0, std::memory_order_release);
#endif
}

inline bool ClockUpdate(ClockHandle& h) {
  uint64_t meta = h.meta.load(std::memory_order_relaxed);

  uint64_t acquire_count =
      (meta >> ClockHandle::kAcquireCounterShift) & ClockHandle::kCounterMask;
  uint64_t release_count =
      (meta >> ClockHandle::kReleaseCounterShift) & ClockHandle::kCounterMask;
  // fprintf(stderr, "ClockUpdate @ %p: %lu %lu %u\n", &h, acquire_count,
  // release_count, (unsigned)(meta >> ClockHandle::kStateShift));
  if (acquire_count != release_count) {
    // Only clock update entries with no outstanding refs
    return false;
  }
  if (!((meta >> ClockHandle::kStateShift) & ClockHandle::kStateShareableBit)) {
    // Only clock update Shareable entries
    return false;
  }
  if ((meta >> ClockHandle::kStateShift == ClockHandle::kStateVisible) &&
      acquire_count > 0) {
    // Decrement clock
    uint64_t new_count =
        std::min(acquire_count - 1, uint64_t{ClockHandle::kMaxCountdown} - 1);
    // Compare-exchange in the decremented clock info, but
    // not aggressively
    uint64_t new_meta =
        (uint64_t{ClockHandle::kStateVisible} << ClockHandle::kStateShift) |
        (new_count << ClockHandle::kReleaseCounterShift) |
        (new_count << ClockHandle::kAcquireCounterShift);
    h.meta.compare_exchange_strong(meta, new_meta, std::memory_order_relaxed);
    return false;
  }
  // Otherwise, remove entry (either unreferenced invisible or
  // unreferenced and expired visible).
  if (h.meta.compare_exchange_strong(
          meta,
          uint64_t{ClockHandle::kStateConstruction} << ClockHandle::kStateShift,
          std::memory_order_acquire)) {
    // Took ownership.
    return true;
  } else {
    // Compare-exchange failing probably
    // indicates the entry was used, so skip it in that case.
    return false;
  }
}

}  // namespace

118 119 120
void ClockHandleBasicData::FreeData() const {
  if (deleter) {
    UniqueId64x2 unhashed;
121 122 123
    (*deleter)(
        ClockCacheShard<HyperClockTable>::ReverseHash(hashed_key, &unhashed),
        value);
124 125 126
  }
}

127 128 129 130 131
HyperClockTable::HyperClockTable(
    size_t capacity, bool /*strict_capacity_limit*/,
    CacheMetadataChargePolicy metadata_charge_policy, const Opts& opts)
    : length_bits_(CalcHashBits(capacity, opts.estimated_value_size,
                                metadata_charge_policy)),
132 133 134
      length_bits_mask_((size_t{1} << length_bits_) - 1),
      occupancy_limit_(static_cast<size_t>((uint64_t{1} << length_bits_) *
                                           kStrictLoadFactor)),
135 136 137 138
      array_(new HandleImpl[size_t{1} << length_bits_]) {
  if (metadata_charge_policy ==
      CacheMetadataChargePolicy::kFullChargeCacheMetadata) {
    usage_ += size_t{GetTableSize()} * sizeof(HandleImpl);
139
  }
140 141 142

  static_assert(sizeof(HandleImpl) == 64U,
                "Expecting size / alignment with common cache line size");
G
Guido Tagliavini Ponce 已提交
143
}
Y
Yi Wu 已提交
144

145
HyperClockTable::~HyperClockTable() {
146 147
  // Assumes there are no references or active operations on any slot/element
  // in the table.
148
  for (size_t i = 0; i < GetTableSize(); i++) {
149
    HandleImpl& h = array_[i];
150 151 152 153 154 155
    switch (h.meta >> ClockHandle::kStateShift) {
      case ClockHandle::kStateEmpty:
        // noop
        break;
      case ClockHandle::kStateInvisible:  // rare but possible
      case ClockHandle::kStateVisible:
156
        assert(GetRefcount(h.meta) == 0);
157 158
        h.FreeData();
#ifndef NDEBUG
159
        Rollback(h.hashed_key, &h);
160
        ReclaimEntryUsage(h.GetTotalCharge());
161 162 163 164 165 166
#endif
        break;
      // otherwise
      default:
        assert(false);
        break;
167 168
    }
  }
169 170

#ifndef NDEBUG
171
  for (size_t i = 0; i < GetTableSize(); i++) {
172 173 174 175 176
    assert(array_[i].displacements.load() == 0);
  }
#endif

  assert(usage_.load() == 0 ||
177
         usage_.load() == size_t{GetTableSize()} * sizeof(HandleImpl));
178
  assert(occupancy_ == 0);
G
Guido Tagliavini Ponce 已提交
179
}
Y
Yi Wu 已提交
180

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
// If an entry doesn't receive clock updates but is repeatedly referenced &
// released, the acquire and release counters could overflow without some
// intervention. This is that intervention, which should be inexpensive
// because it only incurs a simple, very predictable check. (Applying a bit
// mask in addition to an increment to every Release likely would be
// relatively expensive, because it's an extra atomic update.)
//
// We do have to assume that we never have many millions of simultaneous
// references to a cache handle, because we cannot represent so many
// references with the difference in counters, masked to the number of
// counter bits. Similarly, we assume there aren't millions of threads
// holding transient references (which might be "undone" rather than
// released by the way).
//
// Consider these possible states for each counter:
// low: less than kMaxCountdown
// medium: kMaxCountdown to half way to overflow + kMaxCountdown
// high: half way to overflow + kMaxCountdown, or greater
//
// And these possible states for the combination of counters:
// acquire / release
// -------   -------
// low       low       - Normal / common, with caveats (see below)
// medium    low       - Can happen while holding some refs
// high      low       - Violates assumptions (too many refs)
// low       medium    - Violates assumptions (refs underflow, etc.)
// medium    medium    - Normal (very read heavy cache)
// high      medium    - Can happen while holding some refs
// low       high      - This function is supposed to prevent
// medium    high      - Violates assumptions (refs underflow, etc.)
// high      high      - Needs CorrectNearOverflow
//
// Basically, this function detects (high, high) state (inferred from
// release alone being high) and bumps it back down to (medium, medium)
// state with the same refcount and the same logical countdown counter
// (everything > kMaxCountdown is logically the same). Note that bumping
// down to (low, low) would modify the countdown counter, so is "reserved"
// in a sense.
//
// If near-overflow correction is triggered here, there's no guarantee
// that another thread hasn't freed the entry and replaced it with another.
// Therefore, it must be the case that the correction does not affect
// entries unless they are very old (many millions of acquire-release cycles).
// (Our bit manipulation is indeed idempotent and only affects entries in
// exceptional cases.) We assume a pre-empted thread will not stall that long.
// If it did, the state could be corrupted in the (unlikely) case that the top
// bit of the acquire counter is set but not the release counter, and thus
// we only clear the top bit of the acquire counter on resumption. It would
// then appear that there are too many refs and the entry would be permanently
// pinned (which is not terrible for an exceptionally rare occurrence), unless
// it is referenced enough (at least kMaxCountdown more times) for the release
// counter to reach "high" state again and bumped back to "medium." (This
// motivates only checking for release counter in high state, not both in high
// state.)
inline void CorrectNearOverflow(uint64_t old_meta,
                                std::atomic<uint64_t>& meta) {
  // We clear both top-most counter bits at the same time.
  constexpr uint64_t kCounterTopBit = uint64_t{1}
                                      << (ClockHandle::kCounterNumBits - 1);
  constexpr uint64_t kClearBits =
      (kCounterTopBit << ClockHandle::kAcquireCounterShift) |
      (kCounterTopBit << ClockHandle::kReleaseCounterShift);
  // A simple check that allows us to initiate clearing the top bits for
  // a large portion of the "high" state space on release counter.
  constexpr uint64_t kCheckBits =
      (kCounterTopBit | (ClockHandle::kMaxCountdown + 1))
      << ClockHandle::kReleaseCounterShift;

  if (UNLIKELY(old_meta & kCheckBits)) {
    meta.fetch_and(~kClearBits, std::memory_order_relaxed);
  }
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
inline Status HyperClockTable::ChargeUsageMaybeEvictStrict(
    size_t total_charge, size_t capacity, bool need_evict_for_occupancy) {
  if (total_charge > capacity) {
    return Status::MemoryLimit(
        "Cache entry too large for a single cache shard: " +
        std::to_string(total_charge) + " > " + std::to_string(capacity));
  }
  // Grab any available capacity, and free up any more required.
  size_t old_usage = usage_.load(std::memory_order_relaxed);
  size_t new_usage;
  if (LIKELY(old_usage != capacity)) {
    do {
      new_usage = std::min(capacity, old_usage + total_charge);
    } while (!usage_.compare_exchange_weak(old_usage, new_usage,
                                           std::memory_order_relaxed));
  } else {
    new_usage = old_usage;
  }
  // How much do we need to evict then?
  size_t need_evict_charge = old_usage + total_charge - new_usage;
  size_t request_evict_charge = need_evict_charge;
  if (UNLIKELY(need_evict_for_occupancy) && request_evict_charge == 0) {
    // Require at least 1 eviction.
    request_evict_charge = 1;
  }
  if (request_evict_charge > 0) {
    size_t evicted_charge = 0;
    size_t evicted_count = 0;
    Evict(request_evict_charge, &evicted_charge, &evicted_count);
    occupancy_.fetch_sub(evicted_count, std::memory_order_release);
    if (LIKELY(evicted_charge > need_evict_charge)) {
      assert(evicted_count > 0);
      // Evicted more than enough
      usage_.fetch_sub(evicted_charge - need_evict_charge,
                       std::memory_order_relaxed);
    } else if (evicted_charge < need_evict_charge ||
               (UNLIKELY(need_evict_for_occupancy) && evicted_count == 0)) {
      // Roll back to old usage minus evicted
      usage_.fetch_sub(evicted_charge + (new_usage - old_usage),
                       std::memory_order_relaxed);
      if (evicted_charge < need_evict_charge) {
        return Status::MemoryLimit(
            "Insert failed because unable to evict entries to stay within "
            "capacity limit.");
      } else {
        return Status::MemoryLimit(
            "Insert failed because unable to evict entries to stay within "
            "table occupancy limit.");
      }
    }
    // If we needed to evict something and we are proceeding, we must have
    // evicted something.
    assert(evicted_count > 0);
  }
  return Status::OK();
}

inline bool HyperClockTable::ChargeUsageMaybeEvictNonStrict(
    size_t total_charge, size_t capacity, bool need_evict_for_occupancy) {
  // For simplicity, we consider that either the cache can accept the insert
  // with no evictions, or we must evict enough to make (at least) enough
  // space. It could lead to unnecessary failures or excessive evictions in
  // some extreme cases, but allows a fast, simple protocol. If we allow a
  // race to get us over capacity, then we might never get back to capacity
  // limit if the sizes of entries allow each insertion to evict the minimum
  // charge. Thus, we should evict some extra if it's not a signifcant
  // portion of the shard capacity. This can have the side benefit of
  // involving fewer threads in eviction.
  size_t old_usage = usage_.load(std::memory_order_relaxed);
  size_t need_evict_charge;
  // NOTE: if total_charge > old_usage, there isn't yet enough to evict
  // `total_charge` amount. Even if we only try to evict `old_usage` amount,
  // there's likely something referenced and we would eat CPU looking for
  // enough to evict.
  if (old_usage + total_charge <= capacity || total_charge > old_usage) {
    // Good enough for me (might run over with a race)
    need_evict_charge = 0;
  } else {
    // Try to evict enough space, and maybe some extra
    need_evict_charge = total_charge;
    if (old_usage > capacity) {
      // Not too much to avoid thundering herd while avoiding strict
      // synchronization, such as the compare_exchange used with strict
      // capacity limit.
      need_evict_charge += std::min(capacity / 1024, total_charge) + 1;
    }
  }
  if (UNLIKELY(need_evict_for_occupancy) && need_evict_charge == 0) {
    // Special case: require at least 1 eviction if we only have to
    // deal with occupancy
    need_evict_charge = 1;
  }
  size_t evicted_charge = 0;
  size_t evicted_count = 0;
  if (need_evict_charge > 0) {
    Evict(need_evict_charge, &evicted_charge, &evicted_count);
    // Deal with potential occupancy deficit
    if (UNLIKELY(need_evict_for_occupancy) && evicted_count == 0) {
      assert(evicted_charge == 0);
      // Can't meet occupancy requirement
      return false;
    } else {
      // Update occupancy for evictions
      occupancy_.fetch_sub(evicted_count, std::memory_order_release);
    }
  }
  // Track new usage even if we weren't able to evict enough
  usage_.fetch_add(total_charge - evicted_charge, std::memory_order_relaxed);
  // No underflow
  assert(usage_.load(std::memory_order_relaxed) < SIZE_MAX / 2);
  // Success
  return true;
}

inline HyperClockTable::HandleImpl* HyperClockTable::DetachedInsert(
    const ClockHandleBasicData& proto) {
  // Heap allocated separate from table
  HandleImpl* h = new HandleImpl();
  ClockHandleBasicData* h_alias = h;
  *h_alias = proto;
  h->SetDetached();
  // Single reference (detached entries only created if returning a refed
  // Handle back to user)
  uint64_t meta = uint64_t{ClockHandle::kStateInvisible}
                  << ClockHandle::kStateShift;
  meta |= uint64_t{1} << ClockHandle::kAcquireCounterShift;
  h->meta.store(meta, std::memory_order_release);
  // Keep track of how much of usage is detached
  detached_usage_.fetch_add(proto.GetTotalCharge(), std::memory_order_relaxed);
  return h;
}

Status HyperClockTable::Insert(const ClockHandleBasicData& proto,
                               HandleImpl** handle, Cache::Priority priority,
                               size_t capacity, bool strict_capacity_limit) {
389 390
  // Do we have the available occupancy? Optimistically assume we do
  // and deal with it if we don't.
391
  size_t old_occupancy = occupancy_.fetch_add(1, std::memory_order_acquire);
392 393 394 395 396 397 398 399 400
  auto revert_occupancy_fn = [&]() {
    occupancy_.fetch_sub(1, std::memory_order_relaxed);
  };
  // Whether we over-committed and need an eviction to make up for it
  bool need_evict_for_occupancy = old_occupancy >= occupancy_limit_;

  // Usage/capacity handling is somewhat different depending on
  // strict_capacity_limit, but mostly pessimistic.
  bool use_detached_insert = false;
401
  const size_t total_charge = proto.GetTotalCharge();
402
  if (strict_capacity_limit) {
403 404 405
    Status s = ChargeUsageMaybeEvictStrict(total_charge, capacity,
                                           need_evict_for_occupancy);
    if (!s.ok()) {
406
      revert_occupancy_fn();
407
      return s;
408 409 410
    }
  } else {
    // Case strict_capacity_limit == false
411 412 413 414 415 416 417 418 419
    bool success = ChargeUsageMaybeEvictNonStrict(total_charge, capacity,
                                                  need_evict_for_occupancy);
    if (!success) {
      revert_occupancy_fn();
      if (handle == nullptr) {
        // Don't insert the entry but still return ok, as if the entry
        // inserted into cache and evicted immediately.
        proto.FreeData();
        return Status::OK();
420
      } else {
421 422 423
        // Need to track usage of fallback detached insert
        usage_.fetch_add(total_charge, std::memory_order_relaxed);
        use_detached_insert = true;
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
      }
    }
  }
  auto revert_usage_fn = [&]() {
    usage_.fetch_sub(total_charge, std::memory_order_relaxed);
    // No underflow
    assert(usage_.load(std::memory_order_relaxed) < SIZE_MAX / 2);
  };

  if (!use_detached_insert) {
    // Attempt a table insert, but abort if we find an existing entry for the
    // key. If we were to overwrite old entries, we would either
    // * Have to gain ownership over an existing entry to overwrite it, which
    // would only work if there are no outstanding (read) references and would
    // create a small gap in availability of the entry (old or new) to lookups.
    // * Have to insert into a suboptimal location (more probes) so that the
    // old entry can be kept around as well.

442
    uint64_t initial_countdown = GetInitialCountdown(priority);
443 444
    assert(initial_countdown > 0);

445
    size_t probe = 0;
446
    HandleImpl* e = FindSlot(
447
        proto.hashed_key,
448
        [&](HandleImpl* h) {
449 450 451 452 453 454 455 456 457 458 459
          // Optimistically transition the slot from "empty" to
          // "under construction" (no effect on other states)
          uint64_t old_meta =
              h->meta.fetch_or(uint64_t{ClockHandle::kStateOccupiedBit}
                                   << ClockHandle::kStateShift,
                               std::memory_order_acq_rel);
          uint64_t old_state = old_meta >> ClockHandle::kStateShift;

          if (old_state == ClockHandle::kStateEmpty) {
            // We've started inserting into an available slot, and taken
            // ownership Save data fields
460
            ClockHandleBasicData* h_alias = h;
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            *h_alias = proto;

            // Transition from "under construction" state to "visible" state
            uint64_t new_meta = uint64_t{ClockHandle::kStateVisible}
                                << ClockHandle::kStateShift;

            // Maybe with an outstanding reference
            new_meta |= initial_countdown << ClockHandle::kAcquireCounterShift;
            new_meta |= (initial_countdown - (handle != nullptr))
                        << ClockHandle::kReleaseCounterShift;

#ifndef NDEBUG
            // Save the state transition, with assertion
            old_meta = h->meta.exchange(new_meta, std::memory_order_release);
            assert(old_meta >> ClockHandle::kStateShift ==
                   ClockHandle::kStateConstruction);
#else
            // Save the state transition
            h->meta.store(new_meta, std::memory_order_release);
#endif
            return true;
          } else if (old_state != ClockHandle::kStateVisible) {
            // Slot not usable / touchable now
            return false;
          }
          // Existing, visible entry, which might be a match.
          // But first, we need to acquire a ref to read it. In fact, number of
          // refs for initial countdown, so that we boost the clock state if
          // this is a match.
          old_meta = h->meta.fetch_add(
              ClockHandle::kAcquireIncrement * initial_countdown,
              std::memory_order_acq_rel);
          // Like Lookup
          if ((old_meta >> ClockHandle::kStateShift) ==
              ClockHandle::kStateVisible) {
            // Acquired a read reference
497
            if (h->hashed_key == proto.hashed_key) {
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
              // Match. Release in a way that boosts the clock state
              old_meta = h->meta.fetch_add(
                  ClockHandle::kReleaseIncrement * initial_countdown,
                  std::memory_order_acq_rel);
              // Correct for possible (but rare) overflow
              CorrectNearOverflow(old_meta, h->meta);
              // Insert detached instead (only if return handle needed)
              use_detached_insert = true;
              return true;
            } else {
              // Mismatch. Pretend we never took the reference
              old_meta = h->meta.fetch_sub(
                  ClockHandle::kAcquireIncrement * initial_countdown,
                  std::memory_order_acq_rel);
            }
          } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                              ClockHandle::kStateInvisible)) {
            // Pretend we never took the reference
            // WART: there's a tiny chance we release last ref to invisible
            // entry here. If that happens, we let eviction take care of it.
            old_meta = h->meta.fetch_sub(
                ClockHandle::kAcquireIncrement * initial_countdown,
                std::memory_order_acq_rel);
          } else {
            // For other states, incrementing the acquire counter has no effect
            // so we don't need to undo it.
            // Slot not usable / touchable now.
          }
          (void)old_meta;
          return false;
        },
529 530
        [&](HandleImpl* /*h*/) { return false; },
        [&](HandleImpl* h) {
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
          h->displacements.fetch_add(1, std::memory_order_relaxed);
        },
        probe);
    if (e == nullptr) {
      // Occupancy check and never abort FindSlot above should generally
      // prevent this, except it's theoretically possible for other threads
      // to evict and replace entries in the right order to hit every slot
      // when it is populated. Assuming random hashing, the chance of that
      // should be no higher than pow(kStrictLoadFactor, n) for n slots.
      // That should be infeasible for roughly n >= 256, so if this assertion
      // fails, that suggests something is going wrong.
      assert(GetTableSize() < 256);
      use_detached_insert = true;
    }
    if (!use_detached_insert) {
      // Successfully inserted
      if (handle) {
        *handle = e;
      }
      return Status::OK();
    }
    // Roll back table insertion
553
    Rollback(proto.hashed_key, e);
554 555 556 557 558 559 560 561 562 563 564 565 566
    revert_occupancy_fn();
    // Maybe fall back on detached insert
    if (handle == nullptr) {
      revert_usage_fn();
      // As if unrefed entry immdiately evicted
      proto.FreeData();
      return Status::OK();
    }
  }

  // Run detached insert
  assert(use_detached_insert);

567
  *handle = DetachedInsert(proto);
568 569 570 571 572 573 574 575 576

  // The OkOverwritten status is used to count "redundant" insertions into
  // block cache. This implementation doesn't strictly check for redundant
  // insertions, but we instead are probably interested in how many insertions
  // didn't go into the table (instead "detached"), which could be redundant
  // Insert or some other reason (use_detached_insert reasons above).
  return Status::OkOverwritten();
}

577 578
HyperClockTable::HandleImpl* HyperClockTable::Lookup(
    const UniqueId64x2& hashed_key) {
579
  size_t probe = 0;
580
  HandleImpl* e = FindSlot(
581
      hashed_key,
582
      [&](HandleImpl* h) {
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
        // Mostly branch-free version (similar performance)
        /*
        uint64_t old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                     std::memory_order_acquire);
        bool Shareable = (old_meta >> (ClockHandle::kStateShift + 1)) & 1U;
        bool visible = (old_meta >> ClockHandle::kStateShift) & 1U;
        bool match = (h->key == key) & visible;
        h->meta.fetch_sub(static_cast<uint64_t>(Shareable & !match) <<
        ClockHandle::kAcquireCounterShift, std::memory_order_release); return
        match;
        */
        // Optimistic lookup should pay off when the table is relatively
        // sparse.
        constexpr bool kOptimisticLookup = true;
        uint64_t old_meta;
        if (!kOptimisticLookup) {
          old_meta = h->meta.load(std::memory_order_acquire);
          if ((old_meta >> ClockHandle::kStateShift) !=
              ClockHandle::kStateVisible) {
            return false;
          }
        }
        // (Optimistically) increment acquire counter
        old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                     std::memory_order_acquire);
        // Check if it's an entry visible to lookups
        if ((old_meta >> ClockHandle::kStateShift) ==
            ClockHandle::kStateVisible) {
          // Acquired a read reference
612
          if (h->hashed_key == hashed_key) {
613
            // Match
614
            return true;
615 616 617 618
          } else {
            // Mismatch. Pretend we never took the reference
            old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                         std::memory_order_release);
619
          }
620 621 622 623 624 625 626 627 628 629 630 631
        } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                            ClockHandle::kStateInvisible)) {
          // Pretend we never took the reference
          // WART: there's a tiny chance we release last ref to invisible
          // entry here. If that happens, we let eviction take care of it.
          old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                       std::memory_order_release);
        } else {
          // For other states, incrementing the acquire counter has no effect
          // so we don't need to undo it. Furthermore, we cannot safely undo
          // it because we did not acquire a read reference to lock the
          // entry in a Shareable state.
632
        }
633
        (void)old_meta;
634 635
        return false;
      },
636
      [&](HandleImpl* h) {
637 638
        return h->displacements.load(std::memory_order_relaxed) == 0;
      },
639
      [&](HandleImpl* /*h*/) {}, probe);
640 641

  return e;
G
Guido Tagliavini Ponce 已提交
642
}
Y
Yi Wu 已提交
643

644 645
bool HyperClockTable::Release(HandleImpl* h, bool useful,
                              bool erase_if_last_ref) {
646 647 648 649
  // In contrast with LRUCache's Release, this function won't delete the handle
  // when the cache is above capacity and the reference is the last one. Space
  // is only freed up by EvictFromClock (called by Insert when space is needed)
  // and Erase. We do this to avoid an extra atomic read of the variable usage_.
650

651 652 653 654 655
  uint64_t old_meta;
  if (useful) {
    // Increment release counter to indicate was used
    old_meta = h->meta.fetch_add(ClockHandle::kReleaseIncrement,
                                 std::memory_order_release);
656
  } else {
657 658 659
    // Decrement acquire counter to pretend it never happened
    old_meta = h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                 std::memory_order_release);
660
  }
Y
Yi Wu 已提交
661

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
  // No underflow
  assert(((old_meta >> ClockHandle::kAcquireCounterShift) &
          ClockHandle::kCounterMask) !=
         ((old_meta >> ClockHandle::kReleaseCounterShift) &
          ClockHandle::kCounterMask));

  if (erase_if_last_ref || UNLIKELY(old_meta >> ClockHandle::kStateShift ==
                                    ClockHandle::kStateInvisible)) {
    // Update for last fetch_add op
    if (useful) {
      old_meta += ClockHandle::kReleaseIncrement;
    } else {
      old_meta -= ClockHandle::kAcquireIncrement;
    }
    // Take ownership if no refs
    do {
680
      if (GetRefcount(old_meta) != 0) {
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        // Not last ref at some point in time during this Release call
        // Correct for possible (but rare) overflow
        CorrectNearOverflow(old_meta, h->meta);
        return false;
      }
      if ((old_meta & (uint64_t{ClockHandle::kStateShareableBit}
                       << ClockHandle::kStateShift)) == 0) {
        // Someone else took ownership
        return false;
      }
      // Note that there's a small chance that we release, another thread
      // replaces this entry with another, reaches zero refs, and then we end
      // up erasing that other entry. That's an acceptable risk / imprecision.
    } while (!h->meta.compare_exchange_weak(
        old_meta,
        uint64_t{ClockHandle::kStateConstruction} << ClockHandle::kStateShift,
        std::memory_order_acquire));
    // Took ownership
699 700 701
    size_t total_charge = h->GetTotalCharge();
    if (UNLIKELY(h->IsDetached())) {
      h->FreeData();
702 703 704
      // Delete detached handle
      delete h;
      detached_usage_.fetch_sub(total_charge, std::memory_order_relaxed);
705
      usage_.fetch_sub(total_charge, std::memory_order_relaxed);
706
    } else {
707 708 709
      Rollback(h->hashed_key, h);
      FreeDataMarkEmpty(*h);
      ReclaimEntryUsage(total_charge);
710
    }
711 712 713 714 715
    return true;
  } else {
    // Correct for possible (but rare) overflow
    CorrectNearOverflow(old_meta, h->meta);
    return false;
716 717 718
  }
}

719
void HyperClockTable::Ref(HandleImpl& h) {
720 721 722 723 724 725
  // Increment acquire counter
  uint64_t old_meta = h.meta.fetch_add(ClockHandle::kAcquireIncrement,
                                       std::memory_order_acquire);

  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
726 727
  // Must have already had a reference
  assert(GetRefcount(old_meta) > 0);
728
  (void)old_meta;
729 730
}

731
void HyperClockTable::TEST_RefN(HandleImpl& h, size_t n) {
732 733 734 735 736 737 738
  // Increment acquire counter
  uint64_t old_meta = h.meta.fetch_add(n * ClockHandle::kAcquireIncrement,
                                       std::memory_order_acquire);

  assert((old_meta >> ClockHandle::kStateShift) &
         ClockHandle::kStateShareableBit);
  (void)old_meta;
739 740
}

741
void HyperClockTable::TEST_ReleaseN(HandleImpl* h, size_t n) {
742 743 744 745 746 747 748 749 750 751
  if (n > 0) {
    // Split into n - 1 and 1 steps.
    uint64_t old_meta = h->meta.fetch_add(
        (n - 1) * ClockHandle::kReleaseIncrement, std::memory_order_acquire);
    assert((old_meta >> ClockHandle::kStateShift) &
           ClockHandle::kStateShareableBit);
    (void)old_meta;

    Release(h, /*useful*/ true, /*erase_if_last_ref*/ false);
  }
752 753
}

754
void HyperClockTable::Erase(const UniqueId64x2& hashed_key) {
755
  size_t probe = 0;
756
  (void)FindSlot(
757
      hashed_key,
758
      [&](HandleImpl* h) {
759 760 761 762 763 764 765 766
        // Could be multiple entries in rare cases. Erase them all.
        // Optimistically increment acquire counter
        uint64_t old_meta = h->meta.fetch_add(ClockHandle::kAcquireIncrement,
                                              std::memory_order_acquire);
        // Check if it's an entry visible to lookups
        if ((old_meta >> ClockHandle::kStateShift) ==
            ClockHandle::kStateVisible) {
          // Acquired a read reference
767
          if (h->hashed_key == hashed_key) {
768 769 770 771 772 773 774 775 776
            // Match. Set invisible.
            old_meta =
                h->meta.fetch_and(~(uint64_t{ClockHandle::kStateVisibleBit}
                                    << ClockHandle::kStateShift),
                                  std::memory_order_acq_rel);
            // Apply update to local copy
            old_meta &= ~(uint64_t{ClockHandle::kStateVisibleBit}
                          << ClockHandle::kStateShift);
            for (;;) {
777
              uint64_t refcount = GetRefcount(old_meta);
778 779 780 781 782 783 784 785
              assert(refcount > 0);
              if (refcount > 1) {
                // Not last ref at some point in time during this Erase call
                // Pretend we never took the reference
                h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                                  std::memory_order_release);
                break;
              } else if (h->meta.compare_exchange_weak(
786 787 788 789
                             old_meta,
                             uint64_t{ClockHandle::kStateConstruction}
                                 << ClockHandle::kStateShift,
                             std::memory_order_acq_rel)) {
790
                // Took ownership
791
                assert(hashed_key == h->hashed_key);
792 793 794 795 796
                size_t total_charge = h->GetTotalCharge();
                FreeDataMarkEmpty(*h);
                ReclaimEntryUsage(total_charge);
                // We already have a copy of hashed_key in this case, so OK to
                // delay Rollback until after releasing the entry
797
                Rollback(hashed_key, h);
798 799
                break;
              }
800
            }
801 802 803 804
          } else {
            // Mismatch. Pretend we never took the reference
            h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                              std::memory_order_release);
805
          }
806 807 808 809 810 811 812 813 814 815
        } else if (UNLIKELY((old_meta >> ClockHandle::kStateShift) ==
                            ClockHandle::kStateInvisible)) {
          // Pretend we never took the reference
          // WART: there's a tiny chance we release last ref to invisible
          // entry here. If that happens, we let eviction take care of it.
          h->meta.fetch_sub(ClockHandle::kAcquireIncrement,
                            std::memory_order_release);
        } else {
          // For other states, incrementing the acquire counter has no effect
          // so we don't need to undo it.
816 817 818
        }
        return false;
      },
819
      [&](HandleImpl* h) {
820 821
        return h->displacements.load(std::memory_order_relaxed) == 0;
      },
822
      [&](HandleImpl* /*h*/) {}, probe);
G
Guido Tagliavini Ponce 已提交
823
}
Y
Yi Wu 已提交
824

825 826
void HyperClockTable::ConstApplyToEntriesRange(
    std::function<void(const HandleImpl&)> func, size_t index_begin,
827
    size_t index_end, bool apply_if_will_be_deleted) const {
828 829 830
  uint64_t check_state_mask = ClockHandle::kStateShareableBit;
  if (!apply_if_will_be_deleted) {
    check_state_mask |= ClockHandle::kStateVisibleBit;
831 832
  }

833
  for (size_t i = index_begin; i < index_end; i++) {
834
    HandleImpl& h = array_[i];
835

836
    // Note: to avoid using compare_exchange, we have to be extra careful.
837 838 839
    uint64_t old_meta = h.meta.load(std::memory_order_relaxed);
    // Check if it's an entry visible to lookups
    if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
840 841 842
      // Increment acquire counter. Note: it's possible that the entry has
      // completely changed since we loaded old_meta, but incrementing acquire
      // count is always safe. (Similar to optimistic Lookup here.)
843 844
      old_meta = h.meta.fetch_add(ClockHandle::kAcquireIncrement,
                                  std::memory_order_acquire);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
      // Check whether we actually acquired a reference.
      if ((old_meta >> ClockHandle::kStateShift) &
          ClockHandle::kStateShareableBit) {
        // Apply func if appropriate
        if ((old_meta >> ClockHandle::kStateShift) & check_state_mask) {
          func(h);
        }
        // Pretend we never took the reference
        h.meta.fetch_sub(ClockHandle::kAcquireIncrement,
                         std::memory_order_release);
        // No net change, so don't need to check for overflow
      } else {
        // For other states, incrementing the acquire counter has no effect
        // so we don't need to undo it. Furthermore, we cannot safely undo
        // it because we did not acquire a read reference to lock the
        // entry in a Shareable state.
861 862
      }
    }
863
  }
G
Guido Tagliavini Ponce 已提交
864
}
Y
Yi Wu 已提交
865

866
void HyperClockTable::EraseUnRefEntries() {
867
  for (size_t i = 0; i <= this->length_bits_mask_; i++) {
868
    HandleImpl& h = array_[i];
869 870 871 872

    uint64_t old_meta = h.meta.load(std::memory_order_relaxed);
    if (old_meta & (uint64_t{ClockHandle::kStateShareableBit}
                    << ClockHandle::kStateShift) &&
873
        GetRefcount(old_meta) == 0 &&
874 875 876 877 878
        h.meta.compare_exchange_strong(old_meta,
                                       uint64_t{ClockHandle::kStateConstruction}
                                           << ClockHandle::kStateShift,
                                       std::memory_order_acquire)) {
      // Took ownership
879 880 881 882
      size_t total_charge = h.GetTotalCharge();
      Rollback(h.hashed_key, &h);
      FreeDataMarkEmpty(h);
      ReclaimEntryUsage(total_charge);
883
    }
884
  }
G
Guido Tagliavini Ponce 已提交
885 886
}

887 888 889 890
inline HyperClockTable::HandleImpl* HyperClockTable::FindSlot(
    const UniqueId64x2& hashed_key, std::function<bool(HandleImpl*)> match_fn,
    std::function<bool(HandleImpl*)> abort_fn,
    std::function<void(HandleImpl*)> update_fn, size_t& probe) {
891 892
  // NOTE: upper 32 bits of hashed_key[0] is used for sharding
  //
893 894 895 896
  // We use double-hashing probing. Every probe in the sequence is a
  // pseudorandom integer, computed as a linear function of two random hashes,
  // which we call base and increment. Specifically, the i-th probe is base + i
  // * increment modulo the table size.
897
  size_t base = static_cast<size_t>(hashed_key[1]);
898 899 900
  // We use an odd increment, which is relatively prime with the power-of-two
  // table size. This implies that we cycle back to the first probe only
  // after probing every slot exactly once.
901 902
  // TODO: we could also reconsider linear probing, though locality benefits
  // are limited because each slot is a full cache line
903 904
  size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
  size_t current = ModTableSize(base + probe * increment);
905
  while (probe <= length_bits_mask_) {
906
    HandleImpl* h = &array_[current];
907
    if (match_fn(h)) {
908
      probe++;
909
      return h;
G
Guido Tagliavini Ponce 已提交
910
    }
911
    if (abort_fn(h)) {
912
      return nullptr;
Y
Yi Wu 已提交
913
    }
914
    probe++;
915
    update_fn(h);
916 917
    current = ModTableSize(current + increment);
  }
918 919
  // We looped back.
  return nullptr;
920 921
}

922 923
inline void HyperClockTable::Rollback(const UniqueId64x2& hashed_key,
                                      const HandleImpl* h) {
924 925
  size_t current = ModTableSize(hashed_key[1]);
  size_t increment = static_cast<size_t>(hashed_key[0]) | 1U;
926
  while (&array_[current] != h) {
927
    array_[current].displacements.fetch_sub(1, std::memory_order_relaxed);
G
Guido Tagliavini Ponce 已提交
928
    current = ModTableSize(current + increment);
Y
Yi Wu 已提交
929 930 931
  }
}

932 933 934 935 936 937 938 939 940 941 942 943 944
inline void HyperClockTable::ReclaimEntryUsage(size_t total_charge) {
  auto old_occupancy = occupancy_.fetch_sub(1U, std::memory_order_release);
  (void)old_occupancy;
  // No underflow
  assert(old_occupancy > 0);
  auto old_usage = usage_.fetch_sub(total_charge, std::memory_order_relaxed);
  (void)old_usage;
  // No underflow
  assert(old_usage >= total_charge);
}

inline void HyperClockTable::Evict(size_t requested_charge,
                                   size_t* freed_charge, size_t* freed_count) {
945 946 947 948
  // precondition
  assert(requested_charge > 0);

  // TODO: make a tuning parameter?
949
  constexpr size_t step_size = 4;
950 951 952 953 954 955 956 957 958 959 960 961 962 963

  // First (concurrent) increment clock pointer
  uint64_t old_clock_pointer =
      clock_pointer_.fetch_add(step_size, std::memory_order_relaxed);

  // Cap the eviction effort at this thread (along with those operating in
  // parallel) circling through the whole structure kMaxCountdown times.
  // In other words, this eviction run must find something/anything that is
  // unreferenced at start of and during the eviction run that isn't reclaimed
  // by a concurrent eviction run.
  uint64_t max_clock_pointer =
      old_clock_pointer + (ClockHandle::kMaxCountdown << length_bits_);

  for (;;) {
964
    for (size_t i = 0; i < step_size; i++) {
965 966 967 968 969
      HandleImpl& h = array_[ModTableSize(Lower32of64(old_clock_pointer + i))];
      bool evicting = ClockUpdate(h);
      if (evicting) {
        Rollback(h.hashed_key, &h);
        *freed_charge += h.GetTotalCharge();
970
        *freed_count += 1;
971
        FreeDataMarkEmpty(h);
972 973 974
      }
    }

975 976 977 978 979 980 981 982 983 984 985 986
    // Loop exit condition
    if (*freed_charge >= requested_charge) {
      return;
    }
    if (old_clock_pointer >= max_clock_pointer) {
      return;
    }

    // Advance clock pointer (concurrently)
    old_clock_pointer =
        clock_pointer_.fetch_add(step_size, std::memory_order_relaxed);
  }
987 988
}

989 990 991 992 993
template <class Table>
ClockCacheShard<Table>::ClockCacheShard(
    size_t capacity, bool strict_capacity_limit,
    CacheMetadataChargePolicy metadata_charge_policy,
    const typename Table::Opts& opts)
994
    : CacheShardBase(metadata_charge_policy),
995
      table_(capacity, strict_capacity_limit, metadata_charge_policy, opts),
996 997 998
      capacity_(capacity),
      strict_capacity_limit_(strict_capacity_limit) {
  // Initial charge metadata should not exceed capacity
999
  assert(table_.GetUsage() <= capacity_ || capacity_ < sizeof(HandleImpl));
Y
Yi Wu 已提交
1000 1001
}

1002 1003 1004 1005
template <class Table>
void ClockCacheShard<Table>::EraseUnRefEntries() {
  table_.EraseUnRefEntries();
}
Y
Yi Wu 已提交
1006

1007 1008
template <class Table>
void ClockCacheShard<Table>::ApplyToSomeEntries(
1009 1010
    const std::function<void(const Slice& key, void* value, size_t charge,
                             DeleterFn deleter)>& callback,
1011
    size_t average_entries_per_lock, size_t* state) {
G
Guido Tagliavini Ponce 已提交
1012 1013 1014
  // The state is essentially going to be the starting hash, which works
  // nicely even if we resize between calls because we use upper-most
  // hash bits for table indexes.
1015 1016
  size_t length_bits = table_.GetLengthBits();
  size_t length = table_.GetTableSize();
1017

G
Guido Tagliavini Ponce 已提交
1018 1019 1020 1021 1022
  assert(average_entries_per_lock > 0);
  // Assuming we are called with same average_entries_per_lock repeatedly,
  // this simplifies some logic (index_end will not overflow).
  assert(average_entries_per_lock < length || *state == 0);

1023 1024
  size_t index_begin = *state >> (sizeof(size_t) * 8u - length_bits);
  size_t index_end = index_begin + average_entries_per_lock;
G
Guido Tagliavini Ponce 已提交
1025
  if (index_end >= length) {
1026
    // Going to end.
G
Guido Tagliavini Ponce 已提交
1027
    index_end = length;
1028
    *state = SIZE_MAX;
1029
  } else {
1030
    *state = index_end << (sizeof(size_t) * 8u - length_bits);
Y
Yi Wu 已提交
1031
  }
1032

1033
  table_.ConstApplyToEntriesRange(
1034
      [callback](const HandleImpl& h) {
1035
        UniqueId64x2 unhashed;
1036 1037
        callback(ReverseHash(h.hashed_key, &unhashed), h.value,
                 h.GetTotalCharge(), h.deleter);
G
Guido Tagliavini Ponce 已提交
1038
      },
1039
      index_begin, index_end, false);
Y
Yi Wu 已提交
1040 1041
}

1042
int HyperClockTable::CalcHashBits(
G
Guido Tagliavini Ponce 已提交
1043 1044
    size_t capacity, size_t estimated_value_size,
    CacheMetadataChargePolicy metadata_charge_policy) {
1045 1046
  double average_slot_charge = estimated_value_size * kLoadFactor;
  if (metadata_charge_policy == kFullChargeCacheMetadata) {
1047
    average_slot_charge += sizeof(HandleImpl);
1048 1049 1050 1051 1052
  }
  assert(average_slot_charge > 0.0);
  uint64_t num_slots =
      static_cast<uint64_t>(capacity / average_slot_charge + 0.999999);

1053
  int hash_bits = FloorLog2((num_slots << 1) - 1);
1054 1055 1056
  if (metadata_charge_policy == kFullChargeCacheMetadata) {
    // For very small estimated value sizes, it's possible to overshoot
    while (hash_bits > 0 &&
1057
           uint64_t{sizeof(HandleImpl)} << hash_bits > capacity) {
1058 1059 1060 1061
      hash_bits--;
    }
  }
  return hash_bits;
Y
Yi Wu 已提交
1062 1063
}

1064 1065
template <class Table>
void ClockCacheShard<Table>::SetCapacity(size_t capacity) {
1066 1067
  capacity_.store(capacity, std::memory_order_relaxed);
  // next Insert will take care of any necessary evictions
Y
Yi Wu 已提交
1068 1069
}

1070 1071 1072
template <class Table>
void ClockCacheShard<Table>::SetStrictCapacityLimit(
    bool strict_capacity_limit) {
1073 1074 1075
  strict_capacity_limit_.store(strict_capacity_limit,
                               std::memory_order_relaxed);
  // next Insert will take care of any necessary evictions
Y
Yi Wu 已提交
1076 1077
}

1078 1079 1080 1081 1082 1083 1084
template <class Table>
Status ClockCacheShard<Table>::Insert(const Slice& key,
                                      const UniqueId64x2& hashed_key,
                                      void* value, size_t charge,
                                      Cache::DeleterFn deleter,
                                      HandleImpl** handle,
                                      Cache::Priority priority) {
1085
  if (UNLIKELY(key.size() != kCacheKeySize)) {
G
Guido Tagliavini Ponce 已提交
1086 1087 1088
    return Status::NotSupported("ClockCache only supports key size " +
                                std::to_string(kCacheKeySize) + "B");
  }
1089 1090
  ClockHandleBasicData proto;
  proto.hashed_key = hashed_key;
1091 1092 1093
  proto.value = value;
  proto.deleter = deleter;
  proto.total_charge = charge;
1094 1095 1096
  Status s = table_.Insert(
      proto, handle, priority, capacity_.load(std::memory_order_relaxed),
      strict_capacity_limit_.load(std::memory_order_relaxed));
Y
Yi Wu 已提交
1097 1098 1099
  return s;
}

1100 1101 1102
template <class Table>
typename ClockCacheShard<Table>::HandleImpl* ClockCacheShard<Table>::Lookup(
    const Slice& key, const UniqueId64x2& hashed_key) {
1103 1104 1105
  if (UNLIKELY(key.size() != kCacheKeySize)) {
    return nullptr;
  }
1106
  return table_.Lookup(hashed_key);
Y
Yi Wu 已提交
1107 1108
}

1109 1110
template <class Table>
bool ClockCacheShard<Table>::Ref(HandleImpl* h) {
1111 1112 1113
  if (h == nullptr) {
    return false;
  }
1114
  table_.Ref(*h);
1115
  return true;
Y
Yi Wu 已提交
1116 1117
}

1118 1119 1120
template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle, bool useful,
                                     bool erase_if_last_ref) {
G
Guido Tagliavini Ponce 已提交
1121 1122 1123
  if (handle == nullptr) {
    return false;
  }
1124
  return table_.Release(handle, useful, erase_if_last_ref);
1125
}
1126

1127 1128
template <class Table>
void ClockCacheShard<Table>::TEST_RefN(HandleImpl* h, size_t n) {
1129
  table_.TEST_RefN(*h, n);
1130
}
1131

1132 1133
template <class Table>
void ClockCacheShard<Table>::TEST_ReleaseN(HandleImpl* h, size_t n) {
1134
  table_.TEST_ReleaseN(h, n);
1135
}
1136

1137 1138 1139
template <class Table>
bool ClockCacheShard<Table>::Release(HandleImpl* handle,
                                     bool erase_if_last_ref) {
1140
  return Release(handle, /*useful=*/true, erase_if_last_ref);
1141 1142
}

1143 1144 1145
template <class Table>
void ClockCacheShard<Table>::Erase(const Slice& key,
                                   const UniqueId64x2& hashed_key) {
1146 1147 1148
  if (UNLIKELY(key.size() != kCacheKeySize)) {
    return;
  }
1149
  table_.Erase(hashed_key);
G
Guido Tagliavini Ponce 已提交
1150
}
Y
Yi Wu 已提交
1151

1152 1153 1154 1155
template <class Table>
size_t ClockCacheShard<Table>::GetUsage() const {
  return table_.GetUsage();
}
Y
Yi Wu 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
template <class Table>
size_t ClockCacheShard<Table>::GetDetachedUsage() const {
  return table_.GetDetachedUsage();
}

template <class Table>
size_t ClockCacheShard<Table>::GetCapacity() const {
  return capacity_;
}

1167 1168
template <class Table>
size_t ClockCacheShard<Table>::GetPinnedUsage() const {
1169 1170
  // Computes the pinned usage by scanning the whole hash table. This
  // is slow, but avoids keeping an exact counter on the clock usage,
1171
  // i.e., the number of not externally referenced elements.
1172
  // Why avoid this counter? Because Lookup removes elements from the clock
1173 1174
  // list, so it would need to update the pinned usage every time,
  // which creates additional synchronization costs.
1175 1176 1177
  size_t table_pinned_usage = 0;
  const bool charge_metadata =
      metadata_charge_policy_ == kFullChargeCacheMetadata;
1178
  table_.ConstApplyToEntriesRange(
1179
      [&table_pinned_usage, charge_metadata](const HandleImpl& h) {
1180
        uint64_t meta = h.meta.load(std::memory_order_relaxed);
1181
        uint64_t refcount = GetRefcount(meta);
1182 1183 1184
        // Holding one ref for ConstApplyToEntriesRange
        assert(refcount > 0);
        if (refcount > 1) {
1185
          table_pinned_usage += h.GetTotalCharge();
1186
          if (charge_metadata) {
1187
            table_pinned_usage += sizeof(HandleImpl);
1188
          }
1189 1190 1191 1192
        }
      },
      0, table_.GetTableSize(), true);

1193 1194 1195
  return table_pinned_usage + table_.GetDetachedUsage();
}

1196 1197
template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyCount() const {
1198 1199 1200
  return table_.GetOccupancy();
}

1201 1202 1203 1204 1205
template <class Table>
size_t ClockCacheShard<Table>::GetOccupancyLimit() const {
  return table_.GetOccupancyLimit();
}

1206 1207
template <class Table>
size_t ClockCacheShard<Table>::GetTableAddressCount() const {
1208
  return table_.GetTableSize();
G
Guido Tagliavini Ponce 已提交
1209
}
Y
Yi Wu 已提交
1210

1211 1212 1213
// Explicit instantiation
template class ClockCacheShard<HyperClockTable>;

1214 1215 1216
HyperClockCache::HyperClockCache(
    size_t capacity, size_t estimated_value_size, int num_shard_bits,
    bool strict_capacity_limit,
1217 1218 1219 1220
    CacheMetadataChargePolicy metadata_charge_policy,
    std::shared_ptr<MemoryAllocator> memory_allocator)
    : ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
                   std::move(memory_allocator)) {
1221 1222
  assert(estimated_value_size > 0 ||
         metadata_charge_policy != kDontChargeCacheMetadata);
1223 1224
  // TODO: should not need to go through two levels of pointer indirection to
  // get to table entries
1225
  size_t per_shard = GetPerShardCapacity();
1226 1227 1228 1229 1230
  InitShards([=](Shard* cs) {
    HyperClockTable::Opts opts;
    opts.estimated_value_size = estimated_value_size;
    new (cs)
        Shard(per_shard, strict_capacity_limit, metadata_charge_policy, opts);
1231
  });
G
Guido Tagliavini Ponce 已提交
1232
}
Y
Yi Wu 已提交
1233

1234
void* HyperClockCache::Value(Handle* handle) {
1235
  return reinterpret_cast<const HandleImpl*>(handle)->value;
G
Guido Tagliavini Ponce 已提交
1236
}
1237

1238
size_t HyperClockCache::GetCharge(Handle* handle) const {
1239
  return reinterpret_cast<const HandleImpl*>(handle)->GetTotalCharge();
G
Guido Tagliavini Ponce 已提交
1240
}
Y
Yi Wu 已提交
1241

1242
Cache::DeleterFn HyperClockCache::GetDeleter(Handle* handle) const {
1243
  auto h = reinterpret_cast<const HandleImpl*>(handle);
G
Guido Tagliavini Ponce 已提交
1244 1245
  return h->deleter;
}
1246

1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
namespace {

// For each cache shard, estimate what the table load factor would be if
// cache filled to capacity with average entries. This is considered
// indicative of a potential problem if the shard is essentially operating
// "at limit", which we define as high actual usage (>80% of capacity)
// or actual occupancy very close to limit (>95% of limit).
// Also, for each shard compute the recommended estimated_entry_charge,
// and keep the minimum one for use as overall recommendation.
void AddShardEvaluation(const HyperClockCache::Shard& shard,
                        std::vector<double>& predicted_load_factors,
                        size_t& min_recommendation) {
  size_t usage = shard.GetUsage() - shard.GetDetachedUsage();
  size_t capacity = shard.GetCapacity();
  double usage_ratio = 1.0 * usage / capacity;

  size_t occupancy = shard.GetOccupancyCount();
  size_t occ_limit = shard.GetOccupancyLimit();
  double occ_ratio = 1.0 * occupancy / occ_limit;
  if (usage == 0 || occupancy == 0 || (usage_ratio < 0.8 && occ_ratio < 0.95)) {
    // Skip as described above
    return;
  }

  // If filled to capacity, what would the occupancy ratio be?
  double ratio = occ_ratio / usage_ratio;
  // Given max load factor, what that load factor be?
  double lf = ratio * kStrictLoadFactor;
  predicted_load_factors.push_back(lf);

  // Update min_recommendation also
  size_t recommendation = usage / occupancy;
  min_recommendation = std::min(min_recommendation, recommendation);
}

}  // namespace

void HyperClockCache::ReportProblems(
    const std::shared_ptr<Logger>& info_log) const {
  uint32_t shard_count = GetNumShards();
  std::vector<double> predicted_load_factors;
  size_t min_recommendation = SIZE_MAX;
  const_cast<HyperClockCache*>(this)->ForEachShard(
      [&](HyperClockCache::Shard* shard) {
        AddShardEvaluation(*shard, predicted_load_factors, min_recommendation);
      });

  if (predicted_load_factors.empty()) {
    // None operating "at limit" -> nothing to report
    return;
  }
  std::sort(predicted_load_factors.begin(), predicted_load_factors.end());

  // First, if the average load factor is within spec, we aren't going to
  // complain about a few shards being out of spec.
  // NOTE: this is only the average among cache shards operating "at limit,"
  // which should be representative of what we care about. It it normal, even
  // desirable, for a cache to operate "at limit" so this should not create
  // selection bias. See AddShardEvaluation().
  // TODO: Consider detecting cases where decreasing the number of shards
  // would be good, e.g. serious imbalance among shards.
  double average_load_factor =
      std::accumulate(predicted_load_factors.begin(),
                      predicted_load_factors.end(), 0.0) /
      shard_count;

  constexpr double kLowSpecLoadFactor = kLoadFactor / 2;
  constexpr double kMidSpecLoadFactor = kLoadFactor / 1.414;
  if (average_load_factor > kLoadFactor) {
    // Out of spec => Consider reporting load factor too high
    // Estimate effective overall capacity loss due to enforcing occupancy limit
    double lost_portion = 0.0;
    int over_count = 0;
    for (double lf : predicted_load_factors) {
      if (lf > kStrictLoadFactor) {
        ++over_count;
        lost_portion += (lf - kStrictLoadFactor) / lf / shard_count;
      }
    }
    // >= 20% loss -> error
    // >= 10% loss -> consistent warning
    // >= 1% loss -> intermittent warning
    InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
    bool report = true;
    if (lost_portion > 0.2) {
      level = InfoLogLevel::ERROR_LEVEL;
    } else if (lost_portion > 0.1) {
      level = InfoLogLevel::WARN_LEVEL;
    } else if (lost_portion > 0.01) {
      int report_percent = static_cast<int>(lost_portion * 100.0);
      if (Random::GetTLSInstance()->PercentTrue(report_percent)) {
        level = InfoLogLevel::WARN_LEVEL;
      }
    } else {
      // don't report
      report = false;
    }
    if (report) {
      ROCKS_LOG_AT_LEVEL(
          info_log, level,
          "HyperClockCache@%p unable to use estimated %.1f%% capacity because "
          "of "
          "full occupancy in %d/%u cache shards (estimated_entry_charge too "
          "high). Recommend estimated_entry_charge=%zu",
          this, lost_portion * 100.0, over_count, (unsigned)shard_count,
          min_recommendation);
    }
  } else if (average_load_factor < kLowSpecLoadFactor) {
    // Out of spec => Consider reporting load factor too low
    // But cautiously because low is not as big of a problem.

    // Only report if highest occupancy shard is also below
    // spec and only if average is substantially out of spec
    if (predicted_load_factors.back() < kLowSpecLoadFactor &&
        average_load_factor < kLowSpecLoadFactor / 1.414) {
      InfoLogLevel level = InfoLogLevel::INFO_LEVEL;
      if (average_load_factor < kLowSpecLoadFactor / 2) {
        level = InfoLogLevel::WARN_LEVEL;
      }
      ROCKS_LOG_AT_LEVEL(
          info_log, level,
          "HyperClockCache@%p table has low occupancy at full capacity. Higher "
          "estimated_entry_charge (about %.1fx) would likely improve "
          "performance. Recommend estimated_entry_charge=%zu",
          this, kMidSpecLoadFactor / average_load_factor, min_recommendation);
    }
  }
}

1376
}  // namespace clock_cache
Y
Yi Wu 已提交
1377

1378
// DEPRECATED (see public API)
1379
std::shared_ptr<Cache> NewClockCache(
1380
    size_t capacity, int num_shard_bits, bool strict_capacity_limit,
1381
    CacheMetadataChargePolicy metadata_charge_policy) {
1382 1383 1384 1385
  return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
                     /* high_pri_pool_ratio */ 0.5, nullptr,
                     kDefaultToAdaptiveMutex, metadata_charge_policy,
                     /* low_pri_pool_ratio */ 0.0);
1386 1387
}

1388 1389 1390
std::shared_ptr<Cache> HyperClockCacheOptions::MakeSharedCache() const {
  auto my_num_shard_bits = num_shard_bits;
  if (my_num_shard_bits >= 20) {
G
Guido Tagliavini Ponce 已提交
1391 1392
    return nullptr;  // The cache cannot be sharded into too many fine pieces.
  }
1393
  if (my_num_shard_bits < 0) {
1394 1395 1396
    // Use larger shard size to reduce risk of large entries clustering
    // or skewing individual shards.
    constexpr size_t min_shard_size = 32U * 1024U * 1024U;
1397
    my_num_shard_bits = GetDefaultCacheShardBits(capacity, min_shard_size);
1398
  }
1399
  return std::make_shared<clock_cache::HyperClockCache>(
1400
      capacity, estimated_entry_charge, my_num_shard_bits,
1401
      strict_capacity_limit, metadata_charge_policy, memory_allocator);
Y
Yi Wu 已提交
1402 1403
}

1404
}  // namespace ROCKSDB_NAMESPACE