提交 c7fac447 编写于 作者: B bors

auto merge of #13358 : tbu-/rust/pr_doc_equivrel, r=cmr

Add requirements of TotalEq and TotalOrd

Clarify that TotalEq needs an underlying equivalence relation and that TotalOrd
needs a total ordering and specifically named the required (and sufficient)
attributes.
......@@ -8,50 +8,47 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Defines the `Ord` and `Eq` comparison traits.
This module defines both `Ord` and `Eq` traits which are used by the compiler
to implement comparison operators.
Rust programs may implement `Ord` to overload the `<`, `<=`, `>`, and `>=` operators,
and may implement `Eq` to overload the `==` and `!=` operators.
For example, to define a type with a customized definition for the Eq operators,
you could do the following:
```rust
// Our type.
struct SketchyNum {
num : int
}
// Our implementation of `Eq` to support `==` and `!=`.
impl Eq for SketchyNum {
// Our custom eq allows numbers which are near eachother to be equal! :D
fn eq(&self, other: &SketchyNum) -> bool {
(self.num - other.num).abs() < 5
}
}
// Now these binary operators will work when applied!
assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
```
*/
/**
* Trait for values that can be compared for equality and inequality.
*
* This trait allows partial equality, where types can be unordered instead of strictly equal or
* unequal. For example, with the built-in floating-point types `a == b` and `a != b` will both
* evaluate to false if either `a` or `b` is NaN (cf. IEEE 754-2008 section 5.11).
*
* Eq only requires the `eq` method to be implemented; `ne` is its negation by default.
*
* Eventually, this will be implemented by default for types that implement `TotalEq`.
*/
//! Defines the `Ord` and `Eq` comparison traits.
//!
//! This module defines both `Ord` and `Eq` traits which are used by the
//! compiler to implement comparison operators. Rust programs may implement
//!`Ord` to overload the `<`, `<=`, `>`, and `>=` operators, and may implement
//! `Eq` to overload the `==` and `!=` operators.
//!
//! For example, to define a type with a customized definition for the Eq
//! operators, you could do the following:
//!
//! ```rust
//! // Our type.
//! struct SketchyNum {
//! num : int
//! }
//!
//! // Our implementation of `Eq` to support `==` and `!=`.
//! impl Eq for SketchyNum {
//! // Our custom eq allows numbers which are near eachother to be equal! :D
//! fn eq(&self, other: &SketchyNum) -> bool {
//! (self.num - other.num).abs() < 5
//! }
//! }
//!
//! // Now these binary operators will work when applied!
//! assert!(SketchyNum {num: 37} == SketchyNum {num: 34});
//! assert!(SketchyNum {num: 25} != SketchyNum {num: 57});
//! ```
/// Trait for values that can be compared for equality and inequality.
///
/// This trait allows partial equality, where types can be unordered instead of
/// strictly equal or unequal. For example, with the built-in floating-point
/// types `a == b` and `a != b` will both evaluate to false if either `a` or
/// `b` is NaN (cf. IEEE 754-2008 section 5.11).
///
/// Eq only requires the `eq` method to be implemented; `ne` is its negation by
/// default.
///
/// Eventually, this will be implemented by default for types that implement
/// `TotalEq`.
#[lang="eq"]
pub trait Eq {
/// This method tests for `self` and `other` values to be equal, and is used by `==`.
......@@ -62,7 +59,15 @@ pub trait Eq {
fn ne(&self, other: &Self) -> bool { !self.eq(other) }
}
/// Trait for equality comparisons where `a == b` and `a != b` are strict inverses.
/// Trait for equality comparisons which are [equivalence relations](
/// https://en.wikipedia.org/wiki/Equivalence_relation).
///
/// This means, that in addition to `a == b` and `a != b` being strict
/// inverses, the equality must be (for all `a`, `b` and `c`):
///
/// - reflexive: `a == a`;
/// - symmetric: `a == b` implies `b == a`; and
/// - transitive: `a == b` and `b == c` implies `a == c`.
pub trait TotalEq: Eq {
// FIXME #13101: this method is used solely by #[deriving] to
// assert that every component of a type implements #[deriving]
......@@ -111,7 +116,15 @@ pub enum Ordering {
Greater = 1
}
/// Trait for types that form a total order.
/// Trait for types that form a [total order](
/// https://en.wikipedia.org/wiki/Total_order).
///
/// An order is a total order if it is (for all `a`, `b` and `c`):
///
/// - total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is
/// true; and
/// - transitive, `a < b` and `b < c` implies `a < c`. The same must hold for
/// both `==` and `>`.
pub trait TotalOrd: TotalEq + Ord {
/// This method returns an ordering between `self` and `other` values.
///
......@@ -168,13 +181,11 @@ fn cmp(&self, other: &$t) -> Ordering {
totalord_impl!(char)
/**
* Combine orderings, lexically.
*
* For example for a type `(int, int)`, two comparisons could be done.
* If the first ordering is different, the first ordering is all that must be returned.
* If the first ordering is equal, then second ordering is returned.
*/
/// Combine orderings, lexically.
///
/// For example for a type `(int, int)`, two comparisons could be done.
/// If the first ordering is different, the first ordering is all that must be returned.
/// If the first ordering is equal, then second ordering is returned.
#[inline]
pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
match o1 {
......@@ -183,16 +194,14 @@ pub fn lexical_ordering(o1: Ordering, o2: Ordering) -> Ordering {
}
}
/**
* Trait for values that can be compared for a sort-order.
*
* Ord only requires implementation of the `lt` method,
* with the others generated from default implementations.
*
* However it remains possible to implement the others separately,
* for compatibility with floating-point NaN semantics
* (cf. IEEE 754-2008 section 5.11).
*/
/// Trait for values that can be compared for a sort-order.
///
/// Ord only requires implementation of the `lt` method,
/// with the others generated from default implementations.
///
/// However it remains possible to implement the others separately,
/// for compatibility with floating-point NaN semantics
/// (cf. IEEE 754-2008 section 5.11).
#[lang="ord"]
pub trait Ord: Eq {
/// This method tests less than (for `self` and `other`) and is used by the `<` operator.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册