提交 b9e4fcbf 编写于 作者: K Kevin Butler 提交者: Alex Crichton

shootout-mandelbrot: Precalc initial values & use SIMD in the main loop. +80-100%

上级 03f48534
......@@ -8,104 +8,168 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![feature(macro_rules)]
#![feature(simd)]
#![allow(experimental)]
// ignore-pretty very bad with line comments
extern crate sync;
use std::io;
use std::os;
use std::unstable::simd::f64x2;
use sync::Future;
use sync::Arc;
static ITER: int = 50;
static LIMIT: f64 = 2.0;
static WORKERS: uint = 16;
macro_rules! core_loop(
($pow:expr ~ $mask:expr: $ctx:ident, $b:ident) => (
{
let r = $ctx.r;
let i = $ctx.i;
#[inline(always)]
fn mandelbrot<W: io::Writer>(w: uint, mut out: W) -> io::IoResult<()> {
assert!(WORKERS % 2 == 0);
$ctx.r = r * r - i * i + $ctx.init_r;
$ctx.i = 2.0 * r * i + $ctx.init_i;
// Ensure w and h are multiples of 8.
let w = (w + 7) / 8 * 8;
let h = w;
let chunk_size = h / WORKERS;
if r * r + i * i > LIMIT * LIMIT {
$b |= $pow;
if $b == $mask { break; }
// Account for remainders in workload division, e.g. 1000 / 16 = 62.5
let first_chunk_size = if h % WORKERS != 0 {
chunk_size + h % WORKERS
} else {
chunk_size
};
// precalc values
let inverse_w_doubled = 2.0 / w as f64;
let inverse_h_doubled = 2.0 / h as f64;
let v_inverses = f64x2(inverse_w_doubled, inverse_h_doubled);
let v_consts = f64x2(1.5, 1.0);
// A lot of this code assumes this (so do other lang benchmarks)
assert!(w == h);
let mut precalc_r = Vec::with_capacity(w);
let mut precalc_i = Vec::with_capacity(h);
let precalc_futures = Vec::from_fn(WORKERS, |i| {
Future::spawn(proc () {
let mut rs = Vec::with_capacity(w / WORKERS);
let mut is = Vec::with_capacity(w / WORKERS);
let start = i * chunk_size;
let end = if i == 0 {
first_chunk_size
} else {
(i + 1) * chunk_size
};
// This assumes w == h
for x in range(start, end) {
let xf = x as f64;
let xy = f64x2(xf, xf);
let f64x2(r, i) = xy * v_inverses - v_consts;
rs.push(r);
is.push(i);
}
}
);
)
#[inline(always)]
fn write_line(init_i: f64, vec_init_r: &[f64], res: &mut Vec<u8>) {
struct Context { r: f64, i: f64, init_i: f64, init_r: f64 }
impl Context {
#[inline(always)]
fn new(i: f64, r: f64) -> Context {
Context { r: r, i: i, init_r: r, init_i: i }
}
(rs, is)
})
});
for res in precalc_futures.move_iter() {
let (rs, is) = res.unwrap();
precalc_r.push_all_move(rs);
precalc_i.push_all_move(is);
}
assert_eq!(precalc_r.len(), w);
assert_eq!(precalc_i.len(), h);
let arc_init_r = Arc::new(precalc_r);
let arc_init_i = Arc::new(precalc_i);
let data = Vec::from_fn(WORKERS, |i| {
let vec_init_r = arc_init_r.clone();
let vec_init_i = arc_init_i.clone();
Future::spawn(proc () {
let mut res: Vec<u8> = Vec::with_capacity((chunk_size * w) / 8);
let init_r_slice = vec_init_r.as_slice();
for &init_i in vec_init_i.slice(i * chunk_size, (i + 1) * chunk_size).iter() {
write_line(init_i, init_r_slice, &mut res);
}
res
})
});
try!(writeln!(&mut out as &mut Writer, "P4\n{} {}", w, h));
for res in data.move_iter() {
try!(out.write(res.unwrap().as_slice()));
}
out.flush()
}
fn write_line(init_i: f64, vec_init_r: &[f64], res: &mut Vec<u8>) {
let v_init_i : f64x2 = f64x2(init_i, init_i);
let v_2 : f64x2 = f64x2(2.0, 2.0);
static LIMIT_SQUARED: f64 = LIMIT * LIMIT;
let mut cur_byte;
let mut i;
let mut bit_1;
let mut bit_2;
let mut b;
for chunk_init_r in vec_init_r.chunks(8) {
cur_byte = 0xff;
i = 0;
let mut cur_byte = 0xff;
let mut i = 0;
while i < 8 {
bit_1 = Context::new(init_i, chunk_init_r[i]);
bit_2 = Context::new(init_i, chunk_init_r[i + 1]);
let v_init_r = f64x2(chunk_init_r[i], chunk_init_r[i + 1]);
let mut cur_r = v_init_r;
let mut cur_i = v_init_i;
let mut r_sq = v_init_r * v_init_r;
let mut i_sq = v_init_i * v_init_i;
b = 0;
let mut b = 0;
for _ in range(0, ITER) {
core_loop!(2 ~ 3: bit_1, b);
core_loop!(1 ~ 3: bit_2, b);
let r = cur_r;
let i = cur_i;
cur_i = v_2 * r * i + v_init_i;
cur_r = r_sq - i_sq + v_init_r;
let f64x2(bit1, bit2) = r_sq + i_sq;
if bit1 > LIMIT_SQUARED {
b |= 2;
if b == 3 { break; }
}
if bit2 > LIMIT_SQUARED {
b |= 1;
if b == 3 { break; }
}
r_sq = cur_r * cur_r;
i_sq = cur_i * cur_i;
}
cur_byte = (cur_byte << 2) + b;
i += 2;
}
res.push(cur_byte^-1);
}
}
fn mandelbrot<W: io::Writer>(w: uint, mut out: W) -> io::IoResult<()> {
// Ensure w and h are multiples of 8.
let w = (w + 7) / 8 * 8;
let h = w;
let inverse_w_doubled = 2.0 / w as f64;
let inverse_h_doubled = 2.0 / h as f64;
let chunk_size = h / 16;
let data: Vec<Future<Vec<u8>>> = range(0u, 16).map(|i| Future::spawn(proc () {
let vec_init_r = Vec::from_fn(w, |x| (x as f64) * inverse_w_doubled - 1.5);
let mut res: Vec<u8> = Vec::with_capacity((chunk_size * w) / 8);
for y in range(i * chunk_size, (i + 1) * chunk_size) {
let init_i = (y as f64) * inverse_h_doubled - 1.0;
write_line(init_i, vec_init_r.as_slice(), &mut res);
}
res
})).collect();
try!(writeln!(&mut out as &mut Writer, "P4\n{} {}", w, h));
for res in data.move_iter() {
try!(out.write(res.unwrap().as_slice()));
res.push(cur_byte^-1);
}
out.flush()
}
fn main() {
let args = std::os::args();
let args = os::args();
let args = args.as_slice();
let res = if args.len() < 2 {
println!("Test mode: do not dump the image because it's not utf8, \
which interferes with the test runner.");
mandelbrot(1000, std::io::util::NullWriter)
mandelbrot(1000, io::util::NullWriter)
} else {
mandelbrot(from_str(args[1]).unwrap(), std::io::stdout())
mandelbrot(from_str(args[1]).unwrap(), io::stdout())
};
res.unwrap();
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册