提交 a76277c6 编写于 作者: L lcnr

add a deep fast_reject routine

上级 b8d0cd8d
use crate::mir::Mutability;
use crate::ty::subst::GenericArgKind;
use crate::ty::{self, Ty, TyCtxt, TypeFoldable};
use rustc_hir::def_id::DefId;
use std::fmt::Debug;
use std::hash::Hash;
use std::iter;
use self::SimplifiedTypeGen::*;
......@@ -72,6 +74,10 @@ pub enum TreatParams {
/// Tries to simplify a type by only returning the outermost injective¹ layer, if one exists.
///
/// **This function should only be used if you need to store or retrieve the type from some
/// hashmap. If you want to quickly decide whether two types may unify, use the [DeepRejectCtxt]
/// instead.**
///
/// The idea is to get something simple that we can use to quickly decide if two types could unify,
/// for example during method lookup. If this function returns `Some(x)` it can only unify with
/// types for which this method returns either `Some(x)` as well or `None`.
......@@ -182,3 +188,218 @@ pub fn map_def<U, F>(self, map: F) -> SimplifiedTypeGen<U>
}
}
}
/// Given generic arguments from an obligation and an impl,
/// could these two be unified after replacing parameters in the
/// the impl with inference variables.
///
/// For obligations, parameters won't be replaced by inference
/// variables and only unify with themselves. We treat them
/// the same way we treat placeholders.
///
/// We also use this function during coherence. For coherence the
/// impls only have to overlap for some value, so we treat parameters
/// on both sides like inference variables. This behavior is toggled
/// using the `treat_obligation_params` field.
#[derive(Debug, Clone, Copy)]
pub struct DeepRejectCtxt {
pub treat_obligation_params: TreatParams,
}
impl DeepRejectCtxt {
pub fn generic_args_may_unify(
self,
obligation_arg: ty::GenericArg<'_>,
impl_arg: ty::GenericArg<'_>,
) -> bool {
match (obligation_arg.unpack(), impl_arg.unpack()) {
// We don't fast reject based on regions for now.
(GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => true,
(GenericArgKind::Type(obl), GenericArgKind::Type(imp)) => {
self.types_may_unify(obl, imp)
}
(GenericArgKind::Const(obl), GenericArgKind::Const(imp)) => {
self.consts_may_unify(obl, imp)
}
_ => bug!("kind mismatch: {obligation_arg} {impl_arg}"),
}
}
pub fn types_may_unify(self, obligation_ty: Ty<'_>, impl_ty: Ty<'_>) -> bool {
match impl_ty.kind() {
// Start by checking whether the type in the impl may unify with
// pretty much everything. Just return `true` in that case.
ty::Param(_) | ty::Projection(_) | ty::Error(_) => return true,
// These types only unify with inference variables or their own
// variant.
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Adt(..)
| ty::Str
| ty::Array(..)
| ty::Slice(..)
| ty::RawPtr(..)
| ty::Dynamic(..)
| ty::Ref(..)
| ty::Never
| ty::Tuple(..)
| ty::FnPtr(..)
| ty::Foreign(..)
| ty::Opaque(..) => {}
ty::FnDef(..)
| ty::Closure(..)
| ty::Generator(..)
| ty::GeneratorWitness(..)
| ty::Placeholder(..)
| ty::Bound(..)
| ty::Infer(_) => bug!("unexpected impl_ty: {impl_ty}"),
}
let k = impl_ty.kind();
match *obligation_ty.kind() {
// Purely rigid types, use structural equivalence.
ty::Bool
| ty::Char
| ty::Int(_)
| ty::Uint(_)
| ty::Float(_)
| ty::Str
| ty::Never
| ty::Foreign(_) => obligation_ty == impl_ty,
ty::Ref(_, obl_ty, obl_mutbl) => match k {
&ty::Ref(_, impl_ty, impl_mutbl) => {
obl_mutbl == impl_mutbl && self.types_may_unify(obl_ty, impl_ty)
}
_ => false,
},
ty::Adt(obl_def, obl_substs) => match k {
&ty::Adt(impl_def, impl_substs) => {
obl_def == impl_def
&& iter::zip(obl_substs, impl_substs)
.all(|(obl, imp)| self.generic_args_may_unify(obl, imp))
}
_ => false,
},
ty::Slice(obl_ty) => {
matches!(k, &ty::Slice(impl_ty) if self.types_may_unify(obl_ty, impl_ty))
}
ty::Array(obl_ty, obl_len) => match k {
&ty::Array(impl_ty, impl_len) => {
self.types_may_unify(obl_ty, impl_ty)
&& self.consts_may_unify(obl_len, impl_len)
}
_ => false,
},
ty::Tuple(obl) => match k {
&ty::Tuple(imp) => {
obl.len() == imp.len()
&& iter::zip(obl, imp).all(|(obl, imp)| self.types_may_unify(obl, imp))
}
_ => false,
},
ty::RawPtr(obl) => match k {
ty::RawPtr(imp) => obl.mutbl == imp.mutbl && self.types_may_unify(obl.ty, imp.ty),
_ => false,
},
ty::Dynamic(obl_preds, ..) => {
// Ideally we would walk the existential predicates here or at least
// compare their length. But considering that the relevant `Relate` impl
// actually sorts and deduplicates these, that doesn't work.
matches!(k, ty::Dynamic(impl_preds, ..) if
obl_preds.principal_def_id() == impl_preds.principal_def_id()
)
}
ty::FnPtr(obl_sig) => match k {
ty::FnPtr(impl_sig) => {
let ty::FnSig { inputs_and_output, c_variadic, unsafety, abi } =
obl_sig.skip_binder();
let impl_sig = impl_sig.skip_binder();
abi == impl_sig.abi
&& c_variadic == impl_sig.c_variadic
&& unsafety == impl_sig.unsafety
&& inputs_and_output.len() == impl_sig.inputs_and_output.len()
&& iter::zip(inputs_and_output, impl_sig.inputs_and_output)
.all(|(obl, imp)| self.types_may_unify(obl, imp))
}
_ => false,
},
// Opaque types in impls should be forbidden, but that doesn't
// stop compilation. So this match arm should never return true
// if compilation succeeds.
ty::Opaque(..) => matches!(k, ty::Opaque(..)),
// Impls cannot contain these types as these cannot be named directly.
ty::FnDef(..) | ty::Closure(..) | ty::Generator(..) => false,
ty::Placeholder(..) => false,
// Depending on the value of `treat_obligation_params`, we either
// treat generic parameters like placeholders or like inference variables.
ty::Param(_) => match self.treat_obligation_params {
TreatParams::AsPlaceholder => false,
TreatParams::AsInfer => true,
},
ty::Infer(_) => true,
// As we're walking the whole type, it may encounter projections
// inside of binders and what not, so we're just going to assume that
// projections can unify with other stuff.
//
// Looking forward to lazy normalization this is the safer strategy anyways.
ty::Projection(_) => true,
ty::Error(_) => true,
ty::GeneratorWitness(..) | ty::Bound(..) => {
bug!("unexpected obligation type: {:?}", obligation_ty)
}
}
}
pub fn consts_may_unify(self, obligation_ct: ty::Const<'_>, impl_ct: ty::Const<'_>) -> bool {
match impl_ct.val() {
ty::ConstKind::Param(_) | ty::ConstKind::Unevaluated(_) | ty::ConstKind::Error(_) => {
return true;
}
ty::ConstKind::Value(_) => {}
ty::ConstKind::Infer(_) | ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(_) => {
bug!("unexpected impl arg: {:?}", impl_ct)
}
}
let k = impl_ct.val();
match obligation_ct.val() {
ty::ConstKind::Param(_) => match self.treat_obligation_params {
TreatParams::AsPlaceholder => false,
TreatParams::AsInfer => true,
},
// As we don't necessarily eagerly evaluate constants,
// they might unify with any value.
ty::ConstKind::Unevaluated(_) | ty::ConstKind::Error(_) => true,
ty::ConstKind::Value(obl) => match k {
ty::ConstKind::Value(imp) => {
// FIXME(valtrees): Once we have valtrees, we can just
// compare them directly here.
match (obl.try_to_scalar_int(), imp.try_to_scalar_int()) {
(Some(obl), Some(imp)) => obl == imp,
_ => true,
}
}
_ => true,
},
ty::ConstKind::Infer(_) => true,
ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(_) => {
bug!("unexpected obl const: {:?}", obligation_ct)
}
}
}
}
......@@ -20,7 +20,7 @@
use rustc_infer::infer::{InferCtxt, TyCtxtInferExt};
use rustc_infer::traits::{util, TraitEngine};
use rustc_middle::traits::specialization_graph::OverlapMode;
use rustc_middle::ty::fast_reject::{self, TreatParams};
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::fold::TypeFoldable;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt};
......@@ -79,26 +79,21 @@ pub fn overlapping_impls<F1, F2, R>(
// Before doing expensive operations like entering an inference context, do
// a quick check via fast_reject to tell if the impl headers could possibly
// unify.
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer };
let impl1_ref = tcx.impl_trait_ref(impl1_def_id);
let impl2_ref = tcx.impl_trait_ref(impl2_def_id);
// Check if any of the input types definitely do not unify.
if iter::zip(
impl1_ref.iter().flat_map(|tref| tref.substs.types()),
impl2_ref.iter().flat_map(|tref| tref.substs.types()),
)
.any(|(ty1, ty2)| {
let t1 = fast_reject::simplify_type(tcx, ty1, TreatParams::AsInfer);
let t2 = fast_reject::simplify_type(tcx, ty2, TreatParams::AsInfer);
if let (Some(t1), Some(t2)) = (t1, t2) {
// Simplified successfully
t1 != t2
} else {
// Types might unify
false
let may_overlap = match (impl1_ref, impl2_ref) {
(Some(a), Some(b)) => iter::zip(a.substs, b.substs)
.all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)),
(None, None) => {
let self_ty1 = tcx.type_of(impl1_def_id);
let self_ty2 = tcx.type_of(impl2_def_id);
drcx.types_may_unify(self_ty1, self_ty2)
}
}) {
_ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"),
};
if !may_overlap {
// Some types involved are definitely different, so the impls couldn't possibly overlap.
debug!("overlapping_impls: fast_reject early-exit");
return no_overlap();
......@@ -519,7 +514,7 @@ pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanChe
/// 3. Before this local type, no generic type parameter of the impl must
/// be reachable through fundamental types.
/// - e.g. `impl<T> Trait<LocalType> for Vec<T>` is fine, as `Vec` is not fundamental.
/// - while `impl<T> Trait<LocalType for Box<T>` results in an error, as `T` is
/// - while `impl<T> Trait<LocalType> for Box<T>` results in an error, as `T` is
/// reachable through the fundamental type `Box`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
......
......@@ -33,11 +33,11 @@
use rustc_middle::dep_graph::{DepKind, DepNodeIndex};
use rustc_middle::mir::interpret::ErrorHandled;
use rustc_middle::thir::abstract_const::NotConstEvaluatable;
use rustc_middle::ty::fast_reject::{self, TreatParams};
use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams};
use rustc_middle::ty::fold::BottomUpFolder;
use rustc_middle::ty::print::with_no_trimmed_paths;
use rustc_middle::ty::relate::TypeRelation;
use rustc_middle::ty::subst::{GenericArgKind, Subst, SubstsRef};
use rustc_middle::ty::subst::{Subst, SubstsRef};
use rustc_middle::ty::{self, EarlyBinder, PolyProjectionPredicate, ToPolyTraitRef, ToPredicate};
use rustc_middle::ty::{Ty, TyCtxt, TypeFoldable};
use rustc_span::symbol::sym;
......@@ -2137,40 +2137,9 @@ fn fast_reject_trait_refs(
// We can avoid creating type variables and doing the full
// substitution if we find that any of the input types, when
// simplified, do not match.
iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs).any(
|(obligation_arg, impl_arg)| {
match (obligation_arg.unpack(), impl_arg.unpack()) {
(GenericArgKind::Type(obligation_ty), GenericArgKind::Type(impl_ty)) => {
// Note, we simplify parameters for the obligation but not the
// impl so that we do not reject a blanket impl but do reject
// more concrete impls if we're searching for `T: Trait`.
let simplified_obligation_ty = fast_reject::simplify_type(
self.tcx(),
obligation_ty,
TreatParams::AsPlaceholder,
);
let simplified_impl_ty =
fast_reject::simplify_type(self.tcx(), impl_ty, TreatParams::AsInfer);
simplified_obligation_ty.is_some()
&& simplified_impl_ty.is_some()
&& simplified_obligation_ty != simplified_impl_ty
}
(GenericArgKind::Lifetime(_), GenericArgKind::Lifetime(_)) => {
// Lifetimes can never cause a rejection.
false
}
(GenericArgKind::Const(_), GenericArgKind::Const(_)) => {
// Conservatively ignore consts (i.e. assume they might
// unify later) until we have `fast_reject` support for
// them (if we'll ever need it, even).
false
}
_ => unreachable!(),
}
},
)
let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsPlaceholder };
iter::zip(obligation.predicate.skip_binder().trait_ref.substs, impl_trait_ref.substs)
.any(|(obl, imp)| !drcx.generic_args_may_unify(obl, imp))
}
/// Normalize `where_clause_trait_ref` and try to match it against
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册