提交 77723d24 编写于 作者: N Niko Matsakis

Implement an iterator for walking types rather than the old callback code.

上级 39d74026
......@@ -98,6 +98,7 @@ pub mod middle {
pub mod traits;
pub mod ty;
pub mod ty_fold;
pub mod ty_walk;
pub mod weak_lang_items;
}
......
......@@ -59,6 +59,7 @@
use middle::traits;
use middle::ty;
use middle::ty_fold::{mod, TypeFoldable, TypeFolder};
use middle::ty_walk::TypeWalker;
use util::ppaux::{note_and_explain_region, bound_region_ptr_to_string};
use util::ppaux::{trait_store_to_string, ty_to_string};
use util::ppaux::{Repr, UserString};
......@@ -2806,55 +2807,59 @@ pub fn mk_param_from_def<'tcx>(cx: &ctxt<'tcx>, def: &TypeParameterDef) -> Ty<'t
pub fn mk_open<'tcx>(cx: &ctxt<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { mk_t(cx, ty_open(ty)) }
pub fn walk_ty<'tcx, F>(ty: Ty<'tcx>, mut f: F) where
F: FnMut(Ty<'tcx>),
impl<'tcx> TyS<'tcx> {
/// Iterator that walks `self` and any types reachable from
/// `self`, in depth-first order. Note that just walks the types
/// that appear in `self`, it does not descend into the fields of
/// structs or variants. For example:
///
/// ```notrust
/// int => { int }
/// Foo<Bar<int>> => { Foo<Bar<int>>, Bar<int>, int }
/// [int] => { [int], int }
/// ```
pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
TypeWalker::new(self)
}
/// Iterator that walks types reachable from `self`, in
/// depth-first order. Note that this is a shallow walk. For
/// example:
///
/// ```notrust
/// int => { }
/// Foo<Bar<int>> => { Bar<int>, int }
/// [int] => { int }
/// ```
pub fn walk_children(&'tcx self) -> TypeWalker<'tcx> {
// Walks type reachable from `self` but not `self
let mut walker = self.walk();
let r = walker.next();
assert_eq!(r, Some(self));
walker
}
}
pub fn walk_ty<'tcx, F>(ty_root: Ty<'tcx>, mut f: F)
where F: FnMut(Ty<'tcx>),
{
maybe_walk_ty(ty, |ty| { f(ty); true });
for ty in ty_root.walk() {
f(ty);
}
}
pub fn maybe_walk_ty<'tcx, F>(ty: Ty<'tcx>, mut f: F) where F: FnMut(Ty<'tcx>) -> bool {
// FIXME(#19596) This is a workaround, but there should be a better way to do this
fn maybe_walk_ty_<'tcx, F>(ty: Ty<'tcx>, f: &mut F) where F: FnMut(Ty<'tcx>) -> bool {
if !(*f)(ty) {
return;
}
match ty.sty {
ty_bool | ty_char | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_infer(_) | ty_param(_) | ty_err => {}
ty_uniq(ty) | ty_vec(ty, _) | ty_open(ty) => maybe_walk_ty_(ty, f),
ty_ptr(ref tm) | ty_rptr(_, ref tm) => {
maybe_walk_ty_(tm.ty, f);
}
ty_trait(box TyTrait { ref principal, .. }) => {
for subty in principal.0.substs.types.iter() {
maybe_walk_ty_(*subty, f);
}
}
ty_projection(ProjectionTy { ref trait_ref, .. }) => {
for subty in trait_ref.substs.types.iter() {
maybe_walk_ty_(*subty, f);
}
}
ty_enum(_, ref substs) |
ty_struct(_, ref substs) |
ty_unboxed_closure(_, _, ref substs) => {
for subty in substs.types.iter() {
maybe_walk_ty_(*subty, f);
}
}
ty_tup(ref ts) => { for tt in ts.iter() { maybe_walk_ty_(*tt, f); } }
ty_bare_fn(_, ref ft) => {
for a in ft.sig.0.inputs.iter() { maybe_walk_ty_(*a, f); }
if let ty::FnConverging(output) = ft.sig.0.output {
maybe_walk_ty_(output, f);
}
}
ty_closure(ref ft) => {
for a in ft.sig.0.inputs.iter() { maybe_walk_ty_(*a, f); }
if let ty::FnConverging(output) = ft.sig.0.output {
maybe_walk_ty_(output, f);
}
}
/// Walks `ty` and any types appearing within `ty`, invoking the
/// callback `f` on each type. If the callback returns false, then the
/// children of the current type are ignored.
///
/// Note: prefer `ty.walk()` where possible.
pub fn maybe_walk_ty<'tcx,F>(ty_root: Ty<'tcx>, mut f: F)
where F : FnMut(Ty<'tcx>) -> bool
{
let mut walker = ty_root.walk();
while let Some(ty) = walker.next() {
if !f(ty) {
walker.skip_current_subtree();
}
}
......
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! An iterator over the type substructure.
use middle::ty::{mod, Ty};
use std::iter::Iterator;
pub struct TypeWalker<'tcx> {
stack: Vec<Ty<'tcx>>,
last_subtree: uint,
}
impl<'tcx> TypeWalker<'tcx> {
pub fn new(ty: Ty<'tcx>) -> TypeWalker<'tcx> {
TypeWalker { stack: vec!(ty), last_subtree: 1, }
}
fn push_subtypes(&mut self, parent_ty: Ty<'tcx>) {
match parent_ty.sty {
ty::ty_bool | ty::ty_char | ty::ty_int(_) | ty::ty_uint(_) | ty::ty_float(_) |
ty::ty_str | ty::ty_infer(_) | ty::ty_param(_) | ty::ty_err => {
}
ty::ty_uniq(ty) | ty::ty_vec(ty, _) | ty::ty_open(ty) => {
self.stack.push(ty);
}
ty::ty_ptr(ref mt) | ty::ty_rptr(_, ref mt) => {
self.stack.push(mt.ty);
}
ty::ty_projection(ref data) => {
self.push_reversed(data.trait_ref.substs.types.as_slice());
}
ty::ty_trait(box ty::TyTrait { ref principal, .. }) => {
self.push_reversed(principal.substs().types.as_slice());
}
ty::ty_enum(_, ref substs) |
ty::ty_struct(_, ref substs) |
ty::ty_unboxed_closure(_, _, ref substs) => {
self.push_reversed(substs.types.as_slice());
}
ty::ty_tup(ref ts) => {
self.push_reversed(ts.as_slice());
}
ty::ty_bare_fn(_, ref ft) => {
self.push_sig_subtypes(&ft.sig);
}
ty::ty_closure(ref ft) => {
self.push_sig_subtypes(&ft.sig);
}
}
}
fn push_sig_subtypes(&mut self, sig: &ty::PolyFnSig<'tcx>) {
match sig.0.output {
ty::FnConverging(output) => { self.stack.push(output); }
ty::FnDiverging => { }
}
self.push_reversed(sig.0.inputs.as_slice());
}
fn push_reversed(&mut self, tys: &[Ty<'tcx>]) {
// We push slices on the stack in reverse order so as to
// maintain a pre-order traversal. As of the time of this
// writing, the fact that the traversal is pre-order is not
// known to be significant to any code, but it seems like the
// natural order one would expect (basically, the order of the
// types as they are written).
for &ty in tys.iter().rev() {
self.stack.push(ty);
}
}
/// Skips the subtree of types corresponding to the last type
/// returned by `next()`.
///
/// Example: Imagine you are walking `Foo<Bar<int>, uint>`.
///
/// ```rust
/// let mut iter: TypeWalker = ...;
/// iter.next(); // yields Foo
/// iter.next(); // yields Bar<int>
/// iter.skip_current_subtree(); // skips int
/// iter.next(); // yields uint
/// ```
pub fn skip_current_subtree(&mut self) {
self.stack.truncate(self.last_subtree);
}
}
impl<'tcx> Iterator<Ty<'tcx>> for TypeWalker<'tcx> {
fn next(&mut self) -> Option<Ty<'tcx>> {
debug!("next(): stack={}", self.stack);
match self.stack.pop() {
None => {
return None;
}
Some(ty) => {
self.last_subtree = self.stack.len();
self.push_subtypes(ty);
debug!("next: stack={}", self.stack);
Some(ty)
}
}
}
}
......@@ -34,8 +34,6 @@
use syntax::diagnostic::{Level, RenderSpan, Bug, Fatal, Error, Warning, Note, Help};
use syntax::parse::token;
use arena::TypedArena;
struct Env<'a, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'tcx>,
}
......@@ -831,3 +829,57 @@ fn subst_region_renumber_region() {
assert_eq!(t_substituted, t_expected);
})
}
#[test]
fn walk_ty() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.int;
let uint_ty = tcx.types.uint;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
let walked: Vec<_> = uniq_ty.walk().collect();
assert_eq!(vec!(uniq_ty,
tup2_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
uint_ty),
walked);
})
}
#[test]
fn walk_ty_skip_subtree() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.int;
let uint_ty = tcx.types.uint;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
// types we expect to see (in order), plus a boolean saying
// whether to skip the subtree.
let mut expected = vec!((uniq_ty, false),
(tup2_ty, false),
(tup1_ty, false),
(int_ty, false),
(uint_ty, false),
(int_ty, false),
(uint_ty, false),
(tup1_ty, true), // skip the int/uint/int/uint
(uint_ty, false));
expected.reverse();
let mut walker = uniq_ty.walk();
while let Some(t) = walker.next() {
debug!("walked to {}", t);
let (expected_ty, skip) = expected.pop().unwrap();
assert_eq!(t, expected_ty);
if skip { walker.skip_current_subtree(); }
}
assert!(expected.is_empty());
})
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册