提交 66d60c78 编写于 作者: S Scott A Carr

add control flow graph and algorithms. add dominator to mir

上级 fe96928d
......@@ -15,7 +15,7 @@
use rustc_serialize as serialize;
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct Cache {
predecessors: RefCell<Option<IndexVec<BasicBlock, Vec<BasicBlock>>>>
}
......
......@@ -12,6 +12,9 @@
use middle::const_val::ConstVal;
use rustc_const_math::{ConstUsize, ConstInt, ConstMathErr};
use rustc_data_structures::indexed_vec::{IndexVec, Idx};
use rustc_data_structures::control_flow_graph::dominators::{Dominators, dominators};
use rustc_data_structures::control_flow_graph::{GraphPredecessors, GraphSuccessors};
use rustc_data_structures::control_flow_graph::ControlFlowGraph;
use hir::def_id::DefId;
use ty::subst::Substs;
use ty::{self, AdtDef, ClosureSubsts, FnOutput, Region, Ty};
......@@ -24,6 +27,7 @@
use std::fmt::{self, Debug, Formatter, Write};
use std::{iter, u32};
use std::ops::{Index, IndexMut};
use std::vec::IntoIter;
use syntax::ast::{self, Name};
use syntax::codemap::Span;
......@@ -54,7 +58,7 @@ fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
}
/// Lowered representation of a single function.
#[derive(Clone, RustcEncodable, RustcDecodable)]
#[derive(Clone, RustcEncodable, RustcDecodable, Debug)]
pub struct Mir<'tcx> {
/// List of basic blocks. References to basic block use a newtyped index type `BasicBlock`
/// that indexes into this vector.
......@@ -145,6 +149,11 @@ pub fn predecessors_for(&self, bb: BasicBlock) -> Ref<Vec<BasicBlock>> {
Ref::map(self.predecessors(), |p| &p[bb])
}
#[inline]
pub fn dominators(&self) -> Dominators<BasicBlock> {
dominators(self)
}
/// Maps locals (Arg's, Var's, Temp's and ReturnPointer, in that order)
/// to their index in the whole list of locals. This is useful if you
/// want to treat all locals the same instead of repeating yourself.
......@@ -1190,3 +1199,33 @@ fn node_to_string(node_id: ast::NodeId) -> String {
fn item_path_str(def_id: DefId) -> String {
ty::tls::with(|tcx| tcx.item_path_str(def_id))
}
impl<'tcx> ControlFlowGraph for Mir<'tcx> {
type Node = BasicBlock;
fn num_nodes(&self) -> usize { self.basic_blocks.len() }
fn start_node(&self) -> Self::Node { START_BLOCK }
fn predecessors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphPredecessors<'graph>>::Iter
{
self.predecessors_for(node).clone().into_iter()
}
fn successors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphSuccessors<'graph>>::Iter
{
self.basic_blocks[node].terminator().successors().into_owned().into_iter()
}
}
impl<'a, 'b> GraphPredecessors<'b> for Mir<'a> {
type Item = BasicBlock;
type Iter = IntoIter<BasicBlock>;
}
impl<'a, 'b> GraphSuccessors<'b> for Mir<'a> {
type Item = BasicBlock;
type Iter = IntoIter<BasicBlock>;
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Algorithm citation:
//! A Simple, Fast Dominance Algorithm.
//! Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy
//! Rice Computer Science TS-06-33870
//! https://www.cs.rice.edu/~keith/EMBED/dom.pdf
use super::ControlFlowGraph;
use super::iterate::reverse_post_order;
use super::super::indexed_vec::{IndexVec, Idx};
use std::fmt;
#[cfg(test)]
mod test;
pub fn dominators<G: ControlFlowGraph>(graph: &G) -> Dominators<G::Node> {
let start_node = graph.start_node();
let rpo = reverse_post_order(graph, start_node);
dominators_given_rpo(graph, &rpo)
}
pub fn dominators_given_rpo<G: ControlFlowGraph>(graph: &G,
rpo: &[G::Node])
-> Dominators<G::Node> {
let start_node = graph.start_node();
assert_eq!(rpo[0], start_node);
// compute the post order index (rank) for each node
let mut post_order_rank: IndexVec<G::Node, usize> = IndexVec::from_elem_n(usize::default(),
graph.num_nodes());
for (index, node) in rpo.iter().rev().cloned().enumerate() {
post_order_rank[node] = index;
}
let mut immediate_dominators: IndexVec<G::Node, Option<G::Node>> =
IndexVec::from_elem_n(Option::default(), graph.num_nodes());
immediate_dominators[start_node] = Some(start_node);
let mut changed = true;
while changed {
changed = false;
for &node in &rpo[1..] {
let mut new_idom = None;
for pred in graph.predecessors(node) {
if immediate_dominators[pred].is_some() {
// (*)
// (*) dominators for `pred` have been calculated
new_idom = intersect_opt(&post_order_rank,
&immediate_dominators,
new_idom,
Some(pred));
}
}
if new_idom != immediate_dominators[node] {
immediate_dominators[node] = new_idom;
changed = true;
}
}
}
Dominators {
post_order_rank: post_order_rank,
immediate_dominators: immediate_dominators,
}
}
fn intersect_opt<Node: Idx>(post_order_rank: &IndexVec<Node, usize>,
immediate_dominators: &IndexVec<Node, Option<Node>>,
node1: Option<Node>,
node2: Option<Node>)
-> Option<Node> {
match (node1, node2) {
(None, None) => None,
(Some(n), None) | (None, Some(n)) => Some(n),
(Some(n1), Some(n2)) => Some(intersect(post_order_rank, immediate_dominators, n1, n2)),
}
}
fn intersect<Node: Idx>(post_order_rank: &IndexVec<Node, usize>,
immediate_dominators: &IndexVec<Node, Option<Node>>,
mut node1: Node,
mut node2: Node)
-> Node {
while node1 != node2 {
while post_order_rank[node1] < post_order_rank[node2] {
node1 = immediate_dominators[node1].unwrap();
}
while post_order_rank[node2] < post_order_rank[node1] {
node2 = immediate_dominators[node2].unwrap();
}
}
return node1;
}
#[derive(Clone, Debug)]
pub struct Dominators<N: Idx> {
post_order_rank: IndexVec<N, usize>,
immediate_dominators: IndexVec<N, Option<N>>,
}
impl<Node: Idx> Dominators<Node> {
pub fn is_reachable(&self, node: Node) -> bool {
self.immediate_dominators[node].is_some()
}
pub fn immediate_dominator(&self, node: Node) -> Node {
assert!(self.is_reachable(node), "node {:?} is not reachable", node);
self.immediate_dominators[node].unwrap()
}
pub fn dominators(&self, node: Node) -> Iter<Node> {
assert!(self.is_reachable(node), "node {:?} is not reachable", node);
Iter {
dominators: self,
node: Some(node),
}
}
pub fn is_dominated_by(&self, node: Node, dom: Node) -> bool {
// FIXME -- could be optimized by using post-order-rank
self.dominators(node).any(|n| n == dom)
}
pub fn mutual_dominator_node(&self, node1: Node, node2: Node) -> Node {
assert!(self.is_reachable(node1),
"node {:?} is not reachable",
node1);
assert!(self.is_reachable(node2),
"node {:?} is not reachable",
node2);
intersect::<Node>(&self.post_order_rank,
&self.immediate_dominators,
node1,
node2)
}
pub fn mutual_dominator<I>(&self, iter: I) -> Option<Node>
where I: IntoIterator<Item = Node>
{
let mut iter = iter.into_iter();
iter.next()
.map(|dom| iter.fold(dom, |dom, node| self.mutual_dominator_node(dom, node)))
}
pub fn all_immediate_dominators(&self) -> &IndexVec<Node, Option<Node>> {
&self.immediate_dominators
}
pub fn dominator_tree(&self) -> DominatorTree<Node> {
let elem: Vec<Node> = Vec::new();
let mut children: IndexVec<Node, Vec<Node>> =
IndexVec::from_elem_n(elem, self.immediate_dominators.len());
let mut root = None;
for (index, immed_dom) in self.immediate_dominators.iter().enumerate() {
let node = Node::new(index);
match *immed_dom {
None => {
// node not reachable
}
Some(immed_dom) => {
if node == immed_dom {
root = Some(node);
} else {
children[immed_dom].push(node);
}
}
}
}
DominatorTree {
root: root.unwrap(),
children: children,
}
}
}
pub struct Iter<'dom, Node: Idx + 'dom> {
dominators: &'dom Dominators<Node>,
node: Option<Node>,
}
impl<'dom, Node: Idx> Iterator for Iter<'dom, Node> {
type Item = Node;
fn next(&mut self) -> Option<Self::Item> {
if let Some(node) = self.node {
let dom = self.dominators.immediate_dominator(node);
if dom == node {
self.node = None; // reached the root
} else {
self.node = Some(dom);
}
return Some(node);
} else {
return None;
}
}
}
pub struct DominatorTree<N: Idx> {
root: N,
children: IndexVec<N, Vec<N>>,
}
impl<Node: Idx> DominatorTree<Node> {
pub fn root(&self) -> Node {
self.root
}
pub fn children(&self, node: Node) -> &[Node] {
&self.children[node]
}
pub fn iter_children_of(&self, node: Node) -> IterChildrenOf<Node> {
IterChildrenOf {
tree: self,
stack: vec![node],
}
}
}
pub struct IterChildrenOf<'iter, Node: Idx + 'iter> {
tree: &'iter DominatorTree<Node>,
stack: Vec<Node>,
}
impl<'iter, Node: Idx> Iterator for IterChildrenOf<'iter, Node> {
type Item = Node;
fn next(&mut self) -> Option<Node> {
if let Some(node) = self.stack.pop() {
self.stack.extend(self.tree.children(node));
Some(node)
} else {
None
}
}
}
impl<Node: Idx> fmt::Debug for DominatorTree<Node> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
fmt::Debug::fmt(&DominatorTreeNode {
tree: self,
node: self.root,
},
fmt)
}
}
struct DominatorTreeNode<'tree, Node: Idx> {
tree: &'tree DominatorTree<Node>,
node: Node,
}
impl<'tree, Node: Idx> fmt::Debug for DominatorTreeNode<'tree, Node> {
fn fmt(&self, fmt: &mut fmt::Formatter) -> Result<(), fmt::Error> {
let subtrees: Vec<_> = self.tree
.children(self.node)
.iter()
.map(|&child| {
DominatorTreeNode {
tree: self.tree,
node: child,
}
})
.collect();
fmt.debug_tuple("")
.field(&self.node)
.field(&subtrees)
.finish()
}
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::super::test::TestGraph;
use super::*;
#[test]
fn diamond() {
let graph = TestGraph::new(0, &[
(0, 1),
(0, 2),
(1, 3),
(2, 3),
]);
let dominators = dominators(&graph);
let immediate_dominators = dominators.all_immediate_dominators();
assert_eq!(immediate_dominators[0], Some(0));
assert_eq!(immediate_dominators[1], Some(0));
assert_eq!(immediate_dominators[2], Some(0));
assert_eq!(immediate_dominators[3], Some(0));
}
#[test]
fn paper() {
// example from the paper:
let graph = TestGraph::new(6, &[
(6, 5),
(6, 4),
(5, 1),
(4, 2),
(4, 3),
(1, 2),
(2, 3),
(3, 2),
(2, 1),
]);
let dominators = dominators(&graph);
let immediate_dominators = dominators.all_immediate_dominators();
assert_eq!(immediate_dominators[0], None); // <-- note that 0 is not in graph
assert_eq!(immediate_dominators[1], Some(6));
assert_eq!(immediate_dominators[2], Some(6));
assert_eq!(immediate_dominators[3], Some(6));
assert_eq!(immediate_dominators[4], Some(6));
assert_eq!(immediate_dominators[5], Some(6));
assert_eq!(immediate_dominators[6], Some(6));
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::ControlFlowGraph;
use super::super::indexed_vec::IndexVec;
#[cfg(test)]
mod test;
pub fn post_order_from<G: ControlFlowGraph>(graph: &G, start_node: G::Node) -> Vec<G::Node> {
post_order_from_to(graph, start_node, None)
}
pub fn post_order_from_to<G: ControlFlowGraph>(graph: &G,
start_node: G::Node,
end_node: Option<G::Node>)
-> Vec<G::Node> {
let mut visited: IndexVec<G::Node, bool> = IndexVec::from_elem_n(false, graph.num_nodes());
let mut result: Vec<G::Node> = Vec::with_capacity(graph.num_nodes());
if let Some(end_node) = end_node {
visited[end_node] = true;
}
post_order_walk(graph, start_node, &mut result, &mut visited);
result
}
fn post_order_walk<G: ControlFlowGraph>(graph: &G,
node: G::Node,
result: &mut Vec<G::Node>,
visited: &mut IndexVec<G::Node, bool>) {
if visited[node] {
return;
}
visited[node] = true;
for successor in graph.successors(node) {
post_order_walk(graph, successor, result, visited);
}
result.push(node);
}
pub fn pre_order_walk<G: ControlFlowGraph>(graph: &G,
node: G::Node,
result: &mut Vec<G::Node>,
visited: &mut IndexVec<G::Node, bool>) {
if visited[node] {
return;
}
visited[node] = true;
result.push(node);
for successor in graph.successors(node) {
pre_order_walk(graph, successor, result, visited);
}
}
pub fn reverse_post_order<G: ControlFlowGraph>(graph: &G, start_node: G::Node) -> Vec<G::Node> {
let mut vec = post_order_from(graph, start_node);
vec.reverse();
vec
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::super::test::TestGraph;
use super::super::transpose::TransposedGraph;
use super::*;
#[test]
fn diamond_post_order() {
let graph = TestGraph::new(0, &[
(0, 1),
(0, 2),
(1, 3),
(2, 3),
]);
let result = post_order_from(&graph, 0);
assert_eq!(result, vec![3, 1, 2, 0]);
}
#[test]
fn rev_post_order_inner_loop() {
// 0 -> 1 -> 2 -> 3 -> 5
// ^ ^ v |
// | 6 <- 4 |
// +-----------------+
let graph = TestGraph::new(0, &[
(0, 1),
(1, 2),
(2, 3),
(3, 5),
(3, 1),
(2, 4),
(4, 6),
(6, 2),
]);
let rev_graph = TransposedGraph::new(&graph);
let result = post_order_from_to(&rev_graph, 6, Some(2));
assert_eq!(result, vec![4, 6]);
let result = post_order_from_to(&rev_graph, 3, Some(1));
assert_eq!(result, vec![4, 6, 2, 3]);
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::indexed_vec::Idx;
pub use std::slice::Iter;
pub mod dominators;
pub mod iterate;
pub mod reachable;
mod reference;
pub mod transpose;
#[cfg(test)]
mod test;
pub trait ControlFlowGraph
where Self: for<'graph> GraphPredecessors<'graph, Item=<Self as ControlFlowGraph>::Node>,
Self: for<'graph> GraphSuccessors<'graph, Item=<Self as ControlFlowGraph>::Node>
{
type Node: Idx;
fn num_nodes(&self) -> usize;
fn start_node(&self) -> Self::Node;
fn predecessors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphPredecessors<'graph>>::Iter;
fn successors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphSuccessors<'graph>>::Iter;
}
pub trait GraphPredecessors<'graph> {
type Item;
type Iter: Iterator<Item=Self::Item>;
}
pub trait GraphSuccessors<'graph> {
type Item;
type Iter: Iterator<Item=Self::Item>;
}
\ No newline at end of file
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Compute reachability using a simple dataflow propagation.
//! Store end-result in a big NxN bit matrix.
use super::ControlFlowGraph;
use super::super::bitvec::BitVector;
use super::iterate::reverse_post_order;
use super::super::indexed_vec::{IndexVec, Idx};
#[cfg(test)]
mod test;
pub fn reachable<G: ControlFlowGraph>(graph: &G)
-> Reachability<G::Node> {
let reverse_post_order = reverse_post_order(graph, graph.start_node());
reachable_given_rpo(graph, &reverse_post_order)
}
pub fn reachable_given_rpo<G: ControlFlowGraph>(graph: &G,
reverse_post_order: &[G::Node])
-> Reachability<G::Node> {
let mut reachability = Reachability::new(graph);
let mut changed = true;
while changed {
changed = false;
for &node in reverse_post_order.iter().rev() {
// every node can reach itself
changed |= reachability.bits[node].insert(node.index());
// and every pred can reach everything node can reach
for pred in graph.predecessors(node) {
let nodes_bits = reachability.bits[node].clone();
changed |= reachability.bits[pred].insert_all(&nodes_bits);
}
}
}
reachability
}
pub struct Reachability<Node: Idx> {
bits: IndexVec<Node, BitVector>,
}
impl<Node: Idx> Reachability<Node> {
fn new<G: ControlFlowGraph>(graph: &G) -> Self {
let num_nodes = graph.num_nodes();
Reachability {
bits: IndexVec::from_elem_n(BitVector::new(num_nodes), num_nodes),
}
}
pub fn can_reach(&self, source: Node, target: Node)-> bool {
let bit: usize = target.index();
self.bits[source].contains(bit)
}
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::super::test::TestGraph;
use super::*;
#[test]
fn test1() {
// 0 -> 1 -> 2 -> 3
// ^ v
// 6 <- 4 -> 5
let graph = TestGraph::new(0, &[
(0, 1),
(1, 2),
(2, 3),
(2, 4),
(4, 5),
(4, 6),
(6, 1),
]);
let reachable = reachable(&graph);
assert!((0..6).all(|i| reachable.can_reach(0, i)));
assert!((1..6).all(|i| reachable.can_reach(1, i)));
assert!((1..6).all(|i| reachable.can_reach(2, i)));
assert!((1..6).all(|i| reachable.can_reach(4, i)));
assert!((1..6).all(|i| reachable.can_reach(6, i)));
assert!(reachable.can_reach(3, 3));
assert!(!reachable.can_reach(3, 5));
assert!(!reachable.can_reach(5, 3));
}
/// use bigger indices to cross between words in the bit set
#[test]
fn test2() {
// 30 -> 31 -> 32 -> 33
// ^ v
// 36 <- 34 -> 35
let graph = TestGraph::new(30, &[
(30, 31),
(31, 32),
(32, 33),
(32, 34),
(34, 35),
(34, 36),
(36, 31),
]);
let reachable = reachable(&graph);
assert!((30..36).all(|i| reachable.can_reach(30, i)));
assert!((31..36).all(|i| reachable.can_reach(31, i)));
assert!((31..36).all(|i| reachable.can_reach(32, i)));
assert!((31..36).all(|i| reachable.can_reach(34, i)));
assert!((31..36).all(|i| reachable.can_reach(36, i)));
assert!(reachable.can_reach(33, 33));
assert!(!reachable.can_reach(33, 35));
assert!(!reachable.can_reach(35, 33));
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::*;
impl<'graph, G: ControlFlowGraph> ControlFlowGraph for &'graph G {
type Node = G::Node;
fn num_nodes(&self) -> usize {
(**self).num_nodes()
}
fn start_node(&self) -> Self::Node {
(**self).start_node()
}
fn predecessors<'iter>(&'iter self, node: Self::Node)
-> <Self as GraphPredecessors<'iter>>::Iter {
(**self).predecessors(node)
}
fn successors<'iter>(&'iter self, node: Self::Node)
-> <Self as GraphSuccessors<'iter>>::Iter {
(**self).successors(node)
}
}
impl<'iter, 'graph, G: ControlFlowGraph> GraphPredecessors<'iter> for &'graph G {
type Item = G::Node;
type Iter = <G as GraphPredecessors<'iter>>::Iter;
}
impl<'iter, 'graph, G: ControlFlowGraph> GraphSuccessors<'iter> for &'graph G {
type Item = G::Node;
type Iter = <G as GraphSuccessors<'iter>>::Iter;
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::collections::HashMap;
use std::cmp::max;
use std::slice;
use std::iter;
use super::{ControlFlowGraph, GraphPredecessors, GraphSuccessors};
pub struct TestGraph {
num_nodes: usize,
start_node: usize,
successors: HashMap<usize, Vec<usize>>,
predecessors: HashMap<usize, Vec<usize>>,
}
impl TestGraph {
pub fn new(start_node: usize, edges: &[(usize, usize)]) -> Self {
let mut graph = TestGraph {
num_nodes: start_node + 1,
start_node: start_node,
successors: HashMap::new(),
predecessors: HashMap::new()
};
for &(source, target) in edges {
graph.num_nodes = max(graph.num_nodes, source + 1);
graph.num_nodes = max(graph.num_nodes, target + 1);
graph.successors.entry(source).or_insert(vec![]).push(target);
graph.predecessors.entry(target).or_insert(vec![]).push(source);
}
for node in 0..graph.num_nodes {
graph.successors.entry(node).or_insert(vec![]);
graph.predecessors.entry(node).or_insert(vec![]);
}
graph
}
}
impl ControlFlowGraph for TestGraph {
type Node = usize;
fn start_node(&self) -> usize {
self.start_node
}
fn num_nodes(&self) -> usize {
self.num_nodes
}
fn predecessors<'graph>(&'graph self, node: usize)
-> <Self as GraphPredecessors<'graph>>::Iter {
self.predecessors[&node].iter().cloned()
}
fn successors<'graph>(&'graph self, node: usize)
-> <Self as GraphSuccessors<'graph>>::Iter {
self.successors[&node].iter().cloned()
}
}
impl<'graph> GraphPredecessors<'graph> for TestGraph {
type Item = usize;
type Iter = iter::Cloned<slice::Iter<'graph, usize>>;
}
impl<'graph> GraphSuccessors<'graph> for TestGraph {
type Item = usize;
type Iter = iter::Cloned<slice::Iter<'graph, usize>>;
}
// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use super::*;
pub struct TransposedGraph<G: ControlFlowGraph> {
base_graph: G,
start_node: G::Node,
}
impl<G: ControlFlowGraph> TransposedGraph<G> {
pub fn new(base_graph: G) -> Self {
let start_node = base_graph.start_node();
Self::with_start(base_graph, start_node)
}
pub fn with_start(base_graph: G, start_node: G::Node) -> Self {
TransposedGraph { base_graph: base_graph, start_node: start_node }
}
}
impl<G: ControlFlowGraph> ControlFlowGraph for TransposedGraph<G> {
type Node = G::Node;
fn num_nodes(&self) -> usize {
self.base_graph.num_nodes()
}
fn start_node(&self) -> Self::Node {
self.start_node
}
fn predecessors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphPredecessors<'graph>>::Iter {
self.base_graph.successors(node)
}
fn successors<'graph>(&'graph self, node: Self::Node)
-> <Self as GraphSuccessors<'graph>>::Iter {
self.base_graph.predecessors(node)
}
}
impl<'graph, G: ControlFlowGraph> GraphPredecessors<'graph> for TransposedGraph<G> {
type Item = G::Node;
type Iter = <G as GraphSuccessors<'graph>>::Iter;
}
impl<'graph, G: ControlFlowGraph> GraphSuccessors<'graph> for TransposedGraph<G> {
type Item = G::Node;
type Iter = <G as GraphPredecessors<'graph>>::Iter;
}
......@@ -8,6 +8,7 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::fmt::Debug;
use std::iter::{self, FromIterator};
use std::slice;
use std::marker::PhantomData;
......@@ -20,7 +21,7 @@
/// Represents some newtyped `usize` wrapper.
///
/// (purpose: avoid mixing indexes for different bitvector domains.)
pub trait Idx: Copy + 'static {
pub trait Idx: Copy + 'static + Eq + Debug {
fn new(usize) -> Self;
fn index(self) -> usize;
}
......@@ -76,6 +77,13 @@ pub fn from_elem<S>(elem: T, universe: &IndexVec<I, S>) -> Self
IndexVec { raw: vec![elem; universe.len()], _marker: PhantomData }
}
#[inline]
pub fn from_elem_n(elem: T, n: usize) -> Self
where T: Clone
{
IndexVec { raw: vec![elem; n], _marker: PhantomData }
}
#[inline]
pub fn push(&mut self, d: T) -> I {
let idx = I::new(self.len());
......
......@@ -50,6 +50,7 @@
pub mod fnv;
pub mod tuple_slice;
pub mod veccell;
pub mod control_flow_graph;
// See comments in src/librustc/lib.rs
#[doc(hidden)]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册