未验证 提交 62528d86 编写于 作者: M Mazdak Farrokhzad 提交者: GitHub

Rollup merge of #66841 - SimonSapin:float_round_unchecked_to, r=rkruppe

Add `{f32,f64}::approx_unchecked_to<Int>` unsafe methods

As discussed in https://github.com/rust-lang/rust/issues/10184

Currently, casting a floating point number to an integer with `as` is Undefined Behavior if the value is out of range. `-Z saturating-float-casts` fixes this soundness hole by making `as` “saturate” to the maximum or minimum value of the integer type (or zero for `NaN`), but has measurable negative performance impact in some benchmarks. There is some consensus in that thread for enabling saturation by default anyway, but provide an `unsafe fn` alternative for users who know through some other mean that their values are in range.

<del>The “fit” wording is copied from https://llvm.org/docs/LangRef.html#fptoui-to-instruction, but I’m not certain what it means exactly. Presumably this is after rounding towards zero, and the doc-test with `i8::MIN` seems to confirm this.</del> Clang presumably uses those LLVM intrinsics to implement C and C++ casts, whose respective standard specify that the value *after truncating to keep its integral part* must be representable in the target type.
......@@ -40,6 +40,11 @@
#![stable(feature = "rust1", since = "1.0.0")]
mod num;
#[unstable(feature = "convert_float_to_int", issue = "67057")]
pub use num::FloatToInt;
/// The identity function.
///
/// Two things are important to note about this function:
......
use super::{From, TryFrom};
use crate::num::TryFromIntError;
mod private {
/// This trait being unreachable from outside the crate
/// prevents other implementations of the `FloatToInt` trait,
/// which allows potentially adding more trait methods after the trait is `#[stable]`.
#[unstable(feature = "convert_float_to_int", issue = "67057")]
pub trait Sealed {}
}
/// Supporting trait for inherent methods of `f32` and `f64` such as `round_unchecked_to`.
/// Typically doesn’t need to be used directly.
#[unstable(feature = "convert_float_to_int", issue = "67057")]
pub trait FloatToInt<Int>: private::Sealed + Sized {
#[cfg(not(bootstrap))]
#[unstable(feature = "float_approx_unchecked_to", issue = "67058")]
#[doc(hidden)]
unsafe fn approx_unchecked(self) -> Int;
}
macro_rules! impl_float_to_int {
( $Float: ident => $( $Int: ident )+ ) => {
#[unstable(feature = "convert_float_to_int", issue = "67057")]
impl private::Sealed for $Float {}
$(
#[unstable(feature = "convert_float_to_int", issue = "67057")]
impl FloatToInt<$Int> for $Float {
#[cfg(not(bootstrap))]
#[doc(hidden)]
#[inline]
unsafe fn approx_unchecked(self) -> $Int {
crate::intrinsics::float_to_int_approx_unchecked(self)
}
}
)+
}
}
impl_float_to_int!(f32 => u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
impl_float_to_int!(f64 => u8 u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
// Conversion traits for primitive integer and float types
// Conversions T -> T are covered by a blanket impl and therefore excluded
// Some conversions from and to usize/isize are not implemented due to portability concerns
macro_rules! impl_from {
($Small: ty, $Large: ty, #[$attr:meta], $doc: expr) => {
#[$attr]
#[doc = $doc]
impl From<$Small> for $Large {
#[inline]
fn from(small: $Small) -> $Large {
small as $Large
}
}
};
($Small: ty, $Large: ty, #[$attr:meta]) => {
impl_from!($Small,
$Large,
#[$attr],
concat!("Converts `",
stringify!($Small),
"` to `",
stringify!($Large),
"` losslessly."));
}
}
macro_rules! impl_from_bool {
($target: ty, #[$attr:meta]) => {
impl_from!(bool, $target, #[$attr], concat!("Converts a `bool` to a `",
stringify!($target), "`. The resulting value is `0` for `false` and `1` for `true`
values.
# Examples
```
assert_eq!(", stringify!($target), "::from(true), 1);
assert_eq!(", stringify!($target), "::from(false), 0);
```"));
};
}
// Bool -> Any
impl_from_bool! { u8, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u16, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u32, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u64, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u128, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { usize, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i8, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i16, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i32, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i64, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i128, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { isize, #[stable(feature = "from_bool", since = "1.28.0")] }
// Unsigned -> Unsigned
impl_from! { u8, u16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u8, usize, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u32, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u32, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u64, u128, #[stable(feature = "i128", since = "1.26.0")] }
// Signed -> Signed
impl_from! { i8, i16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i8, isize, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i32, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i32, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i64, i128, #[stable(feature = "i128", since = "1.26.0")] }
// Unsigned -> Signed
impl_from! { u8, i16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u16, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u32, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u32, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u64, i128, #[stable(feature = "i128", since = "1.26.0")] }
// The C99 standard defines bounds on INTPTR_MIN, INTPTR_MAX, and UINTPTR_MAX
// which imply that pointer-sized integers must be at least 16 bits:
// https://port70.net/~nsz/c/c99/n1256.html#7.18.2.4
impl_from! { u16, usize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
impl_from! { u8, isize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
impl_from! { i16, isize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
// RISC-V defines the possibility of a 128-bit address space (RV128).
// CHERI proposes 256-bit “capabilities”. Unclear if this would be relevant to usize/isize.
// https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20171017a-cheri-poster.pdf
// http://www.csl.sri.com/users/neumann/2012resolve-cheri.pdf
// Note: integers can only be represented with full precision in a float if
// they fit in the significand, which is 24 bits in f32 and 53 bits in f64.
// Lossy float conversions are not implemented at this time.
// Signed -> Float
impl_from! { i8, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i8, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i16, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i16, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
// Unsigned -> Float
impl_from! { u8, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u8, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u16, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u16, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
// Float -> Float
impl_from! { f32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
// no possible bounds violation
macro_rules! try_from_unbounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(value: $source) -> Result<Self, Self::Error> {
Ok(value as $target)
}
}
)*}
}
// only negative bounds
macro_rules! try_from_lower_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
if u >= 0 {
Ok(u as $target)
} else {
Err(TryFromIntError(()))
}
}
}
)*}
}
// unsigned to signed (only positive bound)
macro_rules! try_from_upper_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
if u > (<$target>::max_value() as $source) {
Err(TryFromIntError(()))
} else {
Ok(u as $target)
}
}
}
)*}
}
// all other cases
macro_rules! try_from_both_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
let min = <$target>::min_value() as $source;
let max = <$target>::max_value() as $source;
if u < min || u > max {
Err(TryFromIntError(()))
} else {
Ok(u as $target)
}
}
}
)*}
}
macro_rules! rev {
($mac:ident, $source:ty, $($target:ty),*) => {$(
$mac!($target, $source);
)*}
}
// intra-sign conversions
try_from_upper_bounded!(u16, u8);
try_from_upper_bounded!(u32, u16, u8);
try_from_upper_bounded!(u64, u32, u16, u8);
try_from_upper_bounded!(u128, u64, u32, u16, u8);
try_from_both_bounded!(i16, i8);
try_from_both_bounded!(i32, i16, i8);
try_from_both_bounded!(i64, i32, i16, i8);
try_from_both_bounded!(i128, i64, i32, i16, i8);
// unsigned-to-signed
try_from_upper_bounded!(u8, i8);
try_from_upper_bounded!(u16, i8, i16);
try_from_upper_bounded!(u32, i8, i16, i32);
try_from_upper_bounded!(u64, i8, i16, i32, i64);
try_from_upper_bounded!(u128, i8, i16, i32, i64, i128);
// signed-to-unsigned
try_from_lower_bounded!(i8, u8, u16, u32, u64, u128);
try_from_lower_bounded!(i16, u16, u32, u64, u128);
try_from_lower_bounded!(i32, u32, u64, u128);
try_from_lower_bounded!(i64, u64, u128);
try_from_lower_bounded!(i128, u128);
try_from_both_bounded!(i16, u8);
try_from_both_bounded!(i32, u16, u8);
try_from_both_bounded!(i64, u32, u16, u8);
try_from_both_bounded!(i128, u64, u32, u16, u8);
// usize/isize
try_from_upper_bounded!(usize, isize);
try_from_lower_bounded!(isize, usize);
#[cfg(target_pointer_width = "16")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8);
try_from_unbounded!(usize, u16, u32, u64, u128);
try_from_upper_bounded!(usize, i8, i16);
try_from_unbounded!(usize, i32, i64, i128);
try_from_both_bounded!(isize, u8);
try_from_lower_bounded!(isize, u16, u32, u64, u128);
try_from_both_bounded!(isize, i8);
try_from_unbounded!(isize, i16, i32, i64, i128);
rev!(try_from_upper_bounded, usize, u32, u64, u128);
rev!(try_from_lower_bounded, usize, i8, i16);
rev!(try_from_both_bounded, usize, i32, i64, i128);
rev!(try_from_upper_bounded, isize, u16, u32, u64, u128);
rev!(try_from_both_bounded, isize, i32, i64, i128);
}
#[cfg(target_pointer_width = "32")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8, u16);
try_from_unbounded!(usize, u32, u64, u128);
try_from_upper_bounded!(usize, i8, i16, i32);
try_from_unbounded!(usize, i64, i128);
try_from_both_bounded!(isize, u8, u16);
try_from_lower_bounded!(isize, u32, u64, u128);
try_from_both_bounded!(isize, i8, i16);
try_from_unbounded!(isize, i32, i64, i128);
rev!(try_from_unbounded, usize, u32);
rev!(try_from_upper_bounded, usize, u64, u128);
rev!(try_from_lower_bounded, usize, i8, i16, i32);
rev!(try_from_both_bounded, usize, i64, i128);
rev!(try_from_unbounded, isize, u16);
rev!(try_from_upper_bounded, isize, u32, u64, u128);
rev!(try_from_unbounded, isize, i32);
rev!(try_from_both_bounded, isize, i64, i128);
}
#[cfg(target_pointer_width = "64")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8, u16, u32);
try_from_unbounded!(usize, u64, u128);
try_from_upper_bounded!(usize, i8, i16, i32, i64);
try_from_unbounded!(usize, i128);
try_from_both_bounded!(isize, u8, u16, u32);
try_from_lower_bounded!(isize, u64, u128);
try_from_both_bounded!(isize, i8, i16, i32);
try_from_unbounded!(isize, i64, i128);
rev!(try_from_unbounded, usize, u32, u64);
rev!(try_from_upper_bounded, usize, u128);
rev!(try_from_lower_bounded, usize, i8, i16, i32, i64);
rev!(try_from_both_bounded, usize, i128);
rev!(try_from_unbounded, isize, u16, u32);
rev!(try_from_upper_bounded, isize, u64, u128);
rev!(try_from_unbounded, isize, i32, i64);
rev!(try_from_both_bounded, isize, i128);
}
......@@ -1144,6 +1144,11 @@ pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T,
/// May assume inputs are finite.
pub fn frem_fast<T>(a: T, b: T) -> T;
/// Convert with LLVM’s fptoui/fptosi, which may return undef for values out of range
/// https://github.com/rust-lang/rust/issues/10184
#[cfg(not(bootstrap))]
pub fn float_to_int_approx_unchecked<Float, Int>(value: Float) -> Int;
/// Returns the number of bits set in an integer type `T`
pub fn ctpop<T>(x: T) -> T;
......
......@@ -7,9 +7,10 @@
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(bootstrap))]
use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;
......@@ -400,6 +401,35 @@ pub fn min(self, other: f32) -> f32 {
intrinsics::minnumf32(self, other)
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///
/// ```
/// #![feature(float_approx_unchecked_to)]
///
/// let value = 4.6_f32;
/// let rounded = unsafe { value.approx_unchecked_to::<u16>() };
/// assert_eq!(rounded, 4);
///
/// let value = -128.9_f32;
/// let rounded = unsafe { value.approx_unchecked_to::<i8>() };
/// assert_eq!(rounded, std::i8::MIN);
/// ```
///
/// # Safety
///
/// The value must:
///
/// * Not be `NaN`
/// * Not be infinite
/// * Be representable in the return type `Int`, after truncating off its fractional part
#[cfg(not(bootstrap))]
#[unstable(feature = "float_approx_unchecked_to", issue = "67058")]
#[inline]
pub unsafe fn approx_unchecked_to<Int>(self) -> Int where Self: FloatToInt<Int> {
FloatToInt::<Int>::approx_unchecked(self)
}
/// Raw transmutation to `u32`.
///
/// This is currently identical to `transmute::<f32, u32>(self)` on all platforms.
......
......@@ -7,9 +7,10 @@
#![stable(feature = "rust1", since = "1.0.0")]
#[cfg(not(bootstrap))]
use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;
......@@ -413,6 +414,35 @@ pub fn min(self, other: f64) -> f64 {
intrinsics::minnumf64(self, other)
}
/// Rounds toward zero and converts to any primitive integer type,
/// assuming that the value is finite and fits in that type.
///
/// ```
/// #![feature(float_approx_unchecked_to)]
///
/// let value = 4.6_f32;
/// let rounded = unsafe { value.approx_unchecked_to::<u16>() };
/// assert_eq!(rounded, 4);
///
/// let value = -128.9_f32;
/// let rounded = unsafe { value.approx_unchecked_to::<i8>() };
/// assert_eq!(rounded, std::i8::MIN);
/// ```
///
/// # Safety
///
/// The value must:
///
/// * Not be `NaN`
/// * Not be infinite
/// * Be representable in the return type `Int`, after truncating off its fractional part
#[cfg(not(bootstrap))]
#[unstable(feature = "float_approx_unchecked_to", issue = "67058")]
#[inline]
pub unsafe fn approx_unchecked_to<Int>(self) -> Int where Self: FloatToInt<Int> {
FloatToInt::<Int>::approx_unchecked(self)
}
/// Raw transmutation to `u64`.
///
/// This is currently identical to `transmute::<f64, u64>(self)` on all platforms.
......
......@@ -4,7 +4,6 @@
#![stable(feature = "rust1", since = "1.0.0")]
use crate::convert::TryFrom;
use crate::fmt;
use crate::intrinsics;
use crate::mem;
......@@ -4701,7 +4700,7 @@ fn from_str(src: &str) -> Result<Self, ParseIntError> {
/// The error type returned when a checked integral type conversion fails.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub struct TryFromIntError(());
pub struct TryFromIntError(pub(crate) ());
impl TryFromIntError {
#[unstable(feature = "int_error_internals",
......@@ -4728,206 +4727,6 @@ fn from(never: !) -> TryFromIntError {
}
}
// no possible bounds violation
macro_rules! try_from_unbounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(value: $source) -> Result<Self, Self::Error> {
Ok(value as $target)
}
}
)*}
}
// only negative bounds
macro_rules! try_from_lower_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
if u >= 0 {
Ok(u as $target)
} else {
Err(TryFromIntError(()))
}
}
}
)*}
}
// unsigned to signed (only positive bound)
macro_rules! try_from_upper_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
if u > (<$target>::max_value() as $source) {
Err(TryFromIntError(()))
} else {
Ok(u as $target)
}
}
}
)*}
}
// all other cases
macro_rules! try_from_both_bounded {
($source:ty, $($target:ty),*) => {$(
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<$source> for $target {
type Error = TryFromIntError;
/// Try to create the target number type from a source
/// number type. This returns an error if the source value
/// is outside of the range of the target type.
#[inline]
fn try_from(u: $source) -> Result<$target, TryFromIntError> {
let min = <$target>::min_value() as $source;
let max = <$target>::max_value() as $source;
if u < min || u > max {
Err(TryFromIntError(()))
} else {
Ok(u as $target)
}
}
}
)*}
}
macro_rules! rev {
($mac:ident, $source:ty, $($target:ty),*) => {$(
$mac!($target, $source);
)*}
}
// intra-sign conversions
try_from_upper_bounded!(u16, u8);
try_from_upper_bounded!(u32, u16, u8);
try_from_upper_bounded!(u64, u32, u16, u8);
try_from_upper_bounded!(u128, u64, u32, u16, u8);
try_from_both_bounded!(i16, i8);
try_from_both_bounded!(i32, i16, i8);
try_from_both_bounded!(i64, i32, i16, i8);
try_from_both_bounded!(i128, i64, i32, i16, i8);
// unsigned-to-signed
try_from_upper_bounded!(u8, i8);
try_from_upper_bounded!(u16, i8, i16);
try_from_upper_bounded!(u32, i8, i16, i32);
try_from_upper_bounded!(u64, i8, i16, i32, i64);
try_from_upper_bounded!(u128, i8, i16, i32, i64, i128);
// signed-to-unsigned
try_from_lower_bounded!(i8, u8, u16, u32, u64, u128);
try_from_lower_bounded!(i16, u16, u32, u64, u128);
try_from_lower_bounded!(i32, u32, u64, u128);
try_from_lower_bounded!(i64, u64, u128);
try_from_lower_bounded!(i128, u128);
try_from_both_bounded!(i16, u8);
try_from_both_bounded!(i32, u16, u8);
try_from_both_bounded!(i64, u32, u16, u8);
try_from_both_bounded!(i128, u64, u32, u16, u8);
// usize/isize
try_from_upper_bounded!(usize, isize);
try_from_lower_bounded!(isize, usize);
#[cfg(target_pointer_width = "16")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8);
try_from_unbounded!(usize, u16, u32, u64, u128);
try_from_upper_bounded!(usize, i8, i16);
try_from_unbounded!(usize, i32, i64, i128);
try_from_both_bounded!(isize, u8);
try_from_lower_bounded!(isize, u16, u32, u64, u128);
try_from_both_bounded!(isize, i8);
try_from_unbounded!(isize, i16, i32, i64, i128);
rev!(try_from_upper_bounded, usize, u32, u64, u128);
rev!(try_from_lower_bounded, usize, i8, i16);
rev!(try_from_both_bounded, usize, i32, i64, i128);
rev!(try_from_upper_bounded, isize, u16, u32, u64, u128);
rev!(try_from_both_bounded, isize, i32, i64, i128);
}
#[cfg(target_pointer_width = "32")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8, u16);
try_from_unbounded!(usize, u32, u64, u128);
try_from_upper_bounded!(usize, i8, i16, i32);
try_from_unbounded!(usize, i64, i128);
try_from_both_bounded!(isize, u8, u16);
try_from_lower_bounded!(isize, u32, u64, u128);
try_from_both_bounded!(isize, i8, i16);
try_from_unbounded!(isize, i32, i64, i128);
rev!(try_from_unbounded, usize, u32);
rev!(try_from_upper_bounded, usize, u64, u128);
rev!(try_from_lower_bounded, usize, i8, i16, i32);
rev!(try_from_both_bounded, usize, i64, i128);
rev!(try_from_unbounded, isize, u16);
rev!(try_from_upper_bounded, isize, u32, u64, u128);
rev!(try_from_unbounded, isize, i32);
rev!(try_from_both_bounded, isize, i64, i128);
}
#[cfg(target_pointer_width = "64")]
mod ptr_try_from_impls {
use super::TryFromIntError;
use crate::convert::TryFrom;
try_from_upper_bounded!(usize, u8, u16, u32);
try_from_unbounded!(usize, u64, u128);
try_from_upper_bounded!(usize, i8, i16, i32, i64);
try_from_unbounded!(usize, i128);
try_from_both_bounded!(isize, u8, u16, u32);
try_from_lower_bounded!(isize, u64, u128);
try_from_both_bounded!(isize, i8, i16, i32);
try_from_unbounded!(isize, i64, i128);
rev!(try_from_unbounded, usize, u32, u64);
rev!(try_from_upper_bounded, usize, u128);
rev!(try_from_lower_bounded, usize, i8, i16, i32, i64);
rev!(try_from_both_bounded, usize, i128);
rev!(try_from_unbounded, isize, u16, u32);
rev!(try_from_upper_bounded, isize, u64, u128);
rev!(try_from_unbounded, isize, i32, i64);
rev!(try_from_both_bounded, isize, i128);
}
#[doc(hidden)]
trait FromStrRadixHelper: PartialOrd + Copy {
fn min_value() -> Self;
......@@ -5110,131 +4909,3 @@ fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
#[stable(feature = "rust1", since = "1.0.0")]
pub use crate::num::dec2flt::ParseFloatError;
// Conversion traits for primitive integer and float types
// Conversions T -> T are covered by a blanket impl and therefore excluded
// Some conversions from and to usize/isize are not implemented due to portability concerns
macro_rules! impl_from {
($Small: ty, $Large: ty, #[$attr:meta], $doc: expr) => {
#[$attr]
#[doc = $doc]
impl From<$Small> for $Large {
#[inline]
fn from(small: $Small) -> $Large {
small as $Large
}
}
};
($Small: ty, $Large: ty, #[$attr:meta]) => {
impl_from!($Small,
$Large,
#[$attr],
concat!("Converts `",
stringify!($Small),
"` to `",
stringify!($Large),
"` losslessly."));
}
}
macro_rules! impl_from_bool {
($target: ty, #[$attr:meta]) => {
impl_from!(bool, $target, #[$attr], concat!("Converts a `bool` to a `",
stringify!($target), "`. The resulting value is `0` for `false` and `1` for `true`
values.
# Examples
```
assert_eq!(", stringify!($target), "::from(true), 1);
assert_eq!(", stringify!($target), "::from(false), 0);
```"));
};
}
// Bool -> Any
impl_from_bool! { u8, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u16, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u32, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u64, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { u128, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { usize, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i8, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i16, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i32, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i64, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { i128, #[stable(feature = "from_bool", since = "1.28.0")] }
impl_from_bool! { isize, #[stable(feature = "from_bool", since = "1.28.0")] }
// Unsigned -> Unsigned
impl_from! { u8, u16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u8, usize, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u32, u64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u32, u128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u64, u128, #[stable(feature = "i128", since = "1.26.0")] }
// Signed -> Signed
impl_from! { i8, i16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i8, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i8, isize, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i16, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i32, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { i32, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { i64, i128, #[stable(feature = "i128", since = "1.26.0")] }
// Unsigned -> Signed
impl_from! { u8, i16, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u8, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u16, i32, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u16, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u32, i64, #[stable(feature = "lossless_int_conv", since = "1.5.0")] }
impl_from! { u32, i128, #[stable(feature = "i128", since = "1.26.0")] }
impl_from! { u64, i128, #[stable(feature = "i128", since = "1.26.0")] }
// The C99 standard defines bounds on INTPTR_MIN, INTPTR_MAX, and UINTPTR_MAX
// which imply that pointer-sized integers must be at least 16 bits:
// https://port70.net/~nsz/c/c99/n1256.html#7.18.2.4
impl_from! { u16, usize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
impl_from! { u8, isize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
impl_from! { i16, isize, #[stable(feature = "lossless_iusize_conv", since = "1.26.0")] }
// RISC-V defines the possibility of a 128-bit address space (RV128).
// CHERI proposes 256-bit “capabilities”. Unclear if this would be relevant to usize/isize.
// https://www.cl.cam.ac.uk/research/security/ctsrd/pdfs/20171017a-cheri-poster.pdf
// http://www.csl.sri.com/users/neumann/2012resolve-cheri.pdf
// Note: integers can only be represented with full precision in a float if
// they fit in the significand, which is 24 bits in f32 and 53 bits in f64.
// Lossy float conversions are not implemented at this time.
// Signed -> Float
impl_from! { i8, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i8, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i16, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i16, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { i32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
// Unsigned -> Float
impl_from! { u8, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u8, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u16, f32, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u16, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
impl_from! { u32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
// Float -> Float
impl_from! { f32, f64, #[stable(feature = "lossless_float_conv", since = "1.6.0")] }
......@@ -516,9 +516,36 @@ fn codegen_intrinsic_call(
return;
}
}
},
"float_to_int_approx_unchecked" => {
if float_type_width(arg_tys[0]).is_none() {
span_invalid_monomorphization_error(
tcx.sess, span,
&format!("invalid monomorphization of `float_to_int_approx_unchecked` \
intrinsic: expected basic float type, \
found `{}`", arg_tys[0]));
return;
}
match int_type_width_signed(ret_ty, self.cx) {
Some((width, signed)) => {
if signed {
self.fptosi(args[0].immediate(), self.cx.type_ix(width))
} else {
self.fptoui(args[0].immediate(), self.cx.type_ix(width))
}
}
None => {
span_invalid_monomorphization_error(
tcx.sess, span,
&format!("invalid monomorphization of `float_to_int_approx_unchecked` \
intrinsic: expected basic integer type, \
found `{}`", ret_ty));
return;
}
}
}
"discriminant_value" => {
args[0].deref(self.cx()).codegen_get_discr(self, ret_ty)
}
......
......@@ -336,6 +336,7 @@ pub fn check_intrinsic_type(tcx: TyCtxt<'_>, it: &hir::ForeignItem) {
(1, vec![param(0), param(0)], param(0)),
"fadd_fast" | "fsub_fast" | "fmul_fast" | "fdiv_fast" | "frem_fast" =>
(1, vec![param(0), param(0)], param(0)),
"float_to_int_approx_unchecked" => (2, vec![ param(0) ], param(1)),
"assume" => (0, vec![tcx.types.bool], tcx.mk_unit()),
"likely" => (0, vec![tcx.types.bool], tcx.types.bool),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册