提交 3b2d23b2 编写于 作者: M Michael Sullivan

Move a bunch of trans into trans_common, including the context structures.

Probably more should be moved or split off into other files. My algorithm
was something along the lines of: move the contexts and their transitive
dependencies along with some functions to work with them. I stopped when
I was going to have to start pulling glue generation, which really
should go into a trans_glue file.
上级 f8bb5a3b
......@@ -2,9 +2,9 @@
import driver::session;
import lib::llvm::llvm;
import front::attr;
import middle::trans;
import middle::ty;
import metadata::encoder;
import middle::trans_common::crate_ctxt;
import std::str;
import std::fs;
import std::ivec;
......@@ -13,7 +13,6 @@
import option::none;
import std::sha1::sha1;
import std::sort;
import trans::crate_ctxt;
import syntax::ast;
import syntax::print::pprust;
import lib::llvm::llvm::ModuleRef;
......
......@@ -11,7 +11,7 @@
import std::map;
import syntax::ast::*;
import common::*;
import middle::trans::crate_ctxt;
import middle::trans_common::crate_ctxt;
import middle::ty;
import middle::ty::node_id_to_monotype;
import front::attr;
......
......@@ -75,341 +75,6 @@
import trans_comm::trans_send;
import trans_comm::trans_recv;
obj namegen(mutable int i) {
fn next(str prefix) -> str { i += 1; ret prefix + int::str(i); }
}
type derived_tydesc_info = rec(ValueRef lltydesc, bool escapes);
type glue_fns = rec(ValueRef no_op_type_glue);
type tydesc_info =
rec(ty::t ty,
ValueRef tydesc,
ValueRef size,
ValueRef align,
mutable option::t[ValueRef] copy_glue,
mutable option::t[ValueRef] drop_glue,
mutable option::t[ValueRef] free_glue,
mutable option::t[ValueRef] cmp_glue,
uint[] ty_params);
/*
* A note on nomenclature of linking: "upcall", "extern" and "native".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* A "native" is an extern that references C code. Called with cdecl.
*
* An upcall is a native call generated by the compiler (not corresponding to
* any user-written call in the code) into librustrt, to perform some helper
* task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
rec(mutable uint n_static_tydescs,
mutable uint n_derived_tydescs,
mutable uint n_glues_created,
mutable uint n_null_glues,
mutable uint n_real_glues,
@mutable (tup(str,int)[]) fn_times);
// Crate context. Every crate we compile has one of these.
type crate_ctxt =
rec(session::session sess,
ModuleRef llmod,
target_data td,
type_names tn,
hashmap[str, ValueRef] externs,
hashmap[str, ValueRef] intrinsics,
// A mapping from the def_id of each item in this crate to the address
// of the first instruction of the item's definition in the executable
// we're generating.
hashmap[ast::node_id, ValueRef] item_ids,
ast_map::map ast_map,
hashmap[ast::node_id, str] item_symbols,
mutable option::t[ValueRef] main_fn,
link::link_meta link_meta,
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
hashmap[ty::t, uint] tag_sizes,
hashmap[ast::node_id, ValueRef] discrims,
hashmap[ast::node_id, str] discrim_symbols,
hashmap[ast::node_id, ValueRef] fn_pairs,
hashmap[ast::node_id, ValueRef] consts,
hashmap[ast::node_id, ()] obj_methods,
hashmap[ty::t, @tydesc_info] tydescs,
hashmap[str, ValueRef] module_data,
hashmap[ty::t, TypeRef] lltypes,
@glue_fns glues,
namegen names,
std::sha1::sha1 sha,
hashmap[ty::t, str] type_sha1s,
hashmap[ty::t, str] type_short_names,
ty::ctxt tcx,
stats stats,
@upcall::upcalls upcalls,
TypeRef rust_object_type,
TypeRef tydesc_type,
TypeRef task_type);
type local_ctxt =
rec(str[] path,
str[] module_path,
ast::ty_param[] obj_typarams,
ast::obj_field[] obj_fields,
@crate_ctxt ccx);
// Types used for llself.
type val_self_pair = rec(ValueRef v, ty::t t);
// Function context. Every LLVM function we create will have one of these.
type fn_ctxt =
rec(
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of instructions
// for this function that will go in the .text section of the
// executable we're generating.
ValueRef llfn,
// The three implicit arguments that arrive in the function we're
// creating. For instance, foo(int, int) is really foo(ret*, task*,
// env*, int, int). These are also available via
// llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0 respectively,
// but we unpack them into these fields for convenience.
// Points to the current task.
ValueRef lltaskptr,
// Points to the current environment (bindings of variables to
// values), if this is a regular function; points to the current
// object, if this is a method.
ValueRef llenv,
// Points to where the return value of this function should end up.
ValueRef llretptr,
// The next three elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM will
// coalesce them into a single alloca call.
mutable BasicBlockRef llstaticallocas,
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks. (LLVM
// requires that arguments be copied to local allocas before allowing
// most any operation to be performed on them.)
mutable BasicBlockRef llcopyargs,
// The first block containing derived tydescs received from the
// runtime. See description of derived_tydescs, below.
mutable BasicBlockRef llderivedtydescs_first,
// The last block of the llderivedtydescs group.
mutable BasicBlockRef llderivedtydescs,
// A block for all of the dynamically sized allocas. This must be
// after llderivedtydescs, because these sometimes depend on
// information computed from derived tydescs.
mutable BasicBlockRef lldynamicallocas,
// FIXME: Is llcopyargs actually the block containing the allocas for
// incoming function arguments? Or is it merely the block containing
// code that copies incoming args to space already alloca'd by code in
// llallocas?
// The 'self' object currently in use in this function, if there is
// one.
mutable option::t[val_self_pair] llself,
// If this function is actually a iter, a block containing the code
// called whenever the iter calls 'put'.
mutable option::t[ValueRef] lliterbody,
// The next four items: hash tables mapping from AST def_ids to
// LLVM-stuff-in-the-frame.
// Maps arguments to allocas created for them in llallocas.
hashmap[ast::node_id, ValueRef] llargs,
// Maps fields in objects to pointers into the interior of llself's
// body.
hashmap[ast::node_id, ValueRef] llobjfields,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
hashmap[ast::node_id, ValueRef] lllocals,
// The same as above, but for variables accessed via the frame pointer
// we pass into an iter, for access to the static environment of the
// iter-calling frame.
hashmap[ast::node_id, ValueRef] llupvars,
// For convenience, a vector of the incoming tydescs for each of this
// functions type parameters, fetched via llvm::LLVMGetParam. For
// example, for a function foo[A, B, C](), lltydescs contains the
// ValueRefs for the tydescs for A, B, and C.
mutable ValueRef[] lltydescs,
// Derived tydescs are tydescs created at runtime, for types that
// involve type parameters inside type constructors. For example,
// suppose a function parameterized by T creates a vector of type
// [T]. The function doesn't know what T is until runtime, and the
// function's caller knows T but doesn't know that a vector is
// involved. So a tydesc for [T] can't be created until runtime,
// when information about both "[T]" and "T" are available. When such
// a tydesc is created, we cache it in the derived_tydescs table for
// the next time that such a tydesc is needed.
hashmap[ty::t, derived_tydesc_info] derived_tydescs,
// The source span where this function comes from, for error
// reporting.
span sp,
// This function's enclosing local context.
@local_ctxt lcx);
tag cleanup {
clean(fn(&@block_ctxt) -> result);
clean_temp(ValueRef, fn(&@block_ctxt) -> result);
}
fn add_clean(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean(bind drop_slot(_, val, ty))];
}
fn add_clean_temp(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean_temp(val,
bind drop_ty(_, val, ty))];
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(&@block_ctxt cx, ValueRef val) {
auto sc_cx = find_scope_cx(cx);
auto found = -1;
auto i = 0;
for (cleanup c in sc_cx.cleanups) {
alt (c) {
case (clean_temp(?v, _)) {
if (v as uint == val as uint) { found = i; break; }
}
case (_) {}
}
i += 1;
}
// The value does not have a cleanup associated with it. Might be a
// constant or some immediate value.
if (found == -1) { ret; }
// We found the cleanup and remove it
sc_cx.cleanups = std::ivec::slice(sc_cx.cleanups, 0u, found as uint) +
std::ivec::slice(sc_cx.cleanups, found as uint + 1u,
std::ivec::len(sc_cx.cleanups));
}
tag block_kind {
// A scope block is a basic block created by translating a block { ... }
// the the source language. Since these blocks create variable scope, any
// variables created in them that are still live at the end of the block
// must be dropped and cleaned up when the block ends.
SCOPE_BLOCK;
// A basic block created from the body of a loop. Contains pointers to
// which block to jump to in the case of "continue" or "break", with the
// "continue" block optional, because "while" and "do while" don't support
// "continue" (TODO: is this intentional?)
LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt);
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
NON_SCOPE_BLOCK;
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
type block_ctxt =
rec(
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic block to
// the function pointed to by llfn. We insert instructions into that
// block by way of this block context.
BasicBlockRef llbb,
// The llvm::builder object serving as an interface to LLVM's
// LLVMBuild* functions.
builder build,
// The block pointing to this one in the function's digraph.
block_parent parent,
// The 'kind' of basic block this is.
block_kind kind,
// A list of functions that run at the end of translating this block,
// cleaning up any variables that were introduced in the block and
// need to go out of scope at the end of it.
mutable cleanup[] cleanups,
// The source span where this block comes from, for error reporting.
span sp,
// The function context for the function to which this block is
// attached.
@fn_ctxt fcx);
// FIXME: we should be able to use option::t[@block_parent] here but
// the infinite-tag check in rustboot gets upset.
tag block_parent { parent_none; parent_some(@block_ctxt); }
type result = rec(@block_ctxt bcx, ValueRef val);
type result_t = rec(@block_ctxt bcx, ValueRef val, ty::t ty);
fn extend_path(@local_ctxt cx, &str name) -> @local_ctxt {
ret @rec(path=cx.path + ~[name] with *cx);
}
fn rslt(@block_ctxt bcx, ValueRef val) -> result {
ret rec(bcx=bcx, val=val);
}
fn ty_str(type_names tn, TypeRef t) -> str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(ValueRef v) -> TypeRef { ret llvm::LLVMTypeOf(v); }
fn val_str(type_names tn, ValueRef v) -> str { ret ty_str(tn, val_ty(v)); }
// Returns the nth element of the given LLVM structure type.
fn struct_elt(TypeRef llstructty, uint n) -> TypeRef {
auto elt_count = llvm::LLVMCountStructElementTypes(llstructty);
assert (n < elt_count);
auto elt_tys = std::ivec::init_elt(T_nil(), elt_count);
llvm::LLVMGetStructElementTypes(llstructty, std::ivec::to_ptr(elt_tys));
ret llvm::LLVMGetElementType(elt_tys.(n));
}
// This function now fails if called on a type with dynamic size (as its
// return value was always meaningless in that case anyhow). Beware!
//
......@@ -783,17 +448,6 @@ fn trans_shared_free(&@block_ctxt cx, ValueRef v) -> result {
ret rslt(cx, C_int(0));
}
fn find_scope_cx(&@block_ctxt cx) -> @block_ctxt {
if (cx.kind != NON_SCOPE_BLOCK) { ret cx; }
alt (cx.parent) {
case (parent_some(?b)) { ret find_scope_cx(b); }
case (parent_none) {
cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " +
"called on parentless block_ctxt");
}
}
}
fn umax(&@block_ctxt cx, ValueRef a, ValueRef b) -> ValueRef {
auto cond = cx.build.ICmp(lib::llvm::LLVMIntULT, a, b);
ret cx.build.Select(cond, b, a);
......@@ -8518,12 +8172,12 @@ fn create_crate_map(&@crate_ctxt ccx) -> ValueRef {
ret map;
}
fn write_metadata(&@trans::crate_ctxt cx, &@ast::crate crate) {
fn write_metadata(&@crate_ctxt cx, &@ast::crate crate) {
if (!cx.sess.get_opts().library) { ret; }
auto llmeta = C_postr(metadata::encoder::encode_metadata(cx, crate));
auto llconst = trans_common::C_struct(~[llmeta]);
auto llglobal =
llvm::LLVMAddGlobal(cx.llmod, trans::val_ty(llconst),
llvm::LLVMAddGlobal(cx.llmod, val_ty(llconst),
str::buf("rust_metadata"));
llvm::LLVMSetInitializer(llglobal, llconst);
llvm::LLVMSetSection(llglobal, str::buf(x86::get_meta_sect_name()));
......
......@@ -9,14 +9,9 @@
import lib::llvm::llvm::ValueRef;
import lib::llvm::llvm::TypeRef;
import lib::llvm::llvm::BasicBlockRef;
import trans::result;
import trans::rslt;
import trans::crate_ctxt;
import trans::block_ctxt;
import trans::new_sub_block_ctxt;
import trans::new_scope_block_ctxt;
import trans::load_if_immediate;
import trans::val_ty;
import ty::pat_ty;
import syntax::ast;
import syntax::ast::def_id;
......
......@@ -57,9 +57,358 @@
import syntax::print::pprust::path_to_str;
// FIXME: These should probably be pulled in here too.
import trans::crate_ctxt;
import trans::type_of_fn_full;
import trans::val_ty;
import trans::drop_slot;
import trans::drop_ty;
obj namegen(mutable int i) {
fn next(str prefix) -> str { i += 1; ret prefix + int::str(i); }
}
type derived_tydesc_info = rec(ValueRef lltydesc, bool escapes);
type glue_fns = rec(ValueRef no_op_type_glue);
type tydesc_info =
rec(ty::t ty,
ValueRef tydesc,
ValueRef size,
ValueRef align,
mutable option::t[ValueRef] copy_glue,
mutable option::t[ValueRef] drop_glue,
mutable option::t[ValueRef] free_glue,
mutable option::t[ValueRef] cmp_glue,
uint[] ty_params);
/*
* A note on nomenclature of linking: "upcall", "extern" and "native".
*
* An "extern" is an LLVM symbol we wind up emitting an undefined external
* reference to. This means "we don't have the thing in this compilation unit,
* please make sure you link it in at runtime". This could be a reference to
* C code found in a C library, or rust code found in a rust crate.
*
* A "native" is an extern that references C code. Called with cdecl.
*
* An upcall is a native call generated by the compiler (not corresponding to
* any user-written call in the code) into librustrt, to perform some helper
* task such as bringing a task to life, allocating memory, etc.
*
*/
type stats =
rec(mutable uint n_static_tydescs,
mutable uint n_derived_tydescs,
mutable uint n_glues_created,
mutable uint n_null_glues,
mutable uint n_real_glues,
@mutable (tup(str,int)[]) fn_times);
// Crate context. Every crate we compile has one of these.
type crate_ctxt =
rec(session::session sess,
ModuleRef llmod,
target_data td,
type_names tn,
hashmap[str, ValueRef] externs,
hashmap[str, ValueRef] intrinsics,
// A mapping from the def_id of each item in this crate to the address
// of the first instruction of the item's definition in the executable
// we're generating.
hashmap[ast::node_id, ValueRef] item_ids,
ast_map::map ast_map,
hashmap[ast::node_id, str] item_symbols,
mutable option::t[ValueRef] main_fn,
link::link_meta link_meta,
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
hashmap[ty::t, uint] tag_sizes,
hashmap[ast::node_id, ValueRef] discrims,
hashmap[ast::node_id, str] discrim_symbols,
hashmap[ast::node_id, ValueRef] fn_pairs,
hashmap[ast::node_id, ValueRef] consts,
hashmap[ast::node_id, ()] obj_methods,
hashmap[ty::t, @tydesc_info] tydescs,
hashmap[str, ValueRef] module_data,
hashmap[ty::t, TypeRef] lltypes,
@glue_fns glues,
namegen names,
std::sha1::sha1 sha,
hashmap[ty::t, str] type_sha1s,
hashmap[ty::t, str] type_short_names,
ty::ctxt tcx,
stats stats,
@upcall::upcalls upcalls,
TypeRef rust_object_type,
TypeRef tydesc_type,
TypeRef task_type);
type local_ctxt =
rec(str[] path,
str[] module_path,
ast::ty_param[] obj_typarams,
ast::obj_field[] obj_fields,
@crate_ctxt ccx);
// Types used for llself.
type val_self_pair = rec(ValueRef v, ty::t t);
// Function context. Every LLVM function we create will have one of these.
type fn_ctxt =
rec(
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
// address of the first instruction in the sequence of instructions
// for this function that will go in the .text section of the
// executable we're generating.
ValueRef llfn,
// The three implicit arguments that arrive in the function we're
// creating. For instance, foo(int, int) is really foo(ret*, task*,
// env*, int, int). These are also available via
// llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0 respectively,
// but we unpack them into these fields for convenience.
// Points to the current task.
ValueRef lltaskptr,
// Points to the current environment (bindings of variables to
// values), if this is a regular function; points to the current
// object, if this is a method.
ValueRef llenv,
// Points to where the return value of this function should end up.
ValueRef llretptr,
// The next three elements: "hoisted basic blocks" containing
// administrative activities that have to happen in only one place in
// the function, due to LLVM's quirks.
// A block for all the function's static allocas, so that LLVM will
// coalesce them into a single alloca call.
mutable BasicBlockRef llstaticallocas,
// A block containing code that copies incoming arguments to space
// already allocated by code in one of the llallocas blocks. (LLVM
// requires that arguments be copied to local allocas before allowing
// most any operation to be performed on them.)
mutable BasicBlockRef llcopyargs,
// The first block containing derived tydescs received from the
// runtime. See description of derived_tydescs, below.
mutable BasicBlockRef llderivedtydescs_first,
// The last block of the llderivedtydescs group.
mutable BasicBlockRef llderivedtydescs,
// A block for all of the dynamically sized allocas. This must be
// after llderivedtydescs, because these sometimes depend on
// information computed from derived tydescs.
mutable BasicBlockRef lldynamicallocas,
// FIXME: Is llcopyargs actually the block containing the allocas for
// incoming function arguments? Or is it merely the block containing
// code that copies incoming args to space already alloca'd by code in
// llallocas?
// The 'self' object currently in use in this function, if there is
// one.
mutable option::t[val_self_pair] llself,
// If this function is actually a iter, a block containing the code
// called whenever the iter calls 'put'.
mutable option::t[ValueRef] lliterbody,
// The next four items: hash tables mapping from AST def_ids to
// LLVM-stuff-in-the-frame.
// Maps arguments to allocas created for them in llallocas.
hashmap[ast::node_id, ValueRef] llargs,
// Maps fields in objects to pointers into the interior of llself's
// body.
hashmap[ast::node_id, ValueRef] llobjfields,
// Maps the def_ids for local variables to the allocas created for
// them in llallocas.
hashmap[ast::node_id, ValueRef] lllocals,
// The same as above, but for variables accessed via the frame pointer
// we pass into an iter, for access to the static environment of the
// iter-calling frame.
hashmap[ast::node_id, ValueRef] llupvars,
// For convenience, a vector of the incoming tydescs for each of this
// functions type parameters, fetched via llvm::LLVMGetParam. For
// example, for a function foo[A, B, C](), lltydescs contains the
// ValueRefs for the tydescs for A, B, and C.
mutable ValueRef[] lltydescs,
// Derived tydescs are tydescs created at runtime, for types that
// involve type parameters inside type constructors. For example,
// suppose a function parameterized by T creates a vector of type
// [T]. The function doesn't know what T is until runtime, and the
// function's caller knows T but doesn't know that a vector is
// involved. So a tydesc for [T] can't be created until runtime,
// when information about both "[T]" and "T" are available. When such
// a tydesc is created, we cache it in the derived_tydescs table for
// the next time that such a tydesc is needed.
hashmap[ty::t, derived_tydesc_info] derived_tydescs,
// The source span where this function comes from, for error
// reporting.
span sp,
// This function's enclosing local context.
@local_ctxt lcx);
tag cleanup {
clean(fn(&@block_ctxt) -> result);
clean_temp(ValueRef, fn(&@block_ctxt) -> result);
}
fn add_clean(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean(bind drop_slot(_, val, ty))];
}
fn add_clean_temp(&@block_ctxt cx, ValueRef val, ty::t ty) {
find_scope_cx(cx).cleanups += ~[clean_temp(val,
bind drop_ty(_, val, ty))];
}
// Note that this only works for temporaries. We should, at some point, move
// to a system where we can also cancel the cleanup on local variables, but
// this will be more involved. For now, we simply zero out the local, and the
// drop glue checks whether it is zero.
fn revoke_clean(&@block_ctxt cx, ValueRef val) {
auto sc_cx = find_scope_cx(cx);
auto found = -1;
auto i = 0;
for (cleanup c in sc_cx.cleanups) {
alt (c) {
case (clean_temp(?v, _)) {
if (v as uint == val as uint) { found = i; break; }
}
case (_) {}
}
i += 1;
}
// The value does not have a cleanup associated with it. Might be a
// constant or some immediate value.
if (found == -1) { ret; }
// We found the cleanup and remove it
sc_cx.cleanups = std::ivec::slice(sc_cx.cleanups, 0u, found as uint) +
std::ivec::slice(sc_cx.cleanups, found as uint + 1u,
std::ivec::len(sc_cx.cleanups));
}
tag block_kind {
// A scope block is a basic block created by translating a block { ... }
// the the source language. Since these blocks create variable scope, any
// variables created in them that are still live at the end of the block
// must be dropped and cleaned up when the block ends.
SCOPE_BLOCK;
// A basic block created from the body of a loop. Contains pointers to
// which block to jump to in the case of "continue" or "break", with the
// "continue" block optional, because "while" and "do while" don't support
// "continue" (TODO: is this intentional?)
LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt);
// A non-scope block is a basic block created as a translation artifact
// from translating code that expresses conditional logic rather than by
// explicit { ... } block structure in the source language. It's called a
// non-scope block because it doesn't introduce a new variable scope.
NON_SCOPE_BLOCK;
}
// Basic block context. We create a block context for each basic block
// (single-entry, single-exit sequence of instructions) we generate from Rust
// code. Each basic block we generate is attached to a function, typically
// with many basic blocks per function. All the basic blocks attached to a
// function are organized as a directed graph.
type block_ctxt =
rec(
// The BasicBlockRef returned from a call to
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic block to
// the function pointed to by llfn. We insert instructions into that
// block by way of this block context.
BasicBlockRef llbb,
// The llvm::builder object serving as an interface to LLVM's
// LLVMBuild* functions.
builder build,
// The block pointing to this one in the function's digraph.
block_parent parent,
// The 'kind' of basic block this is.
block_kind kind,
// A list of functions that run at the end of translating this block,
// cleaning up any variables that were introduced in the block and
// need to go out of scope at the end of it.
mutable cleanup[] cleanups,
// The source span where this block comes from, for error reporting.
span sp,
// The function context for the function to which this block is
// attached.
@fn_ctxt fcx);
// FIXME: we should be able to use option::t[@block_parent] here but
// the infinite-tag check in rustboot gets upset.
tag block_parent { parent_none; parent_some(@block_ctxt); }
type result = rec(@block_ctxt bcx, ValueRef val);
type result_t = rec(@block_ctxt bcx, ValueRef val, ty::t ty);
fn extend_path(@local_ctxt cx, &str name) -> @local_ctxt {
ret @rec(path=cx.path + ~[name] with *cx);
}
fn rslt(@block_ctxt bcx, ValueRef val) -> result {
ret rec(bcx=bcx, val=val);
}
fn ty_str(type_names tn, TypeRef t) -> str {
ret lib::llvm::type_to_str(tn, t);
}
fn val_ty(ValueRef v) -> TypeRef { ret llvm::LLVMTypeOf(v); }
fn val_str(type_names tn, ValueRef v) -> str { ret ty_str(tn, val_ty(v)); }
// Returns the nth element of the given LLVM structure type.
fn struct_elt(TypeRef llstructty, uint n) -> TypeRef {
auto elt_count = llvm::LLVMCountStructElementTypes(llstructty);
assert (n < elt_count);
auto elt_tys = std::ivec::init_elt(T_nil(), elt_count);
llvm::LLVMGetStructElementTypes(llstructty, std::ivec::to_ptr(elt_tys));
ret llvm::LLVMGetElementType(elt_tys.(n));
}
fn find_scope_cx(&@block_ctxt cx) -> @block_ctxt {
if (cx.kind != NON_SCOPE_BLOCK) { ret cx; }
alt (cx.parent) {
case (parent_some(?b)) { ret find_scope_cx(b); }
case (parent_none) {
cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " +
"called on parentless block_ctxt");
}
}
}
// Accessors
// TODO: When we have overloading, simplify these names!
fn bcx_tcx(&@block_ctxt bcx) -> ty::ctxt { ret bcx.fcx.lcx.ccx.tcx; }
fn bcx_ccx(&@block_ctxt bcx) -> @crate_ctxt { ret bcx.fcx.lcx.ccx; }
fn bcx_lcx(&@block_ctxt bcx) -> @local_ctxt { ret bcx.fcx.lcx; }
fn bcx_fcx(&@block_ctxt bcx) -> @fn_ctxt { ret bcx.fcx; }
fn lcx_ccx(&@local_ctxt lcx) -> @crate_ctxt { ret lcx.ccx; }
fn ccx_tcx(&@crate_ctxt ccx) -> ty::ctxt { ret ccx.tcx; }
// LLVM type constructors.
fn T_void() -> TypeRef {
......@@ -484,4 +833,3 @@ fn C_array(TypeRef ty, &ValueRef[] elts) -> ValueRef {
ret llvm::LLVMConstArray(ty, std::ivec::to_ptr(elts),
std::ivec::len(elts));
}
......@@ -6,16 +6,12 @@
import lib::llvm::llvm;
import llvm::TypeRef;
import llvm::ValueRef;
import middle::trans;
import middle::trans_common;
import middle::ty;
import syntax::ast;
import syntax::codemap::span;
import trans::block_ctxt;
import trans::crate_ctxt;
import trans::fn_ctxt;
import trans::local_ctxt;
import util::ppaux;
import trans_common::*;
import std::ivec;
import std::option::none;
import std::option::some;
......@@ -25,7 +21,7 @@
import LLFalse = lib::llvm::False;
import LLTrue = lib::llvm::True;
import ll = lib::llvm;
import lltype_of = trans::val_ty;
import lltype_of = trans_common::val_ty;
import option = std::option::t;
import tc = trans_common;
import type_of_node = trans::node_id_type;
......@@ -47,7 +43,7 @@ fn llsize_of(&@crate_ctxt ccx, TypeRef llty) -> uint {
fn mk_const(&@crate_ctxt ccx, &str name, bool exported, ValueRef llval)
-> ValueRef {
auto llglobal = llvm::LLVMAddGlobal(ccx.llmod, trans::val_ty(llval),
auto llglobal = llvm::LLVMAddGlobal(ccx.llmod, tc::val_ty(llval),
str::buf(name));
llvm::LLVMSetInitializer(llglobal, llval);
......@@ -140,23 +136,12 @@ fn dest_is_alias(&dest dest) -> bool {
}
// Accessors
// TODO: When we have overloading, simplify these names!
fn bcx_tcx(&@block_ctxt bcx) -> ty::ctxt { ret bcx.fcx.lcx.ccx.tcx; }
fn bcx_ccx(&@block_ctxt bcx) -> @crate_ctxt { ret bcx.fcx.lcx.ccx; }
fn bcx_lcx(&@block_ctxt bcx) -> @local_ctxt { ret bcx.fcx.lcx; }
fn bcx_fcx(&@block_ctxt bcx) -> @fn_ctxt { ret bcx.fcx; }
fn lcx_ccx(&@local_ctxt lcx) -> @crate_ctxt { ret lcx.ccx; }
fn ccx_tcx(&@crate_ctxt ccx) -> ty::ctxt { ret ccx.tcx; }
// Common operations
fn memmove(&@block_ctxt bcx, ValueRef lldestptr, ValueRef llsrcptr,
ValueRef llsz) {
auto lldestty = llelement_type(trans::val_ty(lldestptr));
auto llsrcty = llelement_type(trans::val_ty(llsrcptr));
auto lldestty = llelement_type(tc::val_ty(lldestptr));
auto llsrcty = llelement_type(tc::val_ty(llsrcptr));
auto dest_align = llalign_of(bcx_ccx(bcx), lldestty);
auto src_align = llalign_of(bcx_ccx(bcx), llsrcty);
auto align = uint::min(dest_align, src_align);
......@@ -205,7 +190,7 @@ fn store_ptr(&@block_ctxt bcx, &dest dest, ValueRef llsrcptr) -> @block_ctxt {
*box = some(llsrcptr);
}
dst_copy(?lldestptr) | dst_move(?lldestptr) {
auto llsrcty = llelement_type(trans::val_ty(llsrcptr));
auto llsrcty = llelement_type(tc::val_ty(llsrcptr));
auto llsz = tc::C_uint(llsize_of(bcx_ccx(bcx), llsrcty));
memmove(bcx, lldestptr, llsrcptr, llsz);
ret bcx;
......@@ -421,7 +406,7 @@ fn get_upcall(&@crate_ctxt ccx, &span sp, ty::t t)
~[bcx_fcx(bcx).lltaskptr, tc::C_int(level), llarg]);
log_bcx = trans::trans_block_cleanups(log_bcx,
trans::find_scope_cx(log_bcx));
tc::find_scope_cx(log_bcx));
log_bcx.build.Br(next_bcx.llbb);
ret next_bcx;
}
......@@ -481,7 +466,7 @@ fn trans_block(&@block_ctxt cx, &dest dest, &ast::block block)
none { /* no-op */ }
}
bcx = trans::trans_block_cleanups(bcx, trans::find_scope_cx(bcx));
bcx = trans::trans_block_cleanups(bcx, tc::find_scope_cx(bcx));
ret bcx;
}
......@@ -583,7 +568,7 @@ fn trans_init_local(&@block_ctxt bcx, &@ast::local local) -> @block_ctxt {
auto llptr = bcx_fcx(bcx).lllocals.get(local.node.id);
auto t = type_of_node(bcx_ccx(bcx), local.node.id);
trans::add_clean(bcx, llptr, t);
tc::add_clean(bcx, llptr, t);
alt (local.node.init) {
some(?init) {
......
......@@ -10,11 +10,11 @@
import syntax::ast;
import syntax::codemap::span;
import trans::alloca;
import trans::block_ctxt;
import trans::load_inbounds;
import trans::new_sub_block_ctxt;
import trans::struct_elt;
import trans::type_of_or_i8;
import trans_common::block_ctxt;
import trans_common::struct_elt;
import trans_common::C_int;
import trans_common::C_null;
import trans_common::C_uint;
......@@ -23,8 +23,8 @@
import trans_common::T_ivec_heap_part;
import trans_common::T_opaque_ivec;
import trans_common::T_ptr;
import trans_dps::bcx_ccx;
import trans_dps::bcx_tcx;
import trans_common::bcx_ccx;
import trans_common::bcx_tcx;
import trans_dps::dest;
import trans_dps::llsize_of;
import trans_dps::mk_temp;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册