提交 2a3084b5 编写于 作者: G Graydon Hoare

Start implementing structured constants.

上级 285fc535
......@@ -101,6 +101,8 @@ fn check_expr(sess: session, def_map: resolve3::DefMap,
}
}
}
expr_tup(*) |
expr_rec(*) { }
_ {
sess.span_err(e.span,
~"constant contains unimplemented expression type");
......
......@@ -58,14 +58,14 @@ fn trans_opt(bcx: block, o: opt) -> opt_result {
}
_ {
ret single_result(
rslt(bcx, trans_const_expr(ccx, l)));
rslt(bcx, consts::const_expr(ccx, l)));
}
}
}
var(disr_val, _) { ret single_result(rslt(bcx, C_int(ccx, disr_val))); }
range(l1, l2) {
ret range_result(rslt(bcx, trans_const_expr(ccx, l1)),
rslt(bcx, trans_const_expr(ccx, l2)));
ret range_result(rslt(bcx, consts::const_expr(ccx, l1)),
rslt(bcx, consts::const_expr(ccx, l2)));
}
}
}
......
......@@ -1420,35 +1420,6 @@ fn store_temp_expr(cx: block, action: copy_action, dst: ValueRef,
ret move_val(cx, action, dst, src, t);
}
fn trans_crate_lit(cx: @crate_ctxt, e: @ast::expr, lit: ast::lit)
-> ValueRef {
let _icx = cx.insn_ctxt(~"trans_crate_lit");
alt lit.node {
ast::lit_int(i, t) { C_integral(T_int_ty(cx, t), i as u64, True) }
ast::lit_uint(u, t) { C_integral(T_uint_ty(cx, t), u, False) }
ast::lit_int_unsuffixed(i) {
let lit_int_ty = ty::node_id_to_type(cx.tcx, e.id);
alt ty::get(lit_int_ty).struct {
ty::ty_int(t) {
C_integral(T_int_ty(cx, t), i as u64, True)
}
ty::ty_uint(t) {
C_integral(T_uint_ty(cx, t), i as u64, False)
}
_ { cx.sess.span_bug(lit.span,
~"integer literal doesn't have a type");
}
}
}
ast::lit_float(fs, t) { C_floating(*fs, T_float_ty(cx, t)) }
ast::lit_bool(b) { C_bool(b) }
ast::lit_nil { C_nil() }
ast::lit_str(s) {
cx.sess.span_unimpl(lit.span, ~"unique string in this context");
}
}
}
fn trans_lit(cx: block, e: @ast::expr, lit: ast::lit, dest: dest) -> block {
let _icx = cx.insn_ctxt(~"trans_lit");
if dest == ignore { ret cx; }
......@@ -1456,12 +1427,11 @@ fn trans_lit(cx: block, e: @ast::expr, lit: ast::lit, dest: dest) -> block {
ast::lit_str(s) { tvec::trans_estr(cx, s,
ast::vstore_fixed(none), dest) }
_ {
store_in_dest(cx, trans_crate_lit(cx.ccx(), e, lit), dest)
store_in_dest(cx, consts::const_lit(cx.ccx(), e, lit), dest)
}
}
}
fn trans_boxed_expr(bcx: block, contents: @ast::expr,
t: ty::t, heap: heap,
dest: dest) -> block {
......@@ -1473,7 +1443,6 @@ fn trans_boxed_expr(bcx: block, contents: @ast::expr,
ret store_in_dest(bcx, box, dest);
}
fn trans_unary(bcx: block, op: ast::unop, e: @ast::expr,
un_expr: @ast::expr, dest: dest) -> block {
let _icx = bcx.insn_ctxt(~"trans_unary");
......@@ -4716,142 +4685,6 @@ fn trans_enum_variant(ccx: @crate_ctxt, enum_id: ast::node_id,
finish_fn(fcx, lltop);
}
// FIXME (#2530): this should do some structural hash-consing to avoid
// duplicate constants. I think. Maybe LLVM has a magical mode that does so
// later on?
fn trans_const_expr(cx: @crate_ctxt, e: @ast::expr) -> ValueRef {
let _icx = cx.insn_ctxt(~"trans_const_expr");
alt e.node {
ast::expr_lit(lit) { trans_crate_lit(cx, e, *lit) }
// If we have a vstore, just keep going; it has to be a string
ast::expr_vstore(e, _) { trans_const_expr(cx, e) }
ast::expr_binary(b, e1, e2) {
let te1 = trans_const_expr(cx, e1);
let te2 = trans_const_expr(cx, e2);
let te2 = cast_shift_const_rhs(b, te1, te2);
/* Neither type is bottom, and we expect them to be unified already,
* so the following is safe. */
let ty = ty::expr_ty(cx.tcx, e1);
let is_float = ty::type_is_fp(ty);
let signed = ty::type_is_signed(ty);
ret alt b {
ast::add {
if is_float { llvm::LLVMConstFAdd(te1, te2) }
else { llvm::LLVMConstAdd(te1, te2) }
}
ast::subtract {
if is_float { llvm::LLVMConstFSub(te1, te2) }
else { llvm::LLVMConstSub(te1, te2) }
}
ast::mul {
if is_float { llvm::LLVMConstFMul(te1, te2) }
else { llvm::LLVMConstMul(te1, te2) }
}
ast::div {
if is_float { llvm::LLVMConstFDiv(te1, te2) }
else if signed { llvm::LLVMConstSDiv(te1, te2) }
else { llvm::LLVMConstUDiv(te1, te2) }
}
ast::rem {
if is_float { llvm::LLVMConstFRem(te1, te2) }
else if signed { llvm::LLVMConstSRem(te1, te2) }
else { llvm::LLVMConstURem(te1, te2) }
}
ast::and |
ast::or { cx.sess.span_unimpl(e.span, ~"binop logic"); }
ast::bitxor { llvm::LLVMConstXor(te1, te2) }
ast::bitand { llvm::LLVMConstAnd(te1, te2) }
ast::bitor { llvm::LLVMConstOr(te1, te2) }
ast::shl { llvm::LLVMConstShl(te1, te2) }
ast::shr {
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
}
ast::eq |
ast::lt |
ast::le |
ast::ne |
ast::ge |
ast::gt { cx.sess.span_unimpl(e.span, ~"binop comparator"); }
}
}
ast::expr_unary(u, e) {
let te = trans_const_expr(cx, e);
let ty = ty::expr_ty(cx.tcx, e);
let is_float = ty::type_is_fp(ty);
ret alt u {
ast::box(_) |
ast::uniq(_) |
ast::deref { cx.sess.span_bug(e.span,
~"bad unop type in trans_const_expr"); }
ast::not { llvm::LLVMConstNot(te) }
ast::neg {
if is_float { llvm::LLVMConstFNeg(te) }
else { llvm::LLVMConstNeg(te) }
}
}
}
ast::expr_cast(base, tp) {
let ety = ty::expr_ty(cx.tcx, e), llty = type_of(cx, ety);
let basety = ty::expr_ty(cx.tcx, base);
let v = trans_const_expr(cx, base);
alt check (cast_type_kind(basety), cast_type_kind(ety)) {
(cast_integral, cast_integral) {
let s = if ty::type_is_signed(basety) { True } else { False };
llvm::LLVMConstIntCast(v, llty, s)
}
(cast_integral, cast_float) {
if ty::type_is_signed(basety) { llvm::LLVMConstSIToFP(v, llty) }
else { llvm::LLVMConstUIToFP(v, llty) }
}
(cast_float, cast_float) { llvm::LLVMConstFPCast(v, llty) }
(cast_float, cast_integral) {
if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty) }
else { llvm::LLVMConstFPToUI(v, llty) }
}
}
}
ast::expr_path(path) {
alt cx.tcx.def_map.find(e.id) {
some(ast::def_const(def_id)) {
// Don't know how to handle external consts
assert ast_util::is_local(def_id);
alt cx.tcx.items.get(def_id.node) {
ast_map::node_item(@{
node: ast::item_const(_, subexpr), _
}, _) {
// FIXME (#2530): Instead of recursing here to regenerate
// the values for other constants, we should just look up
// the already-defined value.
trans_const_expr(cx, subexpr)
}
_ {
cx.sess.span_bug(e.span, ~"expected item");
}
}
}
_ { cx.sess.span_bug(e.span, ~"expected to find a const def") }
}
}
_ { cx.sess.span_bug(e.span,
~"bad constant expression type in trans_const_expr"); }
}
}
fn trans_const(ccx: @crate_ctxt, e: @ast::expr, id: ast::node_id) {
let _icx = ccx.insn_ctxt(~"trans_const");
let v = trans_const_expr(ccx, e);
// The scalars come back as 1st class LLVM vals
// which we have to stick into global constants.
let g = get_item_val(ccx, id);
llvm::LLVMSetInitializer(g, v);
llvm::LLVMSetGlobalConstant(g, True);
}
fn trans_class_ctor(ccx: @crate_ctxt, path: path, decl: ast::fn_decl,
body: ast::blk, llctor_decl: ValueRef,
psubsts: param_substs, ctor_id: ast::node_id,
......@@ -5008,7 +4841,7 @@ fn trans_item(ccx: @crate_ctxt, item: ast::item) {
}
}
}
ast::item_const(_, expr) { trans_const(ccx, expr, item.id); }
ast::item_const(_, expr) { consts::trans_const(ccx, expr, item.id); }
ast::item_foreign_mod(foreign_mod) {
let abi = alt attr::foreign_abi(item.attrs) {
either::right(abi_) { abi_ }
......
import common::*;
import syntax::{ast, ast_util, codemap, ast_map};
import base::get_insn_ctxt;
fn const_lit(cx: @crate_ctxt, e: @ast::expr, lit: ast::lit)
-> ValueRef {
let _icx = cx.insn_ctxt(~"trans_lit");
alt lit.node {
ast::lit_int(i, t) { C_integral(T_int_ty(cx, t), i as u64, True) }
ast::lit_uint(u, t) { C_integral(T_uint_ty(cx, t), u, False) }
ast::lit_int_unsuffixed(i) {
let lit_int_ty = ty::node_id_to_type(cx.tcx, e.id);
alt ty::get(lit_int_ty).struct {
ty::ty_int(t) {
C_integral(T_int_ty(cx, t), i as u64, True)
}
ty::ty_uint(t) {
C_integral(T_uint_ty(cx, t), i as u64, False)
}
_ { cx.sess.span_bug(lit.span,
~"integer literal doesn't have a type");
}
}
}
ast::lit_float(fs, t) { C_floating(*fs, T_float_ty(cx, t)) }
ast::lit_bool(b) { C_bool(b) }
ast::lit_nil { C_nil() }
ast::lit_str(s) {
cx.sess.span_unimpl(lit.span, ~"unique string in this context");
}
}
}
// FIXME (#2530): this should do some structural hash-consing to avoid
// duplicate constants. I think. Maybe LLVM has a magical mode that does so
// later on?
fn const_expr(cx: @crate_ctxt, e: @ast::expr) -> ValueRef {
let _icx = cx.insn_ctxt(~"const_expr");
alt e.node {
ast::expr_lit(lit) { consts::const_lit(cx, e, *lit) }
// If we have a vstore, just keep going; it has to be a string
ast::expr_vstore(e, _) { const_expr(cx, e) }
ast::expr_binary(b, e1, e2) {
let te1 = const_expr(cx, e1);
let te2 = const_expr(cx, e2);
let te2 = base::cast_shift_const_rhs(b, te1, te2);
/* Neither type is bottom, and we expect them to be unified already,
* so the following is safe. */
let ty = ty::expr_ty(cx.tcx, e1);
let is_float = ty::type_is_fp(ty);
let signed = ty::type_is_signed(ty);
ret alt b {
ast::add {
if is_float { llvm::LLVMConstFAdd(te1, te2) }
else { llvm::LLVMConstAdd(te1, te2) }
}
ast::subtract {
if is_float { llvm::LLVMConstFSub(te1, te2) }
else { llvm::LLVMConstSub(te1, te2) }
}
ast::mul {
if is_float { llvm::LLVMConstFMul(te1, te2) }
else { llvm::LLVMConstMul(te1, te2) }
}
ast::div {
if is_float { llvm::LLVMConstFDiv(te1, te2) }
else if signed { llvm::LLVMConstSDiv(te1, te2) }
else { llvm::LLVMConstUDiv(te1, te2) }
}
ast::rem {
if is_float { llvm::LLVMConstFRem(te1, te2) }
else if signed { llvm::LLVMConstSRem(te1, te2) }
else { llvm::LLVMConstURem(te1, te2) }
}
ast::and |
ast::or { cx.sess.span_unimpl(e.span, ~"binop logic"); }
ast::bitxor { llvm::LLVMConstXor(te1, te2) }
ast::bitand { llvm::LLVMConstAnd(te1, te2) }
ast::bitor { llvm::LLVMConstOr(te1, te2) }
ast::shl { llvm::LLVMConstShl(te1, te2) }
ast::shr {
if signed { llvm::LLVMConstAShr(te1, te2) }
else { llvm::LLVMConstLShr(te1, te2) }
}
ast::eq |
ast::lt |
ast::le |
ast::ne |
ast::ge |
ast::gt { cx.sess.span_unimpl(e.span, ~"binop comparator"); }
}
}
ast::expr_unary(u, e) {
let te = const_expr(cx, e);
let ty = ty::expr_ty(cx.tcx, e);
let is_float = ty::type_is_fp(ty);
ret alt u {
ast::box(_) |
ast::uniq(_) |
ast::deref { cx.sess.span_bug(e.span,
~"bad unop type in const_expr"); }
ast::not { llvm::LLVMConstNot(te) }
ast::neg {
if is_float { llvm::LLVMConstFNeg(te) }
else { llvm::LLVMConstNeg(te) }
}
}
}
ast::expr_cast(base, tp) {
let ety = ty::expr_ty(cx.tcx, e), llty = type_of::type_of(cx, ety);
let basety = ty::expr_ty(cx.tcx, base);
let v = const_expr(cx, base);
alt check (base::cast_type_kind(basety), base::cast_type_kind(ety)) {
(base::cast_integral, base::cast_integral) {
let s = if ty::type_is_signed(basety) { True } else { False };
llvm::LLVMConstIntCast(v, llty, s)
}
(base::cast_integral, base::cast_float) {
if ty::type_is_signed(basety) { llvm::LLVMConstSIToFP(v, llty) }
else { llvm::LLVMConstUIToFP(v, llty) }
}
(base::cast_float, base::cast_float) {
llvm::LLVMConstFPCast(v, llty)
}
(base::cast_float, base::cast_integral) {
if ty::type_is_signed(ety) { llvm::LLVMConstFPToSI(v, llty) }
else { llvm::LLVMConstFPToUI(v, llty) }
}
}
}
ast::expr_tup(es) {
C_struct(es.map(|e| const_expr(cx, e)))
}
ast::expr_rec(fs, none) {
C_struct(fs.map(|f| const_expr(cx, f.node.expr)))
}
ast::expr_path(path) {
alt cx.tcx.def_map.find(e.id) {
some(ast::def_const(def_id)) {
// Don't know how to handle external consts
assert ast_util::is_local(def_id);
alt cx.tcx.items.get(def_id.node) {
ast_map::node_item(@{
node: ast::item_const(_, subexpr), _
}, _) {
// FIXME (#2530): Instead of recursing here to regenerate
// the values for other constants, we should just look up
// the already-defined value.
const_expr(cx, subexpr)
}
_ {
cx.sess.span_bug(e.span, ~"expected item");
}
}
}
_ { cx.sess.span_bug(e.span, ~"expected to find a const def") }
}
}
_ { cx.sess.span_bug(e.span,
~"bad constant expression type in consts::const_expr"); }
}
}
fn trans_const(ccx: @crate_ctxt, e: @ast::expr, id: ast::node_id) {
let _icx = ccx.insn_ctxt(~"trans_const");
let v = const_expr(ccx, e);
// The scalars come back as 1st class LLVM vals
// which we have to stick into global constants.
let g = base::get_item_val(ccx, id);
llvm::LLVMSetInitializer(g, v);
llvm::LLVMSetGlobalConstant(g, True);
}
......@@ -40,6 +40,7 @@ import back_ = back;
mod middle {
mod trans {
mod common;
mod consts;
mod type_of;
mod build;
mod base;
......
const x : (int,int) = (0xfeedf00dd,0xca11ab1e);
const y : { x: (int, int),
y: { a: float,
b: float } } = { x: (0xf0f0f0f0_f0f0f0f0,
0xabababab_abababab),
y: { a: 3.14159265358979323846,
b: 2.7182818284590452354 } };
fn main() {
let (p, _) = y.x;
assert p == 0xf0f0f0f0_f0f0f0f0;
io::println(fmt!{"0x%x", p as uint});
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册