提交 1962a70e 编写于 作者: B bors

Auto merge of #50866 - michaelwoerister:relocations-in-vec, r=oli-obk

Use different datastructure for MIRI relocations

This PR makes relocations in MIRI used a sorted vector instead of a `BTreeMap` which should make a few common operations more efficient. Let's see if that's true.

r? @oli-obk
......@@ -12,7 +12,6 @@
pub use self::value::{PrimVal, PrimValKind, Value, Pointer, ConstValue};
use std::collections::BTreeMap;
use std::fmt;
use mir;
use hir::def_id::DefId;
......@@ -21,9 +20,11 @@
use middle::region;
use std::iter;
use std::io;
use std::ops::{Deref, DerefMut};
use std::hash::Hash;
use syntax::ast::Mutability;
use rustc_serialize::{Encoder, Decoder, Decodable, Encodable};
use rustc_data_structures::sorted_map::SortedMap;
use rustc_data_structures::fx::FxHashMap;
use byteorder::{WriteBytesExt, ReadBytesExt, LittleEndian, BigEndian};
......@@ -341,7 +342,7 @@ pub struct Allocation {
pub bytes: Vec<u8>,
/// Maps from byte addresses to allocations.
/// Only the first byte of a pointer is inserted into the map.
pub relocations: BTreeMap<Size, AllocId>,
pub relocations: Relocations,
/// Denotes undefined memory. Reading from undefined memory is forbidden in miri
pub undef_mask: UndefMask,
/// The alignment of the allocation to detect unaligned reads.
......@@ -358,7 +359,7 @@ pub fn from_bytes(slice: &[u8], align: Align) -> Self {
undef_mask.grow(Size::from_bytes(slice.len() as u64), true);
Self {
bytes: slice.to_owned(),
relocations: BTreeMap::new(),
relocations: Relocations::new(),
undef_mask,
align,
runtime_mutability: Mutability::Immutable,
......@@ -373,7 +374,7 @@ pub fn undef(size: Size, align: Align) -> Self {
assert_eq!(size.bytes() as usize as u64, size.bytes());
Allocation {
bytes: vec![0; size.bytes() as usize],
relocations: BTreeMap::new(),
relocations: Relocations::new(),
undef_mask: UndefMask::new(size),
align,
runtime_mutability: Mutability::Immutable,
......@@ -383,6 +384,35 @@ pub fn undef(size: Size, align: Align) -> Self {
impl<'tcx> ::serialize::UseSpecializedDecodable for &'tcx Allocation {}
#[derive(Clone, PartialEq, Eq, Hash, Debug, RustcEncodable, RustcDecodable)]
pub struct Relocations(SortedMap<Size, AllocId>);
impl Relocations {
pub fn new() -> Relocations {
Relocations(SortedMap::new())
}
// The caller must guarantee that the given relocations are already sorted
// by address and contain no duplicates.
pub fn from_presorted(r: Vec<(Size, AllocId)>) -> Relocations {
Relocations(SortedMap::from_presorted_elements(r))
}
}
impl Deref for Relocations {
type Target = SortedMap<Size, AllocId>;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for Relocations {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
////////////////////////////////////////////////////////////////////////////////
// Methods to access integers in the target endianness
////////////////////////////////////////////////////////////////////////////////
......
......@@ -83,7 +83,7 @@ pub fn const_alloc_to_llvm(cx: &CodegenCx, alloc: &Allocation) -> ValueRef {
let pointer_size = layout.pointer_size.bytes() as usize;
let mut next_offset = 0;
for (&offset, &alloc_id) in &alloc.relocations {
for &(offset, alloc_id) in alloc.relocations.iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
......
......@@ -73,6 +73,7 @@
pub mod flock;
pub mod sync;
pub mod owning_ref;
pub mod sorted_map;
pub struct OnDrop<F: Fn()>(pub F);
......
// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::borrow::Borrow;
use std::cmp::Ordering;
use std::convert::From;
use std::mem;
use std::ops::{RangeBounds, Bound, Index, IndexMut};
/// `SortedMap` is a data structure with similar characteristics as BTreeMap but
/// slightly different trade-offs: lookup, inseration, and removal are O(log(N))
/// and elements can be iterated in order cheaply.
///
/// `SortedMap` can be faster than a `BTreeMap` for small sizes (<50) since it
/// stores data in a more compact way. It also supports accessing contiguous
/// ranges of elements as a slice, and slices of already sorted elements can be
/// inserted efficiently.
#[derive(Clone, PartialEq, Eq, Hash, Default, Debug, RustcEncodable, RustcDecodable)]
pub struct SortedMap<K: Ord, V> {
data: Vec<(K,V)>
}
impl<K: Ord, V> SortedMap<K, V> {
#[inline]
pub fn new() -> SortedMap<K, V> {
SortedMap {
data: vec![]
}
}
/// Construct a `SortedMap` from a presorted set of elements. This is faster
/// than creating an empty map and then inserting the elements individually.
///
/// It is up to the caller to make sure that the elements are sorted by key
/// and that there are no duplicates.
#[inline]
pub fn from_presorted_elements(elements: Vec<(K, V)>) -> SortedMap<K, V>
{
debug_assert!(elements.windows(2).all(|w| w[0].0 < w[1].0));
SortedMap {
data: elements
}
}
#[inline]
pub fn insert(&mut self, key: K, mut value: V) -> Option<V> {
match self.lookup_index_for(&key) {
Ok(index) => {
let mut slot = unsafe {
self.data.get_unchecked_mut(index)
};
mem::swap(&mut slot.1, &mut value);
Some(value)
}
Err(index) => {
self.data.insert(index, (key, value));
None
}
}
}
#[inline]
pub fn remove(&mut self, key: &K) -> Option<V> {
match self.lookup_index_for(key) {
Ok(index) => {
Some(self.data.remove(index).1)
}
Err(_) => {
None
}
}
}
#[inline]
pub fn get(&self, key: &K) -> Option<&V> {
match self.lookup_index_for(key) {
Ok(index) => {
unsafe {
Some(&self.data.get_unchecked(index).1)
}
}
Err(_) => {
None
}
}
}
#[inline]
pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
match self.lookup_index_for(key) {
Ok(index) => {
unsafe {
Some(&mut self.data.get_unchecked_mut(index).1)
}
}
Err(_) => {
None
}
}
}
#[inline]
pub fn clear(&mut self) {
self.data.clear();
}
/// Iterate over elements, sorted by key
#[inline]
pub fn iter(&self) -> ::std::slice::Iter<(K, V)> {
self.data.iter()
}
/// Iterate over the keys, sorted
#[inline]
pub fn keys(&self) -> impl Iterator<Item=&K> + ExactSizeIterator {
self.data.iter().map(|&(ref k, _)| k)
}
/// Iterate over values, sorted by key
#[inline]
pub fn values(&self) -> impl Iterator<Item=&V> + ExactSizeIterator {
self.data.iter().map(|&(_, ref v)| v)
}
#[inline]
pub fn len(&self) -> usize {
self.data.len()
}
#[inline]
pub fn range<R>(&self, range: R) -> &[(K, V)]
where R: RangeBounds<K>
{
let (start, end) = self.range_slice_indices(range);
(&self.data[start .. end])
}
#[inline]
pub fn remove_range<R>(&mut self, range: R)
where R: RangeBounds<K>
{
let (start, end) = self.range_slice_indices(range);
self.data.splice(start .. end, ::std::iter::empty());
}
/// Mutate all keys with the given function `f`. This mutation must not
/// change the sort-order of keys.
#[inline]
pub fn offset_keys<F>(&mut self, f: F)
where F: Fn(&mut K)
{
self.data.iter_mut().map(|&mut (ref mut k, _)| k).for_each(f);
}
/// Inserts a presorted range of elements into the map. If the range can be
/// inserted as a whole in between to existing elements of the map, this
/// will be faster than inserting the elements individually.
///
/// It is up to the caller to make sure that the elements are sorted by key
/// and that there are no duplicates.
#[inline]
pub fn insert_presorted(&mut self, mut elements: Vec<(K, V)>) {
if elements.is_empty() {
return
}
debug_assert!(elements.windows(2).all(|w| w[0].0 < w[1].0));
let start_index = self.lookup_index_for(&elements[0].0);
let drain = match start_index {
Ok(index) => {
let mut drain = elements.drain(..);
self.data[index] = drain.next().unwrap();
drain
}
Err(index) => {
if index == self.data.len() ||
elements.last().unwrap().0 < self.data[index].0 {
// We can copy the whole range without having to mix with
// existing elements.
self.data.splice(index .. index, elements.drain(..));
return
}
let mut drain = elements.drain(..);
self.data.insert(index, drain.next().unwrap());
drain
}
};
// Insert the rest
for (k, v) in drain {
self.insert(k, v);
}
}
/// Looks up the key in `self.data` via `slice::binary_search()`.
#[inline(always)]
fn lookup_index_for(&self, key: &K) -> Result<usize, usize> {
self.data.binary_search_by(|&(ref x, _)| x.cmp(key))
}
#[inline]
fn range_slice_indices<R>(&self, range: R) -> (usize, usize)
where R: RangeBounds<K>
{
let start = match range.start() {
Bound::Included(ref k) => {
match self.lookup_index_for(k) {
Ok(index) | Err(index) => index
}
}
Bound::Excluded(ref k) => {
match self.lookup_index_for(k) {
Ok(index) => index + 1,
Err(index) => index,
}
}
Bound::Unbounded => 0,
};
let end = match range.end() {
Bound::Included(ref k) => {
match self.lookup_index_for(k) {
Ok(index) => index + 1,
Err(index) => index,
}
}
Bound::Excluded(ref k) => {
match self.lookup_index_for(k) {
Ok(index) | Err(index) => index,
}
}
Bound::Unbounded => self.data.len(),
};
(start, end)
}
}
impl<K: Ord, V> IntoIterator for SortedMap<K, V> {
type Item = (K, V);
type IntoIter = ::std::vec::IntoIter<(K, V)>;
fn into_iter(self) -> Self::IntoIter {
self.data.into_iter()
}
}
impl<K: Ord, V, Q: Borrow<K>> Index<Q> for SortedMap<K, V> {
type Output = V;
fn index(&self, index: Q) -> &Self::Output {
let k: &K = index.borrow();
self.get(k).unwrap()
}
}
impl<K: Ord, V, Q: Borrow<K>> IndexMut<Q> for SortedMap<K, V> {
fn index_mut(&mut self, index: Q) -> &mut Self::Output {
let k: &K = index.borrow();
self.get_mut(k).unwrap()
}
}
impl<K: Ord, V, I: Iterator<Item=(K, V)>> From<I> for SortedMap<K, V> {
fn from(data: I) -> Self {
let mut data: Vec<(K, V)> = data.collect();
data.sort_unstable_by(|&(ref k1, _), &(ref k2, _)| k1.cmp(k2));
data.dedup_by(|&mut (ref k1, _), &mut (ref k2, _)| {
k1.cmp(k2) == Ordering::Equal
});
SortedMap {
data
}
}
}
#[cfg(test)]
mod tests {
use super::SortedMap;
#[test]
fn test_insert_and_iter() {
let mut map = SortedMap::new();
let mut expected = Vec::new();
for x in 0 .. 100 {
assert_eq!(map.iter().cloned().collect::<Vec<_>>(), expected);
let x = 1000 - x * 2;
map.insert(x, x);
expected.insert(0, (x, x));
}
}
#[test]
fn test_get_and_index() {
let mut map = SortedMap::new();
let mut expected = Vec::new();
for x in 0 .. 100 {
let x = 1000 - x;
if x & 1 == 0 {
map.insert(x, x);
}
expected.push(x);
}
for mut x in expected {
if x & 1 == 0 {
assert_eq!(map.get(&x), Some(&x));
assert_eq!(map.get_mut(&x), Some(&mut x));
assert_eq!(map[&x], x);
assert_eq!(&mut map[&x], &mut x);
} else {
assert_eq!(map.get(&x), None);
assert_eq!(map.get_mut(&x), None);
}
}
}
#[test]
fn test_range() {
let mut map = SortedMap::new();
map.insert(1, 1);
map.insert(3, 3);
map.insert(6, 6);
map.insert(9, 9);
let keys = |s: &[(_, _)]| {
s.into_iter().map(|e| e.0).collect::<Vec<u32>>()
};
for start in 0 .. 11 {
for end in 0 .. 11 {
if end < start {
continue
}
let mut expected = vec![1, 3, 6, 9];
expected.retain(|&x| x >= start && x < end);
assert_eq!(keys(map.range(start..end)), expected, "range = {}..{}", start, end);
}
}
}
#[test]
fn test_offset_keys() {
let mut map = SortedMap::new();
map.insert(1, 1);
map.insert(3, 3);
map.insert(6, 6);
map.offset_keys(|k| *k += 1);
let mut expected = SortedMap::new();
expected.insert(2, 1);
expected.insert(4, 3);
expected.insert(7, 6);
assert_eq!(map, expected);
}
fn keys(s: SortedMap<u32, u32>) -> Vec<u32> {
s.into_iter().map(|(k, _)| k).collect::<Vec<u32>>()
}
fn elements(s: SortedMap<u32, u32>) -> Vec<(u32, u32)> {
s.into_iter().collect::<Vec<(u32, u32)>>()
}
#[test]
fn test_remove_range() {
let mut map = SortedMap::new();
map.insert(1, 1);
map.insert(3, 3);
map.insert(6, 6);
map.insert(9, 9);
for start in 0 .. 11 {
for end in 0 .. 11 {
if end < start {
continue
}
let mut expected = vec![1, 3, 6, 9];
expected.retain(|&x| x < start || x >= end);
let mut map = map.clone();
map.remove_range(start .. end);
assert_eq!(keys(map), expected, "range = {}..{}", start, end);
}
}
}
#[test]
fn test_remove() {
let mut map = SortedMap::new();
let mut expected = Vec::new();
for x in 0..10 {
map.insert(x, x);
expected.push((x, x));
}
for x in 0 .. 10 {
let mut map = map.clone();
let mut expected = expected.clone();
assert_eq!(map.remove(&x), Some(x));
expected.remove(x as usize);
assert_eq!(map.iter().cloned().collect::<Vec<_>>(), expected);
}
}
#[test]
fn test_insert_presorted_non_overlapping() {
let mut map = SortedMap::new();
map.insert(2, 0);
map.insert(8, 0);
map.insert_presorted(vec![(3, 0), (7, 0)]);
let expected = vec![2, 3, 7, 8];
assert_eq!(keys(map), expected);
}
#[test]
fn test_insert_presorted_first_elem_equal() {
let mut map = SortedMap::new();
map.insert(2, 2);
map.insert(8, 8);
map.insert_presorted(vec![(2, 0), (7, 7)]);
let expected = vec![(2, 0), (7, 7), (8, 8)];
assert_eq!(elements(map), expected);
}
#[test]
fn test_insert_presorted_last_elem_equal() {
let mut map = SortedMap::new();
map.insert(2, 2);
map.insert(8, 8);
map.insert_presorted(vec![(3, 3), (8, 0)]);
let expected = vec![(2, 2), (3, 3), (8, 0)];
assert_eq!(elements(map), expected);
}
#[test]
fn test_insert_presorted_shuffle() {
let mut map = SortedMap::new();
map.insert(2, 2);
map.insert(7, 7);
map.insert_presorted(vec![(1, 1), (3, 3), (8, 8)]);
let expected = vec![(1, 1), (2, 2), (3, 3), (7, 7), (8, 8)];
assert_eq!(elements(map), expected);
}
#[test]
fn test_insert_presorted_at_end() {
let mut map = SortedMap::new();
map.insert(1, 1);
map.insert(2, 2);
map.insert_presorted(vec![(3, 3), (8, 8)]);
let expected = vec![(1, 1), (2, 2), (3, 3), (8, 8)];
assert_eq!(elements(map), expected);
}
}
use std::collections::{btree_map, VecDeque};
use std::collections::VecDeque;
use std::ptr;
use rustc::hir::def_id::DefId;
......@@ -519,7 +519,7 @@ fn get_bytes_unchecked_mut(
fn get_bytes(&self, ptr: MemoryPointer, size: Size, align: Align) -> EvalResult<'tcx, &[u8]> {
assert_ne!(size.bytes(), 0);
if self.relocations(ptr, size)?.count() != 0 {
if self.relocations(ptr, size)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, size)?;
......@@ -614,9 +614,9 @@ pub fn copy(
// first copy the relocations to a temporary buffer, because
// `get_bytes_mut` will clear the relocations, which is correct,
// since we don't want to keep any relocations at the target.
let relocations: Vec<_> = self.relocations(src, size)?
.map(|(&offset, &alloc_id)| {
.iter()
.map(|&(offset, alloc_id)| {
// Update relocation offsets for the new positions in the destination allocation.
(offset + dest.offset - src.offset, alloc_id)
})
......@@ -648,7 +648,7 @@ pub fn copy(
self.copy_undef_mask(src, dest, size)?;
// copy back the relocations
self.get_mut(dest.alloc_id)?.relocations.extend(relocations);
self.get_mut(dest.alloc_id)?.relocations.insert_presorted(relocations);
Ok(())
}
......@@ -660,7 +660,7 @@ pub fn read_c_str(&self, ptr: MemoryPointer) -> EvalResult<'tcx, &[u8]> {
match alloc.bytes[offset..].iter().position(|&c| c == 0) {
Some(size) => {
let p1 = Size::from_bytes((size + 1) as u64);
if self.relocations(ptr, p1)?.count() != 0 {
if self.relocations(ptr, p1)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
self.check_defined(ptr, p1)?;
......@@ -720,7 +720,7 @@ pub fn read_primval(&self, ptr: MemoryPointer, ptr_align: Align, size: Size) ->
let bytes = read_target_uint(endianness, bytes).unwrap();
// See if we got a pointer
if size != self.pointer_size() {
if self.relocations(ptr, size)?.count() != 0 {
if self.relocations(ptr, size)?.len() != 0 {
return err!(ReadPointerAsBytes);
}
} else {
......@@ -808,24 +808,26 @@ fn relocations(
&self,
ptr: MemoryPointer,
size: Size,
) -> EvalResult<'tcx, btree_map::Range<Size, AllocId>> {
) -> EvalResult<'tcx, &[(Size, AllocId)]> {
let start = ptr.offset.bytes().saturating_sub(self.pointer_size().bytes() - 1);
let end = ptr.offset + size;
Ok(self.get(ptr.alloc_id)?.relocations.range(Size::from_bytes(start)..end))
}
fn clear_relocations(&mut self, ptr: MemoryPointer, size: Size) -> EvalResult<'tcx> {
// Find all relocations overlapping the given range.
let keys: Vec<_> = self.relocations(ptr, size)?.map(|(&k, _)| k).collect();
if keys.is_empty() {
return Ok(());
}
// Find the start and end of the given range and its outermost relocations.
let (first, last) = {
// Find all relocations overlapping the given range.
let relocations = self.relocations(ptr, size)?;
if relocations.is_empty() {
return Ok(());
}
(relocations.first().unwrap().0,
relocations.last().unwrap().0 + self.pointer_size())
};
let start = ptr.offset;
let end = start + size;
let first = *keys.first().unwrap();
let last = *keys.last().unwrap() + self.pointer_size();
let alloc = self.get_mut(ptr.alloc_id)?;
......@@ -839,16 +841,14 @@ fn clear_relocations(&mut self, ptr: MemoryPointer, size: Size) -> EvalResult<'t
}
// Forget all the relocations.
for k in keys {
alloc.relocations.remove(&k);
}
alloc.relocations.remove_range(first ..= last);
Ok(())
}
fn check_relocation_edges(&self, ptr: MemoryPointer, size: Size) -> EvalResult<'tcx> {
let overlapping_start = self.relocations(ptr, Size::from_bytes(0))?.count();
let overlapping_end = self.relocations(ptr.offset(size, self)?, Size::from_bytes(0))?.count();
let overlapping_start = self.relocations(ptr, Size::from_bytes(0))?.len();
let overlapping_end = self.relocations(ptr.offset(size, self)?, Size::from_bytes(0))?.len();
if overlapping_start + overlapping_end != 0 {
return err!(ReadPointerAsBytes);
}
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册