提交 1769c63d 编写于 作者: A Ariel Ben-Yehuda

add a comment and assertion explaining everything

上级 9d38541d
......@@ -16,13 +16,14 @@
use traits::IntercrateMode;
use traits::select::IntercrateAmbiguityCause;
use ty::{self, Ty, TyCtxt};
use ty::fold::TypeFoldable;
use ty::subst::Subst;
use infer::{InferCtxt, InferOk};
#[derive(Copy, Clone, Debug)]
/// Whether we do the orphan check relative to this crate or
/// to some remote crate.
#[derive(Copy, Clone, Debug)]
enum InCrate {
Local,
Remote
......@@ -224,6 +225,92 @@ pub fn orphan_check<'a, 'gcx, 'tcx>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
orphan_check_trait_ref(tcx, trait_ref, InCrate::Local)
}
/// Check whether a trait-ref is potentially implementable by a crate.
///
/// The current rule is that a trait-ref orphan checks in a crate C:
///
/// 1. Order the parameters in the trait-ref in subst order - Self first,
/// others linearly (e.g. `<U as Foo<V, W>>` is U < V < W).
/// 2. Of these type parameters, there is at least one type parameter
/// in which, walking the type as a tree, you can reach a type local
/// to C where all types in-between are fundamental types. Call the
/// first such parameter the "local key parameter".
/// - e.g. `Box<LocalType>` is OK, because you can visit LocalType
/// going through `Box`, which is fundamental.
/// - similarly, `FundamentalPair<Vec<()>, Box<LocalType>>` is OK for
/// the same reason.
/// - but (knowing that `Vec<T>` is non-fundamental, and assuming it's
/// not local), `Vec<LocalType>` is bad, because `Vec<->` is between
/// the local type and the type parameter.
/// 3. Every type parameter before the local key parameter is fully known in C.
/// - e.g. `impl<T> T: Trait<LocalType>` is bad, because `T` might be
/// an unknown type.
/// - but `impl<T> LocalType: Trait<T>` is OK, because `LocalType`
/// occurs before `T`.
/// 4. Every type in the local key parameter not known in C, going
/// through the parameter's type tree, must appear only as a subtree of
/// a type local to C, with only fundamental types between the type
/// local to C and the local key parameter.
/// - e.g. `Vec<LocalType<T>>>` (or equivalently `Box<Vec<LocalType<T>>>`)
/// is bad, because the only local type with `T` as a subtree is
/// `LocalType<T>`, and `Vec<->` is between it and the type parameter.
/// - similarly, `FundamentalPair<LocalType<T>, T>` is bad, because
/// the second occurence of `T` is not a subtree of *any* local type.
/// - however, `LocalType<Vec<T>>` is OK, because `T` is a subtree of
/// `LocalType<Vec<T>>`, which is local and has no types between it and
/// the type parameter.
///
/// The orphan rules actually serve several different purposes:
///
/// 1. They enable link-safety - i.e. 2 mutually-unknowing crates (where
/// every type local to one crate is unknown in the other) can't implement
/// the same trait-ref. This follows because it can be seen that no such
/// type can orphan-check in 2 such crates.
///
/// To check that a local impl follows the orphan rules, we check it in
/// InCrate::Local mode, using type parameters for the "generic" types.
///
/// 2. They ground negative reasoning for coherence. If a user wants to
/// write both a conditional blanket impl and a specific impl, we need to
/// make sure they do not overlap. For example, if we write
/// ```
/// impl<T> IntoIterator for Vec<T>
/// impl<T: Iterator> IntoIterator for T
/// ```
/// We need to be able to prove that `Option<$0>: !Iterator` for every type $0.
/// We can observe that this holds in the current crate, but we need to make
/// sure this will also hold in all unknown crates (both "independent" crates,
/// which we need for link-safety, and also child crates, because we don't want
/// child crates to get error for impl conflicts in a *dependency*).
///
/// For that, we only allow negative reasoning if, for every assignment to the
/// inference variables, every unknown crate would get an orphan error if they
/// try to implement this trait-ref. To check for this, we use InCrate::Remote
/// mode. That is sound because we already know all the impls from known crates.
///
/// 3. For non-#[fundamental] traits, they guarantee that parent crates can
/// add "non-blanket" impls without breaking negative reasoning in dependent
/// crates. This is the "rebalancing coherence" (RFC 1023) restriction.
///
/// For that, we only a allow crate to perform negative reasoning on
/// non-local-non-#[fundamental] only if there's a local key parameter as per (2).
///
/// Because we never perform negative reasoning generically (coherence does
/// not involve type parameters), this can be interpreted as doing the full
/// orphan check (using InCrate::Local mode), substituting non-local known
/// types for all inference variables.
///
/// This allows for crates to future-compatibly add impls as long as they
/// can't apply to types with a key parameter in a child crate - applying
/// the rules, this basically means that every type parameter in the impl
/// must appear behind a non-fundamental type (because this is not a
/// type-system requirement, crate owners might also go for "semantic
/// future-compatibility" involving things such as sealed traits, but
/// the above requirement is sufficient, and is necessary in "open world"
/// cases).
///
/// Note that this function is never called for types that have both type
/// parameters and inference variables.
fn orphan_check_trait_ref<'tcx>(tcx: TyCtxt,
trait_ref: ty::TraitRef<'tcx>,
in_crate: InCrate)
......@@ -232,6 +319,11 @@ fn orphan_check_trait_ref<'tcx>(tcx: TyCtxt,
debug!("orphan_check_trait_ref(trait_ref={:?}, in_crate={:?})",
trait_ref, in_crate);
if trait_ref.needs_infer() && trait_ref.needs_subst() {
bug!("can't orphan check a trait ref with both params and inference variables {:?}",
trait_ref);
}
// First, create an ordered iterator over all the type parameters to the trait, with the self
// type appearing first.
// Find the first input type that either references a type parameter OR
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册